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Abstract

This paper presents a system to reconstruct piecewise
planar and compact floorplans from images, which are then
converted to high quality texture-mapped models for free-
viewpoint visualization. There are two main challenges in
image-based floorplan reconstruction. The first is the lack
of 3D information that can be extracted from images by
Structure from Motion and Multi-View Stereo, as indoor
scenes abound with non-diffuse and homogeneous surfaces
plus clutter. The second challenge is the need of a sophisti-
cated regularization technique that enforces piecewise pla-
narity, to suppress clutter and yield high quality texture
mapped models. Our technical contributions are twofold.
First, we propose a novel structure classification technique
to classify each pixel to three regions (floor, ceiling, and
wall), which provide 3D cues even from a single image.
Second, we cast floorplan reconstruction as a shortest path
problem on a specially crafted graph, which enables us to
enforce piecewise planarity. Besides producing compact
piecewise planar models, this formulation allows us to di-
rectly control the number of vertices (i.e., density) of the
output mesh. We evaluate our system on real indoor scenes,
and show that our texture mapped mesh models provide
compelling free-viewpoint visualization experiences, when
compared against the state-of-the-art and ground truth.

1. Introduction
Automated reconstruction of accurate 3D models from

images has been one of the most fruitful outcomes of Com-

puter Vision. Several 3D reconstruction methods have sur-

faced [6, 19] whose accuracy compares to laser range sen-

sor systems at a fraction of the cost [17]. The emergence

of Kinect-style depth cameras has also been a revolution for

3D Computer Vision research in recent years. Although its

use is limited to short-range indoor scanning [8, 13, 20],

state-of-the-art systems using these cameras produce im-

pressive results, ranging from detailed 3D models of an of-

fice [8] to a building-scale reconstruction [20].

The majority of existing 3D reconstruction methods fo-

cus on producing more “accurate” and “dense” 3D models.

Figure 1. Our system reconstructs high quality texture mapped

mesh models of cluttered indoor scenes from panorama images.

Despite their immense improvement, perfect results are re-

stricted to objects or small-scale scenes, where many photos

can be acquired, and surfaces are well-textured and roughly

Lambertian [6, 19]. For indoor scenes, reconstructions be-

come incomparably challenging due to violations of these

conditions plus abundant clutter that is difficult to model

and render. In such scenarios, reconstructions seeking for

accuracy and density often yield unsatisfactory visualiza-

tion [11, 21], because models are never perfect, and com-

plex geometries induce more stitching seams, which trigger

noticeable high frequency rendering artifacts.

Our primary objective is visualization, so we propose

instead to seek for a 3D model that may lose certain ge-

ometric details but can provide better visualization experi-

ences. This idea resembles the Uncanny Valley hypothesis

for human face reconstruction, and agrees with observations

from existing image-based rendering work on challenging

scenes [11, 21]. 1 While it is generally not clear what kind

of 3D models yield better rendering while sacrificing ge-

ometric accuracy, for indoor scene visualization there is a

simple answer: piecewise planarity. The justification for

this assumption is twofold. First, the dominant structure is

the floorplan, which is usually piecewise planar; thus, en-

forcing piecewise planarity can suppress reconstructions of

1Our visualization application is free-viewpoint rendering for mapping

applications, which requires much higher quality and cleanness in the

3D model, as opposed to typical view-dependent texture mapping, whose

viewpoints are restricted, but works well even with corrupted geometry.
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clutters in a scene, which are typically the source of ren-

dering artifacts. Second, while regularized piecewise pla-

nar geometry also suffers from rendering artifacts, these are

texture distortions rather than stitching. Our visual system

is known to be very good at correcting such low-frequency

distortions, while high frequency stitching artifacts are no-

ticeable and unpleasant. Fig. 1 shows an example recon-

struction of our method on a location full of clutter with

challenging shapes and reflectance that are nearly impos-

sible to model perfectly. Yet, our piecewise planar model

visualizes the indoor scene effectively.

There are two challenges and technical contributions.

The first challenge is the lack of 3D information from Struc-

ture from Motion (SfM) and Multi-View Stereo (MVS) due

to the presence of non-diffuse and homogeneous surfaces

and poor image overlaps in a confined space. We propose a

structure classification technique to classify each pixel into

three structure regions, floor, ceiling or wall, which pro-

vides complementary 3D cues to stereo even from a single

image. We employ image segmentation and rely more on

geometric reasoning via calibrated panoramas to improve

classification, rather than resorting to appearance priors as

in prior art [9]. The second challenge is the need for a

sophisticated regularization technique to enforce piecewise

planarity. Unfortunately, this is not attainable with most ex-

isting techniques. For example, pairwise terms in Markov

Random Field (MRF) have only local influence. We cast

floorplan reconstruction as a shortest path problem on a spe-

cially crafted graph, whose construction allows us to glob-

ally enforce piecewise planarity. This formulation also en-

ables us to directly control the number of vertices in the

output mesh, while globally minimizing the same objective

function. Contrary to typical regularization control such as

a scalar weighing term in MRF, our work provides more in-

tuitive and powerful regularization scheme. As far as we

know, we are the first to propose such framework, since ex-

isting methods typically have no control over model com-

plexity, and are followed by a separate decimation stage.

2. Related Work
Indoor scanning has become increasingly popular in re-

cent years. Newcombe et al. presented a depth sensor based

3D reconstruction system, called KinectFusion, for a small-

scale object and a scene [13]. This work has been extended

for building-scale reconstructions [20]. Albeit dense, these

methods produce raw 3D measurements and are often not

suitable for applications such as visualization and mapping.

To obtain compact 3D models, researchers have ex-

ploited structural regularities such as planarity or orthogo-

nality as priors. Okorn et al. recovered floorplans by fitting

line segments to dense point clouds projected onto a ground

plane using Hough transforms [14]. Sanchez and Zakhor di-

rectly fit planes to 3D point clouds [15]. Despite their visual

appeal, these models do not output a mesh model but rather

a set of disconnected fragments obtained by greedy primi-

tive fitting. Xiao and Furukawa presented a system that fits

3D geometric primitives to laser scanned points to produce

a “water-tight” mesh [21]. However, it still relies on greedy

primitive fitting, which requires dense point clouds and is

often sensitive to termination conditions and early mistakes

in the processing. Pure image-based indoor reconstruction

systems also exist. Furukawa et al. use graph-cuts optimiza-

tion in a volumetric MRF formulation [5]. However, reg-

ularization in MRFs is only based on pairwise interaction

terms, and thus susceptible to noisy input data.

Interactive floorplan reconstruction has also been pop-

ular. Sankar et al. use smartphone sensors to reconstruct

a floorplan on site [16]. Kim et al. [10] presented a depth

camera based floorplan reconstruction system, but only han-

dled simple uncluttered scenes. These approaches require

manual input, while ours is fully automatic.

Our system makes use of structural cues directly ob-

tained from a single image. Geometric context learning

from appearance priors was proposed for outdoor scenes by

Hoiem et al. [9] and extended to indoor scenes in [7, 12, 22?
]. Xiong et al. [22] use patch similarities in images, but

they restrict classification to planar patches extracted from

dense laser scans. Hedau et al. [7] assumed a single box

layout and explicitly modeled objects to reason free-space

for an indoor scene. Lee et al. [12] proposed a line-feature
that generates a per-pixel surface normal map from line seg-

ments under a Manhattan world assumption. Flint et al. [4]

merged the above line-features with stereo cues and 3D

points into MAP optimization. These methods are typically

applied to uncluttered or single room box layouts, as op-

posed to the scenarios in this paper (see Fig. 1).

3. System Overview
The input to the system is a set of panorama images,

where we use a standard SfM algorithm that operates on

panorama images to estimate camera poses, and an MVS

algorithm [6] on the original unstitched images to recover

3D points (see Fig. 2). MVS matching is a challenging

problem in indoor scenes and tends to leave large recon-

struction holes. We propose a single-view structure classi-

fication technique that labels pixels into three classes (floor,

ceiling and wall). These can be converted into an additional

point cloud, by assuming that an indoor scene is composed

of vertical facades and horizontal floor and ceiling. Given

a 3D point cloud, we reconstruct a 2D floorplan by solving

a shortest path problem on a specially crafted graph. Fi-

nally, we extrude the estimated floorplan from the floor to

the ceiling to obtain the final mesh model, and map textures.

Our core reconstruction algorithm is agnostic to the

choice of 3D point acquisition technique, and depth cam-

eras can be used as a replacement for SfM and MVS. How-
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Figure 2. Overview of the proposed indoor scene reconstruction algorithm.

ever, we make the system fully image-based for several rea-

sons. First, as a mapping application to visualize scenes,

the first priority is to display high quality images to users.

The minimal input for such an application is a sparse set

of high quality panorama images, unattainable by a depth

camera since its image quality is typically low. Second, a

simple acquisition setup is easy to deploy and maintain in a

production pipeline, particularly in emerging markets.

4. Preprocessing

This section provides preprocessing steps necessary for

the floorplan reconstruction and structure classification.

Coordinate frame: We rotate the coordinate frame so that

the XY axes are aligned with the horizontal Manhattan di-

rections. These are determined by a multi-view vanishing

point detection algorithm [18], operating on line segments

extracted by Hough Transform for panorama images [1].

The Z axis is aligned with the gravity direction from SFM.

Domain and 3D evidence: The domain of the floorplan

reconstruction is determined by the axis-aligned bounding

box of the 3D points projected onto a ground plane, plus a

constant margin of 2m. We discretize the domain by a grid

of cells, where the cell size τ is set to 0.15 times the average

distance of MVS points to their visible panorama centers.

We collect two kinds of 3D evidence at each cell cj . First,

the evidence EW
j that cell j belongs to a wall is calculated

as the number of 3D points projected inside cj (Fig. 3, first

column). Second, the evidence EF
j that cell j is in free-

space (i.e., space one can see through) is calculated as the

number of times cj is intersected by rays connecting MVS

points to their visible panoramas (Fig. 3, second column).

5. Floorplan Reconstruction as Shortest Path

Our approach is similar in spirit to typical reconstruction

techniques, which employ the weighted minimal surface

formulation with a graph embedded in the domain [6, 19].

The key differences are the topology of the graph and

the shortest path problem formulation to solve for a 2D

floorplan-path. These enable very compact reconstructions

through piecewise planarity enforcement and the ability to

control the number of vertices (i.e., density) of the output.

We also handle the shrinkage bias issue, common to most

Points from structure classification MVS points Camera centers
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Figure 3. Our reconstruction is based on two kinds of 3D evidence:

wall evidence from 3D points (first column) and free-space evi-

dence from their visibility (second column). Red, green and blue

illustrate high, medium and low confidence, respectively. Note

that 3D points from structure classification form chains and look

like orange lines in the figure. After identifying a high free-space

evidence region as core free-space (grey), a shortest path problem

is formulated to reconstruct a floorplan around it (third column).

We overcome shrinkage bias by re-solving the problem with an-

chor points (fourth column). Ground truth is obtained manually

by clicking room corners in images for comparison (fifth column).

reconstruction methods, by solving the shortest path prob-

lem twice, by imposing additional constraints the second

time to recover thin structures. Each step is detailed below.

5.1. Graph construction

Given a domain covered by a grid of cells, we know that

the floorplan-path should not go through regions with high

free-space evidence. We define this core free-space region
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as: {cj |EF
j ≥ δ1}, and generate a node of the graph for

each cell outside the core free-space in the domain.

Edge construction is the key of our algorithm, where an

edge is added for every pair of nodes as long as it does not

intersect with the core free-space. The graph has “long”

edges to allow a rectangular room to be modeled by only

four edges, for example. The edge weight is defined so that

the path prefers long edges with high wall-evidence:
∑

j

ρ(EW
j ) + α. (1)

The first term penalizes going through low wall-evidence

cells and is an accumulation of costs over cells along the

edge, where ρ(EW
j ) is an indicator function that is 1 when

EW
j < δ2 and 0 otherwise. The second term is a con-

stant model-complexity penalty, which biases our solution

towards paths with less edges. δ2 = 1 and α = 5 are used. 2

5.2. Initial floorplan-path computation

We seek for a floorplan-path that goes around core free-

space with minimum cost. This resembles a shortest path

problem, but with two problems. First, a path must be a

closed loop for the floor to be well-defined. Second, an

empty path with zero cost is a trivial solution. To avoid

the trivial solution, we extract a start/end-line from the core

free-space to the domain boundary (See red lines in Fig. 3,

third column), and remove edges along this line. A path

must start from one side and end in the other side of the

line. Since we do not know where on the line, a floorplan

passes through, we seek to identify such a point (dubbed

start/end-point) together with the start/end-line as follows,

from which a shortest path problem can be formulated.

Suppose we have a start/end-line, denoted as an array of

cells: {c1, · · · cj−1, cj , cj+1, · · · , cn}, where c1 touches the

core free-space, cn touches the domain boundary, and cj is

the cell containing the start/end-point. If this is the right

choice of line and point, then wall-evidence (1) should be

high only at cj . Therefore, the quality of the start/end-line

and point can be measured as the wall evidence at cj minus

the wall evidence in the other cells, as

EW
j −

∑

|k−j|>δ3

EW
k . (2)

We used δ3 = 5 in our experiments to exclude nearby cell

contributions for robustness. We limit the direction of the

line to be either horizontal or vertical (two Manhattan di-

rections) and exhaustively check all possible configurations

to find the optimal one according to (2). Given a start/end-

line and starting point, Dijkstra’s algorithm finds the opti-

mal path going around the core-freespace.

2Free-space evidence and surface normals associated with 3D points

can be also used to compute edge weights. We tried various combinations,

but this simple formulation produces comparable results.
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Figure 4. After the initial floorplan-path reconstruction, an anchor

point is inserted at the presence of “unexplained” 3D points to

avoid shrinkage bias. Start/end-line is not visualized for simplicity.

5.3. Handling shrinking bias with anchor points

The above problem formulation produces precise and

compact 3D models (see Fig. 3), but suffers from a shrink-

age bias as in many previous methods [6, 19]. Fig. 4 illus-

trates a typical scenario where a thin structure is missing.

However, the existence of many “unexplained” 3D points

far away from the path implies that the initial floorplan-path

missed some structure. Our strategy is to identify regions

with high unexplained wall-evidence and insert additional

“anchor points” there. Then, we compute the shortest path

between every pair of consecutive anchor points and con-

catenate these solutions to form a closed loop.

Let us denote the set of cells along the initial path as S.

For each 3D point, we assign it to its closest cell in S in a

geodesic sense through the solution space. We ignore points

with distances less than 20τ (τ is the cell size) from S. The

number of accumulated points along cells in S is evidence

of missing structure. After smoothing out counts along S by

a Gaussian with standard deviation of 6τ , we extract cells

with count larger than 40. For each extracted minima, we

identify its farthest associated 3D point as an anchor point.

5.4. Final floorplan-path computation

Given additional anchor points, we compute the short-

est path between every pair of consecutive anchor points

including the start/end-point, and concatenate them, where

anchor points are ordered in the same order as the corre-

sponding cells along the initial path. However, we would

like to also compute the optimal paths with different num-

bers of vertices to provide floorplans of varying com-

plexity, and take a different approach. More concretely,

for every pair of consecutive anchor points, a simple dy-

namic programming, instead of Dijkstra’s algorithm, is

used to compute the optimal paths with 1, 2, · · ·β edges

together with the costs. We then find the optimal combi-

nation/concatenation of these paths forming a loop with a

specific total number of edges by another dynamic program-

ming (See the supplementary material for the two dynamic

programming constructions, which are straightforward and

not new). β is not a sensitive parameter but should be large

for the initial floorplan-path and is set to 30.
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(a) Superpixels (b) MVS evidence (c) Free space evidence (d) Geometry reasoning (e) Label order (f) Dynamic program. [3]

Figure 5. Structure classification, where we classify each pixel of an image into ceiling (blue), wall (green) or floor (red).

The floorplan is triangulated to generate a floor mesh,

and extruded from the floor to the ceiling to generate a fa-

cade consisting of quads. The floor and ceiling heights are

estimated by a plane-sweeping MVS (with a vertical sweep-

ing direction) by identifying the height below or above the

camera whose associated photo-consistency score (normal-

ized cross correlation) summed over the plane is maximum.

Texture image for each facade quad is simply projected

from the closest panorama without blending or stitching.

Since in the floor triangles may be badly shaped, we grab

pixel color at point-basis: for each point on the floor mesh,

identify the closest panorama and collect the pixel color.

5.5. Enhancement techniques

Graph optimization: The number of edges in our graph

could be potentially large, as we essentially connect every

pair of nodes. In practice, a scene has a few dominant direc-

tions, so we only connect edges along directions extracted

by the multi-view vanishing point detection described in

Sect. 4. The number of dominant horizontal directions are

typically 2, but we extract more for robustness (see Table 1).

Our experiments showed this approach achieves compara-

ble solutions to allowing all possible directions in the graph,

without the additional computation complexity.

Augmenting core free-space: Due to the scarcity of MVS

points, the core free-space may be defragmented into mul-

tiple components (See Fig. 3). While the floorplan-path

should circumnavigate all such components, some may

drop due to the shrinkage bias. Since all panorama centers

must be inside the floorplan-path, we construct a minimum

cost spanning tree of panorama centers, then add cells on

the tree as core free-space to guarantee the condition.

6. Structure Classification
Image-based indoor modeling is still a challenging prob-

lem for multi-view techniques, such as SfM and MVS. We

employ a single-view structure classification method to in-

fer 3D cues. As we only aim to classify underlying archi-

tecture, we only assign three structural labels (floor, ceiling,

and wall) to pixels in images (See Fig. 5). Similar to exist-

ing works [3, 4], we assume that scenes consist of vertical

walls with horizontal floor and ceiling. By estimating floor

and ceiling heights, the floor is related to the ceiling through

a homography, and the structure classification problem is

reduced to the estimation of the y-coordinate of the ceiling-

wall boundary in each image column [3, 4].

Our key technical contributions lie in the use of super-

pixels to exploit the texture homogeneity prevalent in in-

door scenes, and geometric reasoning to enforce a correct

label ordering in each image column: ceiling, wall and floor

from top to bottom. While lines are often effective features

for existing methods [4, 12], they are far less reliable in our

case due to clutter (see Figs. 1 and 6). Our classification

steps are illustrated in Fig. 5 and described below.

1. Images are segmented into superpixels [2] (Fig. 5(a)).

2. Wall and free-space evidence described in Sec. 4 are used

to obtain an initial set of labeled segments (Fig. 5(b,c)).3

3. The lower- and upper-bounds of the distance from a cam-

era to a wall at each image column are used to infer struc-

ture labels. The upper-bound is computed from the bound-

ing box of the domain, which gives the interval of pixels

that cannot be far away, and must be a wall. The lower-

bound is simply set to 0.3m, since cameras are never that

close. Similar reasoning is conducted to determine pixels

that must be floor or ceiling. Pixel-wise label assignments

are aggregated to superpixels by a majority vote (Fig. 5(d)).

4. Structure labels are propagated by enforcing the label or-

der (i.e., ceiling, wall and floor from top to bottom in each

column): Every pixel above (resp. below) the top-most ceil-

ing (resp. bottom-most floor) pixel is also labeled as ceiling

(resp. floor). Every pixel between the top-most and bottom-

most wall pixels is assigned a wall label. We also exploit the

homography mapping: For each pixel with a floor label, we

label the corresponding pixel through homography as ceil-

ing, if it does not already have a label. We alternate the

above procedure with superpixel-wise aggregation by ma-

jority vote to propagate structure labels until convergence

(Fig. 5(e)). Superpixels are eroded by 5 pixels to make this

propagation stage less susceptible to noise in their shapes.

5. We employ the dynamic programming technique of [3] to

globally optimize and regularize the label assignments for

an entire image, while using the current labels as data prior

(Fig. 5(f)). Given structure classification, we can generate a

3D point from the floor-wall boundary at each column of an

image by using the floor height. We deem this point visible

in the panorama that generates the point. 4

3We defer details to supplementary material, as this is similar to [4].
4Our datasets do not provide enough lines to distinguish two horizontal

manhattan directions. Thus, we distinguish only wall and floor, as opposed

to leftwall, rightwall, and floor [3]. The priors for the left/right walls are

computed from the same label. While [3] yields Manhattan directions for

wall pixels, we discard these since we only use the ceiling-wall boundary

for 3D point generation.
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Figure 6. Sample input panoramas for American and Book Store.
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Figure 7. Input MVS point cloud (left), and comparison of 3D

volumetric graph-cuts [5] (middle) against our method (right).

7. Experimental Results and Discussions

The proposed system was evaluated on a dataset of seven

real locations, comprised of different kinds of restaurants

and stores. Whilst small, this dataset illustrates the com-

plexity and challenges in indoor reconstruction, as can be

seen in the sample input panoramas in Figs. 1 and 6. The

resolution of each panorama is 4096 × 2048. Statistics on

the dataset, as well as parameters and running times of our

algorithm are given in Table 1. This section is structured

into three experiments followed by discussion to conclude

the paper. First, we compare our reconstructions to state-

of-the-art [5], its variants, and ground truth. Second, we

illustrate the capability of our system to control the number

of vertices in the output. Finally, we compare our structure

classifcation technique to the line features used in [4, 12].

Comparison to ground truth and state-of-the-art: Fig. 7

shows the input MVS points at the left and our recon-

structed floorplan models at the right for five of our loca-

tions. The middle column shows the floorplan models by

the volumetric graph-cuts technique in [5], which extracts a

surface from an axis-aligned voxel grid with MVS points.

As shown, the input 3D points contain many holes. The

graph-cut regularization produces noisy 3D mesh models

and loses several rooms due to shrinkage bias. On the other
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Figure 8. Left: Comparison against the 2D version of the volumet-

ric graph-cuts [5] with several smoothness penalties. Middle: Our

results without the structure classification step. Right: Our results.

Figure 9. Final texture mapped models for American and Italian.

hand, our algorithm is able to produce extremely compact

and clean 3D models for the scenes. Note that in Chinese, a

non-Manhattan diagonal wall is cleanly reconstructed.

For fairness, we have also compared our floorplan shapes

against ground truth (Fig. 3, right) and the 2D version of

volumetric graph-cuts [5], using the same wall and free-

space evidence in the same domain and cells (left of Fig. 8).

Ground truth models are obtained by manually clicking

room corners in the images. For graph-cuts, simple mesh

simplification is applied to remove nodes on colinear seg-

ments to illustrate its effective resolution. The objective

in [5] is the sum of data and smoothness penalties, and we

varied the weight for the smoothness penalty and generated

multiple results for each location. Compared to graph-cuts,

our results are more compact yet capture floorplan struc-

ture accurately, in particular, thin walls and room dividers.

Compared to ground truth, our results miss certain details,

but mostly due to incomplete and noisy input 3D data.

One might argue we should compare against minimal-

path based methods such as [? ] instead of [5]. How-

ever, note that minimal-path (minimal-surface in 3D) meth-

ods are equivalent to graph-cuts formulations, as proven

by Boykov and Kolmogorov in [? ]. We have also con-

ducted a quantitative evaluation on the reconstructed floor-

plan shapes against ground truth by computing the ratio of

area incorrectly reconstructed (sum of both overestimated
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Figure 10. Left: Optimal floorplan-paths with different numbers of nodes, which are 14, 18, 20, 22 and 52 from left to right for American.

Right: The cost of the optimal floorplan-path as a function of the number of nodes. The cost for Italian is divided by 3 to fit in the scale.
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Figure 11. The left two columns show the extracted line segments (color represents the corresponding vanishing direction) and the structure

classification result based on the line feature [12]. The right three columns show our structure classification results after initialization by

MVS points, after initialization by free-space information, and the final result.

and underestimated areas) to the total ground truth area,

a metric used in [16]. For each dataset, we computed a

score for our algorithm, and scores for the 2D version of the

graph-cuts [5], with small and large smoothness weights.

Results in Table 1 seem to suggest that 2D graph-cuts

perform fairly well with a proper weight choice. However,

as can be qualitatively verified from Fig. 8, several points

are worth noting. First, when the smoothness weight is

small, floorplans obtained with graph-cuts contain details

but are extremely noisy. Furthermore, they fail to capture

thin structures due to shrinkage bias. Note that areas of

thin structures are very small, so these mistakes are not re-

flected well in the area metric. Neither is the noisiness in

the floorplan shapes. Second, increasing the smoothness

weight removes some noise but yields gross errors and ex-

acerbates shrinking bias in most cases: this illustrates the

limit of pairwise regularization terms in a typical MRF for-

mulation. Furthermore, it is far from intuitive to tune such

scaling parameter to control model shapes. This is opposed

to our approach, which regularizes the number of edges of

the model while enforcing piecewise linearity, and is able

to generate proper floorplan shapes and high quality texture

mapped models (Figs 1, 2 and 9) despite very noise input

data. Despite all these advantages and benefits of our ap-

proach not being reflected in the area metric, it is worth

noting that our scores are the best in nearly half the datasets

with much fewer number of vertices, and never the worst.

Regularization control: Fig. 10 demonstrates the ability of

our algorithm to control the number of vertices in the out-

put. The optimal floorplan shape produced by our algorithm

has 22 nodes in this case, but it can also generate the opti-

mal shape with a specific number of nodes. Our algorithm

succeeds in keeping proper floorplan structure even in the

case of extremely low polygon counts (e.g., only 14) by en-

forcing piecewise planarity, which is difficult with existing

methods. The cost of the floorplan-path (1) as a function of

the number nodes is given at the right. Observe that, at a

macro scale, each plot has one minimum. The zig-zag pat-

tern, at a micro scale, is explained by the necessity of two

nodes to create one “corner”: Adding a single node simply

ends up paying a model complexity penalty (α in (1)).

Structure classification: Fig. 11 provides a comparison of

our superpixel classification results against the line feature

of [12]. Our algorithm succeeds in generating complete

and accurate classification results, starting from the incom-

plete label assignments from MVS points. The figure also

shows the extracted line segments (straight in 3D but curved

in panorama images) and the structure classification results

based on the line feature of [12], a single-view structure

inference technique. This line feature failed in extracting

useful structure information, since it cannot deal with clut-

tered scenes. As a control experiment, we run our floorplan

reconstruction algorithm without using the structure classi-

fication step to illustrate its effectiveness: The middle col-

umn of Fig. 8 shows that structure classification allows for

recovery of thin walls and missing rooms, which would not

628634

Kevin
高亮

Kevin
高亮

Kevin
高亮

Kevin
高亮

Kevin
高亮



Table 1. Statistics of our datasets. Np, Nl, Nd, Ni and Nf are the number of input panoramas, the average number of extracted line

segments per panorama, the number of extracted horizontal dominant directions, the number of nodes in the initial floorplan-path, and the

number of nodes in the final floorplan-path, respectively. Rcell is the resolution of the cell grid covering the domain. δ1 is the threshold

to determine the core free-space in Sect. 5, where σ is the average free-space evidence over cells with non-zero values. Tpr , Tsc, and Tfp

are the running time for the preprocessing, structure classification and floorplan reconstruction steps, in minutes. egcut−s, egcut−l and

eours are the quantitative error measures of the reconstructed floorplan shapes [16], for the graph-cuts technique with the small and large

smoothness weights and our algorithm, respectively. The blue (resp. red) number is the minimum (resp. maximum) error for each dataset.
Np Nl Nd Ni Nf Rcell δ1 Tpr Tsc Tfp egcut−s egcut−l eours

American 5 59.7 2 10 22 720×732 0.25σ 9 7 2 0.058 0.086 0.027
Chinese 6 92.6 3 9 9 561×537 0.5σ 8 9 2 0.273 0.019 0.048

Book Store 7 145.0 2 22 36 543×1203 0.5σ 16 8 4 0.217 0.120 0.156
Mexican 8 108.4 2 8 14 516×777 0.5σ 12 12 3 0.003 0.011 0.006

Thai 10 82.2 2 8 27 525×1071 0.5σ 13 15 5 0.129 0.133 0.111
Wine Shop 16 140.6 2 14 18 753×1080 0.5σ 25 23 3 0.006 0.102 0.036

Italian 17 64.4 2 16 60 801×1845 0.5σ 18 23 81 0.241 0.487 0.125

Figure 12. A failure example due to the lack of enough 3D points.

be recovered had we used only evidence from MVS points.

Discussion: Indoor digital mapping is still in an early stage.

While computer vision techniques have been extensively

used for digital outdoor mapping in a global scale, most

indoor locations do not have photorealistic 3D models, let

alone floorplan data. Our system is a significant improve-

ment over the state-of-the-art, but it is by no means perfect.

Fig. 12 shows a typical failure example (not included in Ta-

ble 1) due to the lack of enough 3D points. This example

shows that compact but inaccurate reconstruction produces

unpleasing texture-mapped models, and that it is essential to

capture compact but also accurate 3D geometry. Our system

has several limitations. First, the floorplan reconstruction

algorithm assumes a fixed ring-topology and cannot handle

more complicated floorplan shapes, e.g., patios surrounded

by indoor areas. Second, we do not model objects present

in a scene, which could be important to describe and visu-

alize the space. Despite these shortcomings, we believe this

work is a foray into bringing computer vision technologies

to the ultimate goal of worldwide indoor digital mapping.
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