
Copyright © 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
SCCG 2007, Budmerice Castle, Slovakia, April 26 – 28, 2007.
© 2007 ACM 978-1-60558-956-5/07/0004 $15.00

On Computing Best Fly

Waqar Saleem∗

MPI Informatik
Wenhao Song†

MPI Informatik
Alexander Belyaev‡

MPI Informatik
Hans-Peter Seidel§

MPI Informatik

Figure 1: We present a method that, given a shape model, computes an animation of the shape based on its geometric properties and perception
based, aesthetic criteria. Representative viewpoints of the shape are extracted, and an interpolating path is computed as a trajectory for a virtual
camera. Speed and zoom of the camera along the path are controlled. Here, we show several scenes extracted from left to right in sequence
from our animation of the Lion vase model. The blue line on the viewsphere represents the camera’s trajectory and the rightmost image shows
how the camera speed (top) and zoom (bottom) vary along the trajectory.

Abstract

With growing popularity of online 3D shape databases, the prob-
lem of navigation and remote visualisation of large 3D shape mod-
els in such repositories is gaining prominence. While some recent
work has focused on automatically computing the best view(s) of
a given model, little attention has been given to the problem’s dy-
namic counterpart – best fly. In this paper, we propose a solution
to this problem that extends on previous best view methods. Given
a shape, we use its best views to compute a path on its viewsphere
which acts as a trajectory for a virtual camera pointing at the ob-
ject. We then use the model’s geometric properties to determine the
speed and zoom of the camera along the path.

Keywords: best fly, remote shape exploration

1 Introduction

With increased accessibility of 3D acquisition and modeling tech-
nology, the amount of 3D content available online is growing
rapidly. This is evident in the existence of large shape reposi-
tories offering vast amounts of detailed, complex geometric data
[3DScanRep ; PDB ; NDR ; PSB ; AIM@SHAPE ; LGMA] with
some of them regularly offering new content. The surge in avail-
ability of 3D models fuels research in the geometry processing
community which in turn creates demand for more high quality
models.

∗wsaleem@mpi-inf.mpg.de
†wsong@mpi-inf.mpg.de
‡belyaev@mpi-inf.mpg.de
§hpseidel@mpi-inf.mpg.de

Repositories offering such extensive data require a means to effi-
ciently and economically visualise 3D shape content. This ‘best
view’ problem has been addressed by the pattern recognition and
computer vision community [Denton et al. 2004; Hall and Owen
2005; Lee et al. 2004; Mokhtarian and Abbasi 2000; Vázquez et al.
2001] and recently has also been popularised in computer graph-
ics [Bordoloi and Shen 2005; Lee et al. 2005; Podolak et al. 2006;
Polonsky et al. 2005; Sokolov and Plemenos 2005; Takahashi et al.
2005; Vázquez et al. 2003; Yamauchi et al. 2006]. The approach is
to sample all views of the object and assign a view goodness mea-
sure to each view based on view similarity and/or stability, or prop-
erties of the visible part of the shape. Views with highest values for
this measure are chosen as the best views. Some online repositories
[3DoD ; AIM@SHAPE] offer a more dynamic solution in the form
of 3D viewers for interactive exploration of shapes.

Both these solutions have drawbacks. While the view-based static
solution cannot convey information about all of the shape and re-
lation between different views, the dynamic solution is impractical
for large shape models.

In this paper, we present an efficient, hybrid solution that is a natural
extension of the best view problem. After computing representative
viewpoints of the given shape [Yamauchi et al. 2006], we interpo-
late them on the shape’s viewsphere. The resulting path is used as a
trajectory for a virtual camera pointing at the object. In tradition of
best view, we propose the term ‘best fly’ for the problem of com-
puting the camera trajectory, where fly or fly-by refers to the virtual
camera’s passing over the object. The criteria that distinguish the
‘best’ fly from any other fly around the shape are outlined in Sec-
tion 2.

Once the fly is computed, we control the camera’s speed along it
by taking into account the perception based view saliency measure
from [Lee et al. 2005] to quickly skip uninteresting views. We use
the multi-scale nature of the view saliency computation to compute
a relevant viewing scale for shape features, which is used to regulate
the zoom of the camera.

The main contributions of this paper are as follows.

• A new method to compute a fly around the object is presented.

• Shape properties of the object are used to determine the speed

115

of the camera along its trajectory.

• Appropriate viewing scales for shape features are calculated
which control the zoom of the camera during the fly.

To the best of our knowledge, altering the speed and zoom param-
eters of the camera to provide a more informative fly has not been
considered before in the literature.

Once the animation is computed, it can be put online on a shape
repository’s webpage in a popular web format, e.g. animated GIF
or Flash. A tunable parameter can allow a user to control the length
of the animation.

Some recent work related to the problem is presented in Section 2.
In Section 3, we present the preprocessing steps of our method,
namely view selection and saliency computation. Sections 4 to 6
then describe our computation of the trajectory, speed and zoom of
the camera. Results of experiments on several models are presented
in Section 7 followed by a discussion and conclusion in Sections 8
and 9. Most of the images in this paper are snapshots from the
actual animations computed by our method. We refer the reader to
the accompanying video for a better understanding of our results
(the video will be made available online at the time of publication).

2 Previous Work

While best view methods sample all possible views of the object
from its viewsphere to choose the best among them, taking such
an approach to the best fly problem is not feasible as the size of
the search space increases exponentially with the number of view-
points to be visited in the fly. To guide the computation, previous
approaches [Sokolov et al. 2006a; Sokolov et al. 2006b] have there-
fore made use of some heuristics which we mention below.

1. Brevity – the animation should not be long,

2. Information – the animation must be maximally informative,

3. Exploration – the camera path should avoid fast returns to al-
ready visited viewpoints

4. Smoothness – the path should be smooth.

Depending on how the path computation is performed, shape ex-
ploration methods are classified as either offline or online. Offline
methods analyse the object once and compute the fly in advance.
Online methods compute a path in real time each time they visit the
object. Another classification is made on the nature of exploration
conducted. Global methods aim to give a general understanding of
the shape model. The camera stays outside the model, restricted to
its viewsphere. In local methods, the camera enters the model and
becomes part of it. Our method presented in this paper is a global,
offline method that satisfies the above heuristics.

Previous methods either fail the Smoothness condition [Sokolov
et al. 2006b] or deal with it artificially by putting in a damping
factor where sharp turns occur [Sokolov et al. 2006a]. The path is
often computed incrementally [Sokolov et al. 2006a]; at each view-
point in the path, the next viewpoint is selected after considering
each candidate viewpoint’s view goodness, distance from the start-
ing point of the path and the fraction of the model uncovered from
that viewpoint. Such methods suffer from the drawback that they
cannot guarantee that the computed path will pass through a given
set of points, without violating any of the heuristics or complicating
the computation.

Our method capitalises on the recent flurry of activity in the best
view area. Our premise is that the shape is sufficiently described by

the views computed by these methods. What remains is to inform
the user on the relation (transition) between these views. In Sec-
tion 8, we discuss how our method meets the conditions mentioned
above.

3 Preprocessing

3.1 Representative views

Figure 2: Stable view regions (coloured) for the Armadillo model
and their representative viewpoints (green dots). We compute 12
regions, and each of the four views above is taken from the repre-
sentative viewpoint of the region in the centre of the image.

We require a method that yields a set, V , of representative views
that are maximally dissimilar to each other and thus provide a good
coverage of the viewsphere. Most view measures however are such
that their best few views are clustered close to each other on the
viewsphere. In [Sokolov et al. 2006a], such a set is constructed by
iteratively picking viewpoints that make visible the most number of
uncovered shape vertices, and stopping when a certain fraction or
all of the vertices have been uncovered. This overlooks the shape of
the model, and is sensitive to tessellation. The method in [Podolak
et al. 2006] uses shape symmetries to yield the desired set, but it in-
volves costly computations that make its use for large shape models
impractical. The method we employ is closest in spirit to [Mokhtar-
ian and Abbasi 2000] which uses shape similarity to compute V .

We use the method described in [Yamauchi et al. 2006] which uses
image comparison [Khotanzad and Hong 1990] to compute simi-
larity of neighbouring viewpoints. After assigning the similarity
values as weights to the edges of the viewsphere, a graph parti-
tioning method [Karypis and Kumar 1998] is applied to partition
the viewsphere into a desired number of non-overlapping regions,
such that views from points within a region are maximally similar
to each other and maximally dissimilar to those from neighbouring
regions. The centroid of each of these stable view regions is taken
as its representative viewpoint.

The representative views thus obtained constitute V , our required
set of viewpoints. An example of stable view regions along with

116

their representative viewpoints is shown in Figure 2. The number
of regions is usually low (we compute 12 by default) but may be
tuned by a user as mentioned in Section 1, leading to a longer ani-
mation. A larger number of regions will lead to a finer granularity
in representation of the shape. The effect on computation time is
discussed in Section 7.

In [Yamauchi et al. 2006], the computation time reported for obtain-
ing the similarity weighted viewsphere is around 40 minutes, with
the bottleneck being the unoptimised similarity computations be-
tween views of resolution 256×256. We reduce the similarity com-
putation time to a couple of seconds by comparing not the binary
views but their extracted boundaries at a resolution of 400×400.
We also replace the area normalisation step of the original method
with the simpler one proposed in [Kamila et al. 2005].

3.2 Mesh and view saliencies

Figure 3: Saliency values for the Lion vase and Armadillo models,
increasing from cold (blue) to warm (red) colours.

View saliency is derived from mesh saliency [Lee et al. 2005] which
is a function that uses perception based factors to assign to each
vertex in a mesh a scalar value corresponding to the saliency of the
vertex in the shape. Higher values indicate higher saliency. For
each vertex, intermediate saliency values are calculated at several
scales. The final value is then a weighted average of the intermedi-
ate values. The idea is that a feature is salient if it is significantly
different from its neighbourhood. The saliency of a view of the
mesh is the sum of saliencies of visible vertices. Figure 3 provides
visualisations of mesh saliency values for some of the models used
in this paper.

The intermediate saliency values are computed at progressively
larger scales, where the size of a scale corresponds to the size of
the neighbourhood of the vertex considered for saliency computa-
tion. A high saliency value at a low scale indicates that the vertex
belongs to a small shape feature, and a high value at a higher scale
indicates a large feature. We shall make use of this information in
Section 6 where we compute appropriate viewing scales.

4 Computing the path

Given the set, V , of representative viewpoints from Section 3.1,
we want the computed path, P , to interpolate its members on the
viewsphere. Also, we require our animation to run continuously on
a shape repository webpage without any visible breaks. We pose

these requirements on the computed path as the following addi-
tional constraints:

• Interpolation – the camera path should interpolate a given set
of viewpoints.

• Looping – the camera path should be a cycle.

In [Sokolov et al. 2006b], the interpolation order is determined by
first defining a distance function that favours viewpoints with higher
view goodness values, computing all pairwise shortest paths be-
tween the viewpoints and then applying a TSP solver. This restricts
the computed path to edges of the tessellated viewsphere, and fails
the Smoothness condition from Section 1.

Looping is satisfied trivially by repeating the first point at the end
when computing the ordering. As the path is a cycle, the choice
of first point is meaningless. Once the ordering is determined, we
interpolate the points on the sphere using cubic spherical splines
[Watt and Watt 1991] (Chapter 15). An example of a computed
path is shown in Figure 4. Our computation of viewpoint ordering
is described below. A discussion on how well the resulting path
satisfies the conditions listed in Section 2 is given in Section 8.

Figure 4: The computed path, P , for the Armadillo model, shown
in blue on the viewsphere. Dots on the viewsphere represent the
interpolated viewpoints. The four images above are extracted from
the animation in clockwise order.

For every 3 consecutive points in a potential ordering, Vi, V j , Vk ∈
V , consider the quantity

Θi jk = |d(Vi,V j)+d(V j,Vk)−d(Vi,Vk)|,

where d(A,B) is the spherical distance between points A and B. Θi jk
gives a measure of the turn at V j . For Vi, V j , Vk lying on the same
great circle, Θi jk = 0. The computed ordering is the one which
minimises ∑Vj

Θi jk.

4.1 Up-vector consistency

Special consideration is given to the up-vectors of both the virtual
camera and the models used. We use a default value for models’

117

up-vector, ~Um = (0,1,0), which is consistent with most scanning
systems. However, this is not robust and we manually fixed ~Um for
one of the five models used in this paper.

For proper orientation of the model in the animation, we keep ~Uc,
the up-vector of the camera, consistent with ~Um. At all times, ~Uc is
chosen as the vector perpendicular to the viewing direction that is
coplanar with ~Um. This gives two possible orientations for the up-
vector. Indeed, there is a ‘flip’ in orientation at singular points, i.e.
viewpoints with view direction parallel ~Um. The flip in ~Uc is nec-
essary to maintain correct orientation of the model, otherwise, once
the camera passes through the singular point, the model appears to
be upside down.

5 Computing camera speed

a b c

Figure 5: a) Minimum (top) and maximum (bottom) positions in
the speed clock of the Armadillo animation. The 3 o’ clock posi-
tion represents the starting and ending point of the animation, dur-
ing which the pointer moves clockwise. The length of the pointer
represents the magnitude of the speed, and the dots represent the
interpolated viewpoints. b) and c) show the views corresponding to
the min and max positions respectively.

Camera speed, S , determines the distance along Pfrom the cur-
rent viewpoint to the next one. The motivation is that the camera
should quickly fly by uninteresting views. Formally, we pose the
following condition on the speed.

• Saliency respecting – the camera should slow down when
passing over visually important regions of the shape, and
speed up for uninteresting views.

We use the perception based measure of view saliency, V S [Lee
et al. 2005], to compute visual importance. The above formulation
suggests an inverse relationship, S ∝ 1

V S
. Taking the view that

the purpose of our animation is to aid human understanding of the
shape, we use the Two-Thirds Power Law (cf [de’Sperati and Vi-
viani 1997] and references therein) from locomotion which relates
tangential velocity, V , of free-hand movements to the radius of cur-
vature, R, of the trajectory as follows:

V (t) = K ·
(

R(t)
1+α ·R(t)

)1−β
α ≥ 0, K ≥ 0, (1)

where K is a velocity gain constant, α is negligible if the trajec-
tory does not have inflection points, and β is close to 2

3 for adults.
Putting in these values, we get

V (t) = K · (R(t))
1
3

= K ·
(

1
κ(t)

)
1
3

,

where κ(t) is the curvature of the path. In our case, we want the
speed to depend not on the curvature, but on V S . Therefore we
set

S (t) = Ks ·
(

1
V S (t)+ γ

)
1
3

, (2)

where γ is a constant offset to compensate for the 0 to 1 nor-
malisation of V S . Putting γ = 1 makes S vary between Ks and
Ks
3√2

≈ 0.79Ks. A high value of Ks is thus needed for changes in
speed to be discernible. Note that our use of cubic splines for in-
terpolation technically invalidates the choice α = 0 in Equation 1.
However, we find that as a first approximation, the obtained results
are quite satisfactory.

Equation 2 is in agreement with the inverse relation suggested ear-
lier. The exponent dampens the effect of any irregularities in V S .
In Figure 5, we show an example of the computed speed function.
As the static images only poorly convey the dynamic nature of the
result, we urge the user to view the accompanying video for a better
understanding.

6 Computing camera zoom

Figure 6: a) Minimum (top) and maximum (bottom) positions in
the zoom clock of the Armadillo animation, where the zoom clock
represents zoom in the same way as the speed clock in Figure 5
represents speed. b) and c) show the views corresponding to the
min and max positions respectively.

The motivation behind a variable camera zoom, Z , is the follow-
ing.

• Appropriate viewing scale – the shape should be viewed at a
scale that is in accordance with the size of the features being
viewed.

In photography, zooming is achieved by changing the focal length
of the camera lens. With the perspective projection of OpenGL that
we use throughout his paper, this is equivalent to varying the dis-
tance between the camera and the object, i.e. placing the camera in
the corresponding position on a viewsphere with a different radius;
smaller radius for zooming in and larger for zoom out. Therefore,
we compute Z by computing the corresponding radius, R.

Recall that saliency is computed in a multi-scale way (Section 3.2),
where a higher value at a small scale implies a small scale feature,
for which the camera should zoom in (small viewing radius). Cor-
respondingly, a high saliency value at a high scale implies a large
scale feature, which requires a large viewing radius for proper in-
spection. We thus define, for each scale i, a corresponding viewing
radius ri ∝ kσi, where k is a constant and σi is the size of the vertex
neighbourhood considered for saliency computation at scale i. The
appropriate viewing radius, R, for a vertex, v, can then be computed
as:

R(v) =
∑i Sali(v)ri

∑i Sali(v)
,

118

where Sali(v) is the saliency of v at scale i. For a view, V , an average
viewing radius is computed as

R(t) =
∑v∈V R(v)
n(v ∈V)

. (3)

After normalising R to [0,1], we use Equation 1 to compute Ras

R(t) = Kz(R(t)
1
3 +1),

where Kz corresponds to the minimum value of R.

Results for the Armadillo model are shown in Figure 6. Once again,
for a better visualisation, we refer the reader to the accompanying
video.

7 Results

We tested our method on several models and the results are shown
in Figures 1, 4 and 7 to 9, and more comprehensibly, in the ac-
companying video. A summary of computation times is given in
Table 1. Most of the time is spent on the mesh saliency calculation,
which depends on the size of the mesh. For large models, e.g. the
Buddha and Lion vase, this can be quite large. However, this is a
one-time preprocessing step whose results are saved. This time also
includes the computation of R(v) from Section 6. The other prepro-
cessing step – extracting V – uses image similarity and depends on
the resolution of the views being compared. As we use the same
resolution for all models, the time taken is the same for all models.

Figure 7: Scenes extracted in clockwise order from the computed
animation of the bunny model.

Time taken for viewpoint ordering depends on the number of view-
points being considered, and for constant number of viewpoints (12
in our case) is independent of model size. View saliency computa-
tion requires identifying visible mesh vertices from each viewpoint.
We interpolate 12 viewpoints using 12 spherical cubic splines, and
sample 50 points on each spline. We thus have to compute visible
vertices for 600 viewpoints. The times for view saliency computa-
tion also include computation time for R from Section 6.

When the desired length of the animation is varied through the tun-
able parameter mentioned earlier, the pre-computed saliency and
similarity values should be used. Extraction of stable view regions
from the weighted viewsphere [Karypis and Kumar 1998] and com-
putation of V then takes milliseconds. Viewpoint ordering and View
saliency would have to be totally recomputed. The time for the for-
mer depends only on the chosen size of V . In our experience, 12
viewpoints provide sufficient coverage of the object. View saliency
computation, which also depends on model size, would also change
markedly as varying the size of V varies the number of splines and
hence the number of viewpoints in P . Though this can be time
consuming, we suffice with this solution as we do not aim to pro-
vide a real-time solution.

Figure 8: Scenes extracted in clockwise order from the computed
animation of the Livingstone elephant model.

8 Discussion

We discuss how our method fares with respect to the four condi-
tions mentioned in Section 1 – Brevity, Information, Exploration
and Smoothness. Regarding Brevity, the length of the animation is
tunable, as discussed in earlier sections. Once the points to be in-
terpolated have been ordered, the shortest path consists of straight
lines or geodesics. To ensure overall Smoothness, we interpolate
using cubic splines. The extra length added by the smooth splines
is compensated by speeding up the camera over low saliency views.
Fulfilling the Smoothness condition and covering the viewsphere in
a cyclic path invariably lead to a self-intersecting P . This seem-
ingly violates the Exploration condition, but we claim that by inter-
polating points representative of different, non-overlapping regions
of the viewsphere, we have already fulfilled the condition. Lastly,
we believe that by including the representative views of the shape,
the path already conveys sufficient Information on the shape. Guid-
ing it through intermediate ‘good’ views, as is traditionally done,
will serve only to violate one of the other conditions. In addition,
by allotting inspection times and viewing scales according to the
visual importance of the shape features, we believe we are able to
convey a lot more information about covered parts than previous
methods that fly by the shape at fixed speeds and zooms.

119

Vertices Mesh Saliency Extracting V Viewpoint ordering View Saliency
Armadillo 172,974 761.42s 2s 15s 116.54s
Buddha 543,652 <1h 2s 15s 256.3s
Bunny 34,834 20.23s 2s 15s 41.0s
Elephant 20,007 12.73s 2s 15s 28.3s
Lion vase 800,002 <1.5h 2s 15s 576.5s

Table 1: Summary of computation times for a few models.

Figure 9: Scenes extracted in clockwise order from the computed
animation of the Happy Buddha model.

The objective of our paper, to generate a short but informative fly
around a given shape model, has a long history in the movie indus-
try. It seems promising to study the techniques used in that area.
However, caution will have to be exercised as movies often have a
context – the story – which aids the determination of camera param-
eters. In a shape repository framework, there are no such helping
factors.

One of the biggest problems we faced while developing the method
was lack of feedback. In the absence of any formal measures to
judge the quality of our output, it was difficult for us to ascertain
whether we were on the right track. While, in principle, we can
always ask a human observer to compare two different flies of a
shape, the human visual system is quite lenient and seems to auto-
matically compensate for any missing information. Indeed, the few
people in our lab whom we did ask to compare such flies were un-
able to give a confident answer, and showing more flies served only
to confuse and disorient. In fact, recent research [Henderson et al.
] even puts into doubt the role of computational models of visual
saliency in determining a human observer’s attention. Significant
advances in the fields of human cognition and psychology are re-
quired (which may just go on to verify the heuristics proposed by
the graphics community) before a ‘provably correct’ best fly of a
given shape model can be computed. Until then, the only barom-
eter computer graphics practitioners have towards that goal is how
well they fulfil their heuristics derived through observation, com-
mon sense and application requirements.

9 Conclusion and future work

In this paper, we presented a method to automatically compute a fly
of a given shape model. A virtual camera pointing at the object is
made to fly around the object following a computed trajectory, and
with variable speed and zoom that depend on the shape’s geomet-
ric features coupled with human perception factors. As there is no
formal model for such a fly, we assemble the heuristics proposed in
the literature and add some of our own, and compute a fly to fulfil
them. In fact, altering the speed and zoom of the camera to produce
a more informative fly of the shape has not been considered before.

While we follow the tradition of sampling an object’s views from
its viewsphere, after our experience in this paper, we are not to-
tally convinced about the efficacy of this approach, as shape parts
away from the centre of the object are seldom viewed directly. In
our opinion, a viewing surface that is more faithful to the object’s
bounding box, e.g. an ellipsoid, is a better choice for this purpose.

Staying on the object’s viewsphere also restricts us to viewing the
entire object as a whole. It would be interesting to first segment the
shape into meaningful parts, construct a fly around each part on its
own viewsphere, and then blend all the flies together.

As our method performs a global exploration of the shape, it does
not satisfactorily cover concave parts in the shape. In the future,
we will extend our method to online exploration so that the virtual
camera can enter the shape to visit its concave parts. Such a work
has already been attempted in 2D [Brunstein et al. 2003] but a 3D
analog is yet to be developed.

On a more general level, it will be interesting to see how our method
scales to scenes with more than one object, and also to apply it to
automatic terrain navigation.

Acknowledgements

The authors acknowledge the Stanford 3D Scanning Repository
[3DScanRep] for the Armadillo, Bunny and Happy Buddha models
and the AIM@SHAPE Shape Repository [AIM@SHAPE] for the
Livingstone elephant and Lion vase models. We are also thankful
to Boris Ajdin (MPII) for helpful discussions on up-vector consis-
tency. This work was supported in part by the European FP6 NoE
grant 506766 (AIM@SHAPE).

References

3DOD. 3D on demand. http://www.3dod.org/.

3DSCANREP. The Stanford 3D scanning repository.
http://graphics.stanford.edu/data/3Dscanrep/.

AIM@SHAPE. AIM@SHAPE shape repository.
http://shapes.aimatshape.net/.

120

BORDOLOI, U., AND SHEN, H.-W. 2005. View selection for
volume rendering. In IEEE Visualization, 487–494.

BRUNSTEIN, D., BAREQUET, G., AND GOTSMAN, C. 2003. An-
imating a camera for viewing a planar polygon. In VMV ’01:
Proceedings of the Vision Modeling and Visualization Confer-
ence 2001, 87–94.

DENTON, T., DEMIRCI, M. F., ABRAHAMSON, J., SHOKOUFAN-
DEH, A., AND DICKINSON, S. 2004. Selecting canonical views
for view-based 3-D object recognition. In ICPR ’04: Proceed-
ings of the 17th International Conference on Pattern Recogni-
tion, IEEE Computer Society, 273–276.

DE’SPERATI, C., AND VIVIANI, P. 1997. The relationship be-
tween curvature and velocity in two-dimensional smooth pursuit
eye movements. The Jounral of Neuroscience 17, 10, 3932–
3945.

HALL, P. M., AND OWEN, M. J. 2005. Simple canonical views.
In The British Machine Vision Conf. (BMVC’05), vol. 1, 7–16.

HENDERSON, J. M., BROCKMOLE, J. R., CASTELHANO, M. S.,
AND MACK, M. Visual saliency does not account for eye move-
ments during search in real-world scenes. In Eye Movements:
A Window on Mind and Brain, R. van Gompel, M. Fischer,
W. Murray, and R. Hill, Eds. Elsevier. to appear.

KAMILA, N. K., MAHAPATRA, S., AND NANDA, S. 2005. Invari-
ance image analysis using modified Zernike moments. Pattern
Recogn. Lett. 26, 6, 747–753.

KARYPIS, G., AND KUMAR, V. 1998. MeTiS: A software pack-
age for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices. ver-
sion 4.0. In http://www-users.cs.umn.edu/˜karypis/metis/. Univ.
of Minnesota, Dept. of Computer Science.

KHOTANZAD, A., AND HONG, Y. H. 1990. Invariant image recog-
nition by Zernike moments. IEEE Trans. on Pattern Analysis and
Machine Intelligence 12, 5, 489–497.

LEE, J., MOGHADDAM, B., PFISTER, H., AND MACHIRAJU, R.
2004. Finding optimal views for 3D face shape modeling. In
International Conf. on Automatic Face and Gesture Recognition,
IEEE Computer Society, 31–36.

LEE, C. H., VARSHNEY, A., AND JACOBS, D. W. 2005. Mesh
saliency. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2005) 24, 3, 659–666.

LGMA. Large geometric models archive at Georgia Tech. http:
//www.cc.gatech.edu/projects/large_models/.

MOKHTARIAN, F., AND ABBASI, S. 2000. Automatic selec-
tion of optimal views in multi-view object recognition. In The
British Machine Vision Conf. (BMVC’00), IEEE Computer So-
ciety, 272–281.

NDR. National design repository. http://www.
designrepository.org/.

PDB. Protein data bank. http://www.pdb.org/.

PODOLAK, J., SHILANE, P., GOLOVINSKIY, A., RUSINKIEWICZ,
S., AND FUNKHOUSER, T. 2006. A planar-reflective symmetry
transform for 3D shapes. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH 2006), 549–559.

POLONSKY, O., PATANÉ, G., BIASOTTI, S., GOTSMAN, C., AND
SPAGNUOLO, M. 2005. What’s in an image? In Visual Com-
puter, Springer-Verlag, 840–847. Proc. of Pacific Graphics 2005.

PSB. Princeton shape benchmark. http://shape.cs.
princeton.edu/benchmark/.

SOKOLOV, D., AND PLEMENOS, D. 2005. Viewpoint quality and
scene understanding. In VAST 2005: Eurographics Symposium
Proceedings., 67–73.

SOKOLOV, D., PLEMENOS, D., AND TAMINE, K. 2006. Meth-
ods and data structures for virtual world exploration. The Visual
Computer 22, 7, 506–516.

SOKOLOV, D., PLEMENOS, D., AND TAMINE, K. 2006. View-
point quality and global scene exploration strategies. In Interna-
tional Conference on Computer Graphics Theory and Applica-
tions (GRAPP 2006), INSTICC - Institute for Systems and Tech-
nologies of Information, Control and Communication.

TAKAHASHI, S., FUJISHIRO, I., TAKESHIMA, Y., AND NISHITA,
T. 2005. A feature-driven approach to locating optimal view-
points for volume visualization. In IEEE Visualization, 495–502.

VÁZQUEZ, P.-P., FEIXAS, M., SBERT, M., AND HEIDRICH, W.
2001. Viewpoint selection using viewpoint entropy. In VMV
’01: Proceedings of the Vision Modeling and Visualization Con-
ference 2001, 273–280.

VÁZQUEZ, P.-P., FEIXAS, M., SBERT, M., AND HEIDRICH, W.
2003. Automatic view selection using viewpoint entropy and
its applications to image-based modelling. Computer Graphics
Forum 22, 4, 689–700.

WATT, A., AND WATT, M. 1991. Advanced Animation and Ren-
dering Techniques. ACM Press.

YAMAUCHI, H., SALEEM, W., YOSHIZAWA, S., KARNI, Z.,
BELYAEV, A., AND SEIDEL, H.-P. 2006. Towards stable and
salient multi-view representation of 3D shapes. In IEEE Inter-
national Conference on Shape Modeling and Applications 2006
(SMI2006), 265–270.

121

122

