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Abstract—We address the classical computer vision problems of rigid and nonrigid structure from motion (SFM) with occlusion. We

assume that the columns of the input observation matrix W describe smooth 2D point trajectories over time. We then derive a family of

efficient methods that estimate the column space of W using compact parameterizations in the Discrete Cosine Transform (DCT)

domain. Our methods tolerate high percentages of missing data and incorporate new models for the smooth time trajectories of

2D-points, affine and weak-perspective cameras, and 3D deformable shape. We solve a rigid SFM problem by estimating the smooth

time trajectory of a single camera moving around the structure of interest. By considering a weak-perspective camera model from the

outset, we directly compute euclidean 3D shape reconstructions without requiring postprocessing steps such as euclidean upgrade

and bundle adjustment. Our results on real SFM data sets with high percentages of missing data compared positively to those in the

literature. In nonrigid SFM, we propose a novel 3D shape trajectory approach that solves for the deformable structure as the smooth

time trajectory of a single point in a linear shape space. A key result shows that, compared to state-of-the-art algorithms, our nonrigid

SFM method can better model complex articulated deformation with higher frequency DCT components while still maintaining the

low-rank factorization constraint. Finally, we also offer an approach for nonrigid SFM when W is presented with missing data.

Index Terms—Structure from motion, matrix factorization, missing data, camera trajectory, shape trajectory.

Ç

1 INTRODUCTION

ACCURATELY describing a data matrix as a product of two
low-rank factors, matrix factorization, is a fundamental

task in computer vision and pattern recognition. This paper
focuses on the classical computer vision problem of matrix
factorization in rigid and nonrigid structure from motion
(SFM) [5], [29]. The goal in SFM is to jointly estimate the 3D
scene structure and relative camera motion from corre-
sponding 2D points in a sequence of images. Applications
of SFM include autonomous navigation, image augmenta-
tion, and the construction of rigid and deformable 3D
models from images [11], [15]. The modeling of deformable
shapes such as the human hand, face, and body is also of
particular importance in computer graphics, and human-
computer interaction (e.g., [10]).

While techniques for rigid SFM have matured consider-
ably over the past two decades [6], [7], [8], [12], [16], [17],
[19], [21], [28], nonrigid SFM is still a very difficult problem,
especially for complex articulated deformations [30]. The
difficulty in providing good solutions reflects the under-
constrained nature of SFM once the rigidity assumption is
removed. Recent research has thus focused on the definition
of new constraints (priors) to solve this problem [1], [2], [3],
[23], [24], [26], [30], [32], [33], [34].

In the standard matrix factorization approach to SFM [5],
[29], each column of the input matrix W 2 IRm�n has a
sequence of 2D coordinates of the same 3D structure point
as observed from different locations. Considering W of a
predefined low-rank r � minðm;nÞ, the SFM solution is
obtained from the factorization

W ¼MS; M 2 IRm�r; S 2 IRr�n: ð1Þ

In rigid SFM, r ¼ 4 and S describes the 3D shape observed
by the cameras in M. In nonrigid SFM, each observed shape
of the deformable structure is represented in a linear shape
space defined by K basis shapes in S. Then, r ¼ 3K þ 1 and
M includes the cameras and also the shape coordinates in
terms of basis S. In both cases, factors M and S may be
obtained from the singular value decomposition (SVD) of
W. In practice, however, a large portion of the 2D
observations in W is often missing because of occlusions.
Therefore, standard matrix factorization algorithms such as
SVD [13] cannot be directly used. To solve SFM, it is also
necessary to overcome other challenges such as tracking
errors [19] and degeneracies in the assumed camera motion
and shape deformation—i.e., when the above constraints on
the rank r of W do not hold [21], [32], [34].

To compute more accurate and efficient solutions to rigid
and nonrigid SFM with occlusion, we start by assuming that
each column of W represents the smooth time trajectory of
a 2D point. Such 2D trajectories are usually provided by a
feature tracking algorithm that operates on a monocular
video sequence. Equivalently, we assume that the 2D
observations were obtained by a single camera moving
smoothly around the structure of interest (Fig. 1). Our
factorization approach tolerates missing data and defines
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constraints that considerably reduce the number of un-
knowns that need to be estimated. First, we consider factor S
only implicitly, reformulating the factorization problem in
terms of M alone. Second, because M is a basis for the
smooth 2D trajectories in the columns of W, we solve for a
compact representation of M in a subspace of the Discrete
Cosine Transform (DCT) basis vectors. Our algorithms are
remarkably efficient in cases of long image sequences and
many imaged points (i.e., when W has high-dimensional
column and row spaces).

We solve for rigid SFM by estimating only the smooth
time trajectory of a camera’s projection plane, Fig. 1. Also,
by considering the weak-perspective camera model from
the outset, we directly solve for euclidean shape and
cameras. Therefore, our method does not require post-
processing algorithms that upgrade and refine the initial
affine solution (e.g., bundle adjustment [15]).

In nonrigid SFM, we assume that the smooth 2D
trajectories in W also reflect the smooth deformation of the
observed 3D structure over time. The deformable structure is
represented as a single point moving smoothly in a linear
shape space, Fig. 2. We then solve for a single, smooth 3D
shape trajectory with time coordinates in factor M. Thus, the
associated basis shapes are defined only implicitly in
factor S. Once M has been estimated, S is then trivially
computed from M and W by solving simple linear systems
of equations.

Our work is most closely related to the recent nonrigid
SFM method by Akhter et al. [2]. They propose a factoriza-
tion approach that does not define a linear shape space, but
instead recovers independent 3D point trajectories over time.
The DCT vectors are used as a basis for individual 3D point
trajectories. Their method has provided some of the best
results on highly articulated shapes to date. However, the
main problem is the method’s inability to use additional,
higher frequency DCT vectors without increasing the rank of
the resulting matrix factors. Thus, its application is restricted
to structures with slow and smooth deformation. The
method does not address the missing data problem either;
W is assumed complete and factorized using SVD.

In this paper, we also present an interpretation of Akhter
et al.’s approach in terms of a linear shape space and show
that their results correspond to coarse approximations of
our solutions. Our nonrigid SFM method provides better
results on complex articulated deformations due to its more
effective use of higher frequency DCT components without
increasing the factorization rank. Furthermore, we use the
DCT basis to model a camera’s trajectory and efficiently
solve for rigid SFM. Finally, we also contribute with missing
data approaches for both rigid and nonrigid SFM.

One main group of related methods that address the
missing data problem are known as batch algorithms [14],
[17], [19], [23], [28]. These methods propose strategies for
combining partial rank-r factorizations obtained for com-
plete subblocks of W. Examples include the subspace
constraint algorithms that reconstruct W by first building
its row null-space [17], [19], column null-space [14], [23], or
one of its range spaces [28]. The main problem with these
methods is their suboptimality, since errors in the factor-
ization of subblocks are propagated to the subsequent
optimization stage. Also, the rank-r constraint may not
apply to all subblocks in case of degenerate motion and
deformation [21], [23].

A second group of missing data approaches include
iterative methods that use all data at once without searching
for complete subblocks in W [6], [8], [16], [24], [30], [31].
Among these, alternation methods [16], [24], [30] iteratively
solve for subsets of unknowns while the others remain
fixed. For instance, PowerFactorization (PF) [16] solves for
factors M and S in a simple, alternated least squares
manner. It presents very slow convergence when a
considerable amount of data is missing. However, the
method is useful in initializing faster Newton methods [6]
that minimize matrix fitting error in terms of M and S. The
Levenberg-Marquardt-Subspace (LM-S) method in [8] con-
siders S as an implicit function of M and W and solves for
M only. Despite its superior performance, proper initializa-
tion of this method remains an open problem. The method’s
complexity also makes it difficult to integrate additional
constraints into the factorization problem.

In the following, we present our Column Space Fitting
(CSF) method that computes a rank-r basis M for the
column space of a matrix with missing data. Using a simple
Gauss-Newton-based approximation to the Hessian matrix,
our method provides equivalent or better solutions for M
when compared to LM-S on matrices with high percentage
of missing data. Furthermore, the simplicity of our
approach allows us to easily consider additional constraints
in the factorization problem, such as a mean column vector
and a predefined reference basis for M. We then solve for a
compact representation of M in a subspace defined in terms
of the DCT basis vectors. As a result, we offer a family of
CSF algorithms for rigid and nonrigid SFM problems. Our
methods always start from a deterministic initialization
corresponding to a “coarse” solution for M.

This paper is organized as follows: Section 2 derives our
general CSF approach for matrix factorization with missing

2052 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 10, OCTOBER 2011

Fig. 1. The smooth trajectory (dashed line) of a single camera moving
around the structure of interest (cube) over time (t).

Fig. 2. The smooth time trajectory (dashed line) of a deforming 3D shape
(cube). The object shape is represented by a single point (blue sphere)
with coordinates relative to 3D basis shapes Ŝ1, Ŝ2, and Ŝ3 (not shown).
As the shape deforms smoothly over time (t), its point representation
describes a single, smooth 3D shape trajectory.



data. In Section 3, we solve for rigid SFM by estimating a
smooth time trajectory of an affine or a weak-perspective
camera. Section 4 describes our 3D shape trajectory
approach to nonrigid SFM. Sections 5 and 6 present
experimental results and conclusion.

2 SOLVING FOR THE COLUMN SPACE OF A MATRIX

WITH MISSING DATA

We formulate the rank-r factorization of incomplete
matrix W as solving exclusively for a column space
basis M of rank-r. To facilitate the introduction of
additional constraints into the factorization procedure,
especially in SFM problems, we first derive our Column
Space Fitting algorithm. We then show how to solve for M
in the subspace spanned by a predefined bases. When such
a basis is defined in terms of the DCT basis vectors, we
propose a simple, deterministic initial form of M.

2.1 General CSF Approach

Consider W 2 IRm�n as in (1) and note the related
equation S ¼MyW, where y denotes the Moore-Penrose
pseudo-inverse [13].

Assuming W is presented with missing data, let the
complete vector wj 2 IRmj (mj � m) denote all of the
observed entries in the jth column of W. Also, define �j 2
IRmj�m as a row-amputated identity matrix such that Mj ¼
�jM has the rows in M that correspond to the rows of
entries in wj. Then, wj ¼Mjsj, with the complete
jth column of S defined as sj ¼My

jwj 2 IRr.
The goal is to minimize

fðMÞ ¼ 1

2

X
j

���I�MjM
y
j

�
wj

��2

F
; ð2Þ

where k � kF is the Frobenius norm. To better understand
the meaning of (2), let the projector on the orthogonal space
of Mj be

P?j ¼
�
I�MjM

y
j

�
2 IRmj�mj : ð3Þ

Rewriting (2) in terms of residual (error) vectors rj 2 IRmj ,
we have

fðMÞ ¼ 1

2

X
j

rTj rj; rj ¼ P?j wj : ð4Þ

Therefore, we minimize the overall matrix fitting error as
defined by a sum of squared euclidean distances from each
observed column vector to the subspace spanned by the
corresponding rows in M.

The error function (2) is minimized using our Column
Space Fitting method, based on Levenberg-Marquardt
optimization [4], which we summarize in Algorithm 1. M
is first set to an initial matrix. Then, in each iteration, we
update the current estimate of M by computing an
adjustment matrix �M in vectorized form, vecð�MÞ, which
stacks the columns of �M in a single vector of unknowns.
We solve for vecð�MÞ using the gradient vector (g) and
Hessian matrix (H) of f as given by matrix differential
calculus [20]. The damping parameter � leads to combined
Gauss-Newton and steepest-descent iterations when H

becomes singular. For numerical stability, we orthogonalize
M at the end of each iteration.

Algorithm 1. Column Space Fitting (CSF) method for

minimizing the error function fðMÞ.
1: M initial matrix (M0).

2: � initial damping scalar (�0).

3: repeat

4: Compute gradient (g) and Hessian (H)

from Jacobian terms (Jj).
5: repeat

6: � � � 10.

7: Find �M from

vecð�MÞ  ðHþ �IÞ�1g.

8: until fðM��MÞ < fðMÞ.
9: M M��M.

10: � � � 10�2.

11: Orthogonalize M (keep mean vector t unchanged).
12: until convergence.

To compute g and H, we follow a Gauss-Newton-based
derivation in terms of Jacobian matrices Jj for each vector wj

(see the complete derivation in Appendix A, which can be
found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2011.50). The
first and second differentials of fðMÞ are

df ¼ �
X
j

�
JTj rj

�T
vecðdMÞ; ð5Þ

d2f ¼
X
j

vecðdMÞT
�
JTj Jj

�
vecðdMÞ; ð6Þ

Jj ¼ sTj �P?j �j: ð7Þ

In (7), � is the Kronecker product and sj ¼M
y
j wj denotes

the current (and implicit) estimate of the jth column of
factor S. From (5) and (6), we identify

g ¼ �
X
j

JTj rj and H ¼
X
j

JTj Jj: ð8Þ

For comparison, the forms of g and H as computed in [8]
are reproduced in our supplementary documentation file,
which can be found in the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2011.50. It is important to note that the simplicity of our
expressions above makes it easier to consider additional
optimization constraints as described next.

As an alternative to the derivations given above, we can
solve for rank-ðr� 1Þ factors M and S and an additional
mean column t 2 IRm such that W ¼MSþ t1T , where 1 2
IRn is a vector of all ones. This is a very useful model in
applications such as rigid and nonrigid SFM. Equivalently,
we solve for a rank-r factorization

W ¼ fMeS ¼ M t½ � S
1T

� �
; ð9Þ

with extended factors fM and eS. The mean column
interpretation for the last column of fM constrains the last
row of eS to be 1T . Therefore, the model in (9) has fewer
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degrees of freedom than that in (1) and the final matrix
fitting error, fðfMÞ, is expected to be higher.

The goal now is to minimize

fðM; tÞ ¼ 1

2

X
j

rTj rj; rj ¼ P?j ðwj � tjÞ; ð10Þ

with tj ¼ �jt and P?j computed from Mj only. The new

Jacobian terms are then derived for vecðdfMÞ as

Jj ¼
�
sTj 1

�
�P?j �j; ð11Þ

with sj ¼M
y
j ðwj � tjÞ (see the derivation in Appendix A,

which can be found in the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2011.50).

In this case, at the end of each iteration, only the leftmost
r� 1 columns of fM are orthogonalized and t is kept
unchanged.

2.2 Solution with a Predefined Basis

Let the columns of a matrix B 2 IRm�d contain a predefined
set of basis vectors (e.g., a truncated DCT basis). We now
consider a factor M of the form

M ¼ BX; X 2 IRd�r:

Each column of X has d � m coordinates for the corre-
sponding column of M as represented in the d-dimensional
space spanned by B.

Previously, we had implicitly considered a canonical
basis B ¼ Im, the m�m identity matrix, and solved for
X ¼M. Now, in each iteration we solve for the update step
vecðdXÞ with gradient and Hessian as in (8). The Jacobian
terms are given by

Jj ¼ sTj �P?j �jB: ð12Þ

It is important to describe our motivation for using a
predefined basis: Problems in different application domains
involve matrices (W) whose columns have observations of
random variables that change only gradually over time.
Observations in each column can be considered as samples
of a smooth signal over time with a narrow bandwidth
spectrum in the DCT domain. This means that most of the
energy of a signal (column) is captured by a small number
of low-frequency DCT components, leading to a compact
representation X (i.e., small d).

In the next sections, we consider matrices B constructed
from DCT basis vectors, with the rightmost columns
corresponding to higher frequency components. Since signal
smoothness leads to high-frequency coefficients close to zero,
we propose an initialization of X, denoted X0, of the form

X0 ¼
Q
0

� �
; Q 2 IRr�r:

The goal becomes initializing a small block Q, which must
be full rank (i.e., the rank of M ¼ BX0 is rankðQÞ). For any
full-rank Q, an equally good initial solution is given by the
simple and deterministic initialization

X0 ¼
Q
0

� �
Q�1 ¼ Ir

0

� �
: ð13Þ

As a proof, we note that the factorization in (1) is defined

only up to a rank-r ambiguity matrix Q such that

W ¼MS ¼ ðMQ�1ÞðQSÞ.
As a result, we can even fix the values for the topmost

block of X as Ir and solve only for the remaining ðd� rÞ � r
submatrix. Note that ðd� rÞr is the number of parameters

defining an r-dimensional linear space embedded in

another d-dimensional linear space.
When the last column of X is interpreted as the

coefficients of the mean column vector t, the ambiguity

matrix Q is of rank ðr� 1Þ only, i.e., the last row of S is

constrained to be 1T . This fact suggests initializing the last

column of X with zeros (t ¼ 0).

3 RIGID SFM: ESTIMATING THE SMOOTH TIME

TRAJECTORY OF A CAMERA

This section focuses on rigid SFM with occlusion. We

assume the point tracks in W were obtained from a

monocular video sequence provided by a single, smoothly

moving camera. First, we present a method using a compact

DCT basis to represent the smooth trajectory of a general

affine camera. Subsequently, we further improve on this

method by using a weak-perspective camera model from

the outset to directly estimate euclidean cameras and shape.

Once the final solution for M is defined, each column sj of S

is obtained independently as in the computation of the

Jacobian terms above.

3.1 Affine Camera Trajectory

In rigid SFM with T images, W 2 IR2T�n is

W ¼

x11 . . . x1n

y11 . . . y1n

..

. ..
.

xT1 . . . xTn
yT1 . . . yTn

2
666664

3
777775 ¼M

s1 . . . sn
1 1

� �
; ð14Þ

with ½xtj; ytj�T the 2D projection of 3D point sj in the

tth image (t ¼ 1; 2; . . . ; T ; j ¼ 1; 2; . . . ; n). Here, the motion

factor M 2 IR2T�4 describes a stack of T affine camera

matrices cMt 2 IR2�4,

M ¼
cM1

..

.

cMT

2
64

3
75; cMt ¼

� bAt
btt�; ð15Þ

where bAt 2 IR2�3 is a general affine projection and btt 2 IR2

is a 2D translation. The rows of bAt are 3D vectors defining

the x and y-axes (not necessarily orthonormal) of the

camera’s projection plane in the tth observation.
Assuming the eight camera parameters vary smoothly

over time, we define the camera as a sample of a smooth

matrix function of time, cMt ¼ cMðtÞ. We then parameterizecMðtÞ using eight independent cosine series whose

fth frequency coefficients are given in bXf 2 IR2�4:

cMðtÞ ¼ � bAðtÞ btðtÞ� ¼Xd
f¼1

!tf bXf : ð16Þ
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Each constant !tf above is the fth frequency cosine term at
time t:

!tf ¼
�fffiffiffiffi
T
p cos

�ð2t� 1Þðf � 1Þ
2T


 �
;

with �1 ¼ 1 and, for f � 2, �f ¼
ffiffiffi
2
p

.
The goal is then to solve for d � T matrices bXf . Let �d 2

IRT�d be a truncated, orthonormal DCT matrix whose
ðt; fÞth entry is !tf , as above. Substituting (16) into (15)
yields

M ¼ �d � I2ð Þ
bX1

..

.

bXd

2
64

3
75 ¼ BafX:

Thus, with basis Baf ¼ ð�d � I2Þ 2 IR2T�2d, we solve for
M 2 IR2T�4 as a function of X 2 IR2d�4. Note that the
smoothness assumption implies d	 T . We solve for X as in
Section 2.2, with extended terms esTj ¼ ½sTj 1� in (12).

For simplicity, and unless stated otherwise, we assume
in this paper that the number of DCT components d has
been fixed a priori based on empirical observations (e.g.,
expected motion or noise level). An alternative coarse-to-fine
strategy can start with a small d and increment its value
until a convergence criterion is verified. For instance, d can
be incremented until the energy of the highest frequency
coefficients falls below a small percentage pd 2 ð0; 1Þ of the
total energy,

xTd
�� ��

F
< pd Xk kF ;

where xTd is the last row of X.

3.2 Euclidean Camera Trajectory

The solution X above leads to an affine shape S. Recovering
euclidean shape and cameras requires a subsequent upgrad-
ing step and, ideally, a final bundle adjustment [15]. Because
an affine camera has more degrees of freedom than the final
euclidean camera, the initial solution can overfit measure-
ment noise and also lead to incorrect results in cases of
degenerate, planar camera motion [21]. These are problems
faced by most SFM methods based on an initial affine
solution. To avoid them and also render postprocessing
unnecessary, we further improve on our method above.

We now solve directly for the smooth trajectory of a
euclidean camera, also obtaining the optimal euclidean shape
directly. We consider the trajectory of a weak-perspective
(i.e., scaled orthographic) camera:

cMt ¼ bRt
btth i

;

where the vector btt is defined as before. The rows of bRt 2
IR2�3 define the euclidean 2D imaging plane of the camera
at time t. These rows are constrained to be two equal length,
orthogonal 3D vectors and are obtained from a scaled 3D
rotation:

bRt ¼ �t

cos�t cos �t cos �t � sin�t sin �t
� cos�t cos�t sin �t � sin�t cos �t cos�t sin �t

sin�t cos �t cos �t þ cos�t sin �t
� sin�t cos �t sin �t þ cos�t cos �t sin�t sin�t

2
664

3
775:
ð17Þ

Hence,

bRt ¼ �t
1 0 0

0 1 0

� �
RZð�tÞRY ð�tÞRZð�tÞ:

The scalar �t is the weak-perspective scale and the three
Euler angles �t, �t, and �t determine a 3D rotation as a
sequence of simpler rotations around the Z and Y world
coordinate axes.

We model a smooth camera trajectory by considering a
cosine series for each of the six camera parameters given by
the weak-perspective model above,

�1

..

.

�T

2
664

3
775 ¼ �dx1;

�1

..

.

�T

2
664

3
775 ¼ �dx2;

�1

..

.

�T

2
664

3
775 ¼ �dx3;

�1

..

.

�T

2
664

3
775 ¼ �dx4; t ¼ Bafx5;

where vectors x1;x2;x3;x4 2 IRd and x5 2 IR2d have the
unknown DCT coefficients. For simplicity of presentation,
the notation above assumes that d is the same for x1; . . . ;x5.
Note, however, that our approach is not limited to such a
case—an alternative derivation is given in the supplemen-
tary file, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2011.50 for the case in which x1; . . . ;x5

have different numbers of DCT components.

A deterministic initial solution is defined with t ¼ 0

(x5 ¼ 0), as before. Also note that the rigid SFM solution we

seek here is defined only up to an arbitrary scale and a 3� 3

rotation. We thus initialize the sequence of scaling factors �t
to a constant signal by setting x4 ¼ ½1; 0; . . . ; 0�T . We avoid

initializing the angles �t (x2) with zeros because the

resulting bRt would then represent only 2D rotations within

a plane. Setting x2 ¼ ½0; 1; 0; . . . ; 0�T provides a coarse initial

solution with a smooth sequence of noncoincident camera

planes that allows x1 and x3 to be initialized with zeros.
Here, we iteratively solve for vecðdXÞ defined as

vecðdXÞ 
 dxT1 ; dx
T
2 ; dx

T
3 ; dx

T
4 ; dx

T
5

� �T2 IR6d:

To this end, modified expressions for vecðdMÞ and the
Jacobian terms are needed. First, let !!Tt be the tth row of �d.
The differential of each camera parameter at time t is d�t ¼
!!Tt dx1, d�t ¼ !!Tt dx2, d�t ¼ !!Tt dx3, d�t ¼ !!Tt dx4, and dtt ¼
ð!!Tt � I2Þdx5. The differential of each rotation matrix (17) is

dbRt ¼
@ bRt

@�t
d�t þ

@ bRt

@�t
d�t þ

@ bRt

@�t
d�t þ

@ bRt

@�t
d�t:

Considering the three columns brt;1, brt;2, and brt;3 2 IR2 of a
partial derivative matrix @bRt

@�t
, for all t, we stack all �-terms

associated with dx1 into

GOTARDO AND MARTINEZ: COMPUTING SMOOTH TIME TRAJECTORIES FOR CAMERA AND DEFORMABLE SHAPE IN STRUCTURE FROM... 2055



B� ¼

br1;1 � !!T1
..
.

brT;1 � !!TTbr1;2 � !!T1
..
.

brT;2 � !!TTbr1;3 � !!T1
..
.

brT;3 � !!TT

2
6666666666666664

3
7777777777777775

2 IR6T�d:

Analogously, we define B�, B� , and B�. Hence,

vecðdMÞ ¼
B� B� B� B� 0

0 0 0 0 Baf

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}eBwp

dx1

dx2

dx3

dx4

dx5

2
6666664

3
7777775

¼ eBwp vecðdXÞ;

with eBwp 2 IR8T�6d and 0 is a matrix of zeros.
Finally, from (5) to (7), the Jacobian terms of this camera

model can be computed as

Jj ¼
��

sTj 1
�
�P?j �j

�eBwp:

Unlike in the previous sections, here the extended basis eBwp

must be recomputed in each iteration to update the partial
derivatives in B�, B�, B� , and B�. Thus, eBwp can be
considered only as a local basis at the current location of the
smooth parameter manifold.

The last step in each iteration shown in Algorithm 1,
orthogonalization of M, is no longer necessary.

4 NONRIGID SFM: ESTIMATING A SMOOTH

TRAJECTORY IN SHAPE SPACE

In this section, we solve for nonrigid SFM by estimating the
smooth time trajectory of a 3D shape as represented by a
point moving in a linear shape space. Without loss of
generality, we assume W is complete and derive our 3D
shape trajectory approach. Subsequently, we offer an algo-
rithm for cases with missing data.

4.1 Solving for a Shape Trajectory

Let W 2 IR2T�n as in (14) and consider the rank-r factoriza-
tion method, with r ¼ 3K þ 1, proposed by Bregler et al. [5]
for nonrigid scenes,

W ¼ D C� I3ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
M

Sþ t1T ;

with D 2 IR2T�3T , C 2 IRT�K , and S 2 IR3K�n. The prede-

fined constantK is the number of 3D basis shapes bSk 2 IR3�n

defining a linear shape space in S ¼ ½bST1 bST2 . . . bSTK �T .
The column space factor M is composed of a block-

diagonal rotation matrix D:

D ¼

bR1 bR2

. .
.

bRT

2
6664

3
7775;

and a shape coordinate matrix C. Each row cTt 2 IRK of C
has the coordinates of the 3D shape in the tth image with
respect to the shape basis in S. Here, we also consider cTt ¼
cðtÞ as a single point in shape space that defines a single
smooth 3D shape trajectory over time.

We assume that the smooth 2D trajectories in W reflect
not only smooth camera motion, but also the smooth
deformation of the observed 3D structure over time. This
means that each shape coordinate ctk 2 IR (k ¼ 1; 2; . . . ; K) is
assumed to vary smoothly with t. Then, we represent C
using K compact cosine series:

C ¼
c1;1 . . . c1;K

..

. . .
. ..

.

cT;1 . . . cT;K

2
64

3
75 ¼ �d x1; . . . ; xK

2
4

3
5;

with xk 2 IRd (k ¼ 1; . . . ; K),

C ¼ �dX; X 2 IRd�K:

Assuming W is complete, t is estimated simply as the
mean column of W. Then, to recover euclidean shapes and
cameras, we consider S implicitly and solve for

M ¼ D �dX� I3ð Þ; ð18Þ

with D subject to camera orthonormality constraints, i.e.,bRt
bRT

t ¼ I2; 8t. For now, let’s assume D has been computed
by an initialization algorithm. We will define this algorithm
below. Thus, we only need to solve for the rank-K shape
trajectory X in the DCT domain.

For a fixed D, the factor C ¼ �dX is defined only up to a
full-rank ambiguity Q 2 IRK�K ; equivalently, M in (18) is
defined only up to an ambiguity Q� I3. Therefore, as in
Section 2.2, we can initialize X with a coarse solution
X0 ¼ ½ IK 0 �T , leading to

M0 ¼ D �dX0 � I3ð Þ ¼ D �K � I3ð Þ: ð19Þ

Note that K < d and the initial rank-3K solution in (19) can
only use K low-frequency vectors in the DCT basis.

The 3D point trajectory approach (PTA) in [2] defines
M ¼ D�, where � has the same columns as ð�K � I3Þ in
(19), but in a different order. Therefore, our coarse initial
solution M0 is equivalent to the final solution M of PTA
(with factor S presenting a different order of rows). Note
that the PTA method cannot consider additional DCT basis
vectors without increasing K, leading to a higher rank of M.
Our 3D shape trajectory approach, on the other hand, can
consider any number d ¼ K; . . . ; T of DCT basis vectors
because the linear combination represented by X constrains
M to be of rank-3K. That is, our method can better model
structure deformation presenting higher frequency compo-
nents in the DCT domain, yielding better 3D shape
reconstructions.

Empirically, we have found that the coarse solutions
computed by PTA contain accurate estimates of the rotation
matrices in D. We iteratively run PTA with increasing
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values of K 2 f1; 2; . . . ; bn3cg, obtaining a solution denoted as
DK . Iterations stop automatically when there is no addi-
tional improvement in the average camera orthonormality:

"ðDKÞ ¼
1

T

XT
t¼1

��I2 � bRt
bRT

t

��2

F
:

Given D ¼ DK , we then solve for M as a function of X
only. The first differential of M in (18) is given by

dM ¼ D �d � I3ð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Bnr

dX� I3ð Þ ¼ Bnr dX� I3ð Þ: ð20Þ

Next, consider vecðdX� I3Þ ¼ VvecðdXÞ, with V 2 IR9dK�dK

a binary mapping matrix. From (12) and (20), the Jacobian
terms for the update step vecðdXÞ are

Jj ¼
�
sTj �P?j �jBnr

�
V;

with sj ¼M
y
j ðwj � tjÞ. For X with dimensions d�K, the

constant and sparse matrix V is defined as [20]

V ¼ IK � ðK3d � I3Þ Id � vecðI3Þð Þ½ �;

where the permutation matrix K3d 2 IR3d�3d satisfies
vecðAT Þ ¼ K3dvecðAÞ, for any A 2 IR3�d.

4.2 Nonrigid SFM with Missing Data

The method above can estimate X using only the observed
data in W. We now consider the initial estimation of t and
D (the camera motion) in cases of missing data. To compute
t and D from a coarse solution as above, we first recover a
complete, rank-r W via the factorization

W ¼ BafX|fflffl{zfflffl}
M

S
1T

� �
; X 2 IR2d�r;

with a predefined r 2 f4; 5; . . . ; 3K þ 1g and the DCT
basis Baf of Section 3. Instead of considering the trajectory
of an affine camera, here Baf is a basis for individual, smooth
2D point trajectories in the column space of W.

Note that a common solution for M corresponds to the
eigenvector matrix U of WWT (if W is complete). Here, our
solution M ¼ BafX can be seen as using linear combina-
tions of the DCT basis vectors to approximate the
eigenvectors in U. Indeed, the DCT basis vectors have been
found to be good approximations of the Karhunem-Loeve
(eigenfunction) transform of first-order Markov processes
[18]. Also, the Markov assumption is used in algorithms
that track the 2D points in W [11].

5 EXPERIMENTAL RESULTS

In this section, we provide extensive experimental valida-
tion for the proposed algorithms. General matrix factoriza-
tion performance is first assessed on different, synthetic and
real data sets. Subsequently, we apply our methods on rigid
and nonrigid SFM data.

5.1 Fitting Low-Rank Matrices

Our initial experiments analyze the general performance of
our CSF method in its simplest form (i.e., with a canonical
basis I and without a mean column vector t) in the low-rank

factorization of synthetic and real data matrices with missing
data. The method is evaluated against the LM-S algorithm [8]
and its Gauss-Newton variant, LM-SGN (presented in the
supplementary file, which can be found in the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2011.50). We also provide results using
PowerFactorization [16] as a baseline algorithm.

We start by generating a random 20� 30 matrix W of
rank 3 with values uniformly distributed in the interval ½0; 1�.
Then, we add Gaussian noise with standard deviation �n and
randomly occlude 	 percent of the matrix entries. The
algorithms above are used to compute a rank-3 factorization
W ¼MS starting from the same initial factor M ¼M0,
which is generated randomly and then refined with 20 itera-
tions of the PF method. We always set the initial damping
scalar to �0 ¼ 10�4. Each algorithm runs until the change in
the cost value (2) is less than 10�10 or until the number of
iterations reaches 1,000. Note that, although we know the
ground truth data, we do not know where the optimal
solution for the matrix with missing data is [8]. Therefore, we
first run all algorithms and, considering the solution obtained
by each algorithm, we then define the trial’s target (i.e.,
“optimal”) cost as the smallest cost observed.

We perform 500 trials, with �n and 	 fixed, and report
the frequency (percent) with which a method failed to match
the trial’s “optimal cost.” We consider two cost values as
equivalent if their absolute difference is below 10�7. Results
for different values of �n and 	 are shown in Table 1, which
also includes the average number of iterations performed by
each method. As expected, the simple PF method converges
very slowly and is competitive only when 	 is very small. For
	 2 f25%; 50%g, CSF’s performance is either comparable or
better than that of LM-S and LM-SGN . CSF also converges
faster than LM-SGN for smaller fractions of missing data.
With 	 ¼ 75%, CSF clearly outperforms the other methods.
These results are highly revelant to SFM, where the number
of missing entries is usually large (> 75%).

A second, similar experiment considers the three real
data sets used in [6] and [8]: 1) the dinosaur on a turn table,
with rank-4 W 2 IR72�319 and 76.9 percent missing data,
2) the occluded motion of a giraffe, with rank-6 W 2
IR240�166 and 30.2 percent missing data, and 3) the face
illumination data under a moving light source, with rank-4
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Algorithm Performances on Random Matrices with

Missing Data: Frequency of Suboptimal Solutions (Percent)
and Average Number of Iterations (in Parentheses)



W 2 IR20�2944 and 41.7 percent missing data. For each data
set, the smallest known root-mean-square error (RMSE) of
the observed entries, as previously published [6], gives the
target value that indicates optimal convergence.

We performed 100 trials corresponding to 100 different
initial factors M generated as above. Each algorithm was
allowed to run for at most 500 iterations. Table 2 shows the
frequency of suboptimal convergence (percent) and average
number of iterations for each algorithm. We first note that
on the face data set, all algorithms except PF often
converged to a suboptimal solution whose cost is only
0.45 percent (about 10�4) higher than that of the optimal
solution. If this solution is considered equivalent to the
optimal one, the new suboptimal convergence frequencies
are 9 (LM-S), 8 (LM-SGN ), and 1 percent (CSF). Never-
theless, in the results above, CSF either provides better
solutions or computes equivalent solutions with fewer
iterations as compared to the other methods.

Because the columns of the dinosaur and giraffe matrices
have measurements (alternated x and y-coordinates) that
vary smoothly over subsequent pairs of rows, we also
computed factorizations with the CSF-Baf variant of our
method. We used the full Baf basis and started with the
deterministic initialization in (13) as a coarse initial solution.
CSF-Baf presented optimal convergence on both data sets,
without the initial use of PF.

5.2 Computing Rigid SFM

Our first experiment on rigid SFM considers a synthetic
sphere data set with known 3D points (n ¼ 100) located on
its surface and also known camera matrices (T ¼ 90)
describing a smooth trajectory over time, Fig. 3. The real
occlusion pattern for the simple spherical shape can be
easily determined and the resulting observation matrix
W 2 IR180�100 is missing 50 percent of its entries.

Results of our SFM methods with affine (CSF-Baf ) and
weak-perspective (CSF-Bwp) cameras are compared against
those of PF, LM-S, LM-SGN , and the Wiberg algorithm [31].
Euclidean upgrade is applied to the results of affine
methods. All results are aligned (rotated and scaled) with

the ground-truth shape and motion before comparison. On
the noiseless W, the methods above provide camera and
shape reconstructions with nearly zero error. Our CSF
methods are run with only 30 percent of the DCT basis
vectors (d ¼ 0:3T ).

In our experiment, we analyze how the performance of
these methods degrades with different levels of Gaussian
noise added to W. We now set �n ¼ �̂n�ðWÞ, where �̂n 2
½0:05; 0:25� and �ðWÞ indicates the scale of the entries of W.
For any matrix A with m rows, let

�ðAÞ ¼ 1

m

Xm
r¼1

�r; ð21Þ

where �r is the standard deviation of the available entries in

the rth row of A. For each value of �̂n, we perform 100 trials

and report the average error of the recovered 3D shape (eS)

and camera rotations (eR). The error eS is the average

euclidean distance between original and recovered 3D points,

normalized by the radius of the original 3D sphere. Let the

original and estimated rotations be bR�t and bRt, then eR is

eR ¼
1

T

XT
t¼1

bR�t � bRt

��� ���
F
: ð22Þ

CSF-Baf and CSF-Bwp were run with deterministic initiali-
zations. The other methods require random initializations
and often provided very poor solutions in our experiments.
For this reason, in each trial they were run with five
different random initializations; the result with the smallest
RMSE for the reconstructed W was chosen.

The average errors in Table 3 show that the shape
estimates of all methods seem to be similarly affected by
noise up to �̂n ¼ 0:125. Also, a significant difference is seen
for the camera estimates with �̂n > 0:05. Affine methods
overfit noise in the data due to the extra degrees of freedom
in their camera model. CSF-Baf and CSF-Bwp attenuate this
problem by enforcing smoothness on the camera trajectory.
CSF-Bwp outperforms all methods by further constraining
the camera axes to be orthogonal and of equal length. This
result is of special importance to SFM applications that rely
more on the motion factor.

The average runtimes in seconds (per initialization, on a
single-core 2.6 GHz processor) were: 0.2 (PF), 18.2 (LM-S),
14.9 (LM-SGN ), 128.5 (Wiberg), 1.1 (CSF-Baf ), and 8.0 (CSF-
Bwp). The simple PF is fast but often provides poor
estimates, even with a maximum of 10,000 iterations (versus
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TABLE 2
Algorithm Performances on Real Data Sets with Missing Data:

Frequency of Suboptimal Convergence (Percent)
and Average Number of Iterations (in Parenthesis)

Fig. 3. Smooth camera trajectory in the synthetic sphere data set.

TABLE 3
Results of Rigid SFM Methods on the Sphere Data Set



500 for the other methods). CSF-Baf and CSF-Bwp are also
very fast. Typically, CSF-Bwp performs more iterations than
CSF-Baf—for better convergence on long sequences (large
T ), we run CSF-Bwp in a coarse-to-fine manner, increasing
d 2 f0:1T; 0:2T; 0:3Tg. We also note that the Wiberg method
does not scale well for application on large matrices due to the
size of the system of equations it has to solve in each iteration.

Our experiments also considered the complete dinosaur
data set with 4,983 tracks (of which 2,300 are defined on
only two images).1 The dinosaur sequence is arguably the
most popular data set used to evaluate rigid SFM algo-
rithms, with results published on different subsets of its 2D
point tracks. For comparison against previously published
results, we consider a subset of 2,683 tracks (points tracked
in at least three images) and the subset of 319 tracks
described above.

Results of the methods above are also compared to those
of the following algorithms: Damped-Newton (DN) [6], the
Deviation Parameter (DP) for subspace constraints [19],
Minimal Missing Elements (MME) [7], Camera Basis (sub-
space) Constraints (CBC) [28], and the Euclidean Power-
Factorization (EPF) method in [21]. Finally, we also
compare the result of CSF-Bwp to that obtained with
projective SFM followed by euclidean bundle adjustment
(ProjSFM-BA) [22]. Because the ground-truth 3D shape and
cameras are not available, we compare RMSE values for the

reconstructed W and also the mean/maximum 2D repro-
jection errors (in pixels) of the best solutions provided by
each method. For this numerical comparison on the
relatively short dinosaur sequence (T ¼ 36), our CSF
methods were both initialized (deterministically) with full
DCT bases.

In Table 4, each incomplete row contains only the results
reported in the original publication due to the algorithm not
being available in our experiments. Because these algo-
rithms use factorization models with different numbers of
degrees of freedom, we define three main groups of
methods. In this case, models with more degrees of freedom
are expected to be associated with lower RMSE and 2D
error values. However, we note that CSF-Bwp yielded lower
2D reprojection errors compared to the affine SFM methods.
In the dinosaur data set, the performance of CSF-Bwp is very
close to that of the projective SFM method with bundle
adjustment, despite the nonnegligible perspective distortion
in the data. Figs. 4b and 4c show the 3D shape recovered by
CSF-Bwp.

Information on the ground-truth motion is actually
available because we know the dinosaur is on a turntable.
Thus, the reconstructed W must describe 2D point trajec-
tories that are all concentric ellipses. Indeed, the result of
CSF-Bwp indicates correct motion recovery, Fig. 4d. The best
affine methods in our comparison (CSF-Baf , LM-S, LM-SGN ,
and Wiberg) overfit noise and outliers and recover an
incorrect motion pattern, Fig. 4e. This problem is inherent
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Fig. 4. Results on the 4,983 point set (90.8 percent missing) of the dinosaur data set: (a) one of the 36 images of the sequence, (b)-(c) side and frontal
views of the euclidean 3D shape recovered by CSF-Bwp, and (d) 2D point tracks reconstructed by CSF-Bwp and (e) by the best affine methods.

TABLE 4
Results of Rigid SFM Methods on Different Subsets of the Dinosaur Data Set

1. Available at http://www.robots.ox.ac.uk/~vgg/.



in all affine SFM methods (incorrect 2D trajectories are also
shown in [6] and [8]). Also note this fact is independent of the
euclidean upgrade step, which does not affect reprojection.

The robust CBC method uses random sampling to
tolerate outliers when computing subspace constraints
and triangulating 3D points. Thus, CBC yields higher
RMSEs as compared to the other methods. Table 4 shows
that 2D reprojection error decreases as more point tracks are
available for outlier/inlier identification—we computed
camera constrains from triplets of frames presenting at
least 15 tracks in common. In [28], CBC was found to
provide the best solutions among the main subspace
constraint methods. Here, error values are higher than
those in [28] because we did not remove outliers before the
comparison against nonrobust methods. We note that our
CSF methods do not explicitly address the problem of
outliers and may fail if the input data present gross
measurement errors. Future work will investigate the use
of robust error terms [9], [12] in our cost functions.

In another experiment, we applied the Kanade-Lucas-
Tomasi (KLT) feature tracker [27] on a 200-image teddy bear
sequence [28]. We selected 806 point tracks appearing in at
least 10 images. Due to occlusion, the resulting matrix W 2
IR400�806 is missing 88.6 percent of its entries. For numerical
comparison, both CSF methods considered a full DCT basis.
CSF-Bwp adopted a coarse-to-fine strategy with d 2
f0:1T; 0:2T; 0:3T; . . . ; Tg increased each time convergence
to a coarser solution was detected. Table 5 gives the 2D
errors obtained with the algorithms described above on our
teddy bear data set. CSF-Baf provides equivalent or better
solutions as compared to the other methods. Also, CSF-Bwp

directly reconstructs the euclidean 3D shape with only a
slight increase in 2D error—its camera model captures less
of the noise in the data. Fig. 5 shows the 3D shape
reconstructed with CSF-Bwp. On this long sequence
(T ¼ 200) with smooth motion, the difference in the results
of CSF-Bwp with a full DCT basis (d ¼ T ) and with d ¼ 0:3T
is very small, eR ¼ 0:0175 and eS ¼ 0:0229 (here, eS is
normalized by �ðSÞ as in (21)). With d ¼ 0:3T , the runtime
of CSF-Bwp drops from 27.3 to 3.6 minutes (4 to 0.7 minutes
for CSF-Baf ). Wiberg took, on average, 4.2 hours.

5.3 Computing Nonrigid SFM

First, we evaluate our nonrigid SFM algorithm on complete
data sets with known 3D shapes for each frame, also

simulating missing data and noise. Then, we present results
on real data sets with and without occlusion. The number of
frames (T ) and the number of point tracks (n) are indicated
as (T=n) after a data set’s name.

We start with the motion capture sequences: drink
(1,102/41), pickup (357/41), yoga (307/41), stretch (370/41),
and dance (264/75) used in [2]; face1 (74/37) of [24]; face2
(316/40) and walking (260/55) of [30]. We also use the
synthetic bending shark (240/91) of [30]. Note that a
different shark data set appears in [2]. We use only the
original one in [30].

To allow for comparison against the results reported in
[2], we used the same procedure and error metrics therein.
For each data set, the complete 2D point trajectories in W
are obtained by applying an orthographic projection on the
sequence of 3D shapes. Because the solution of nonrigid
SFM methods is defined up to an arbitrary 3� 3 rotation,
we compute a single rotation that best aligns all recon-
structed and original 3D shapes. Let etj be the reconstruc-
tion error (i.e., euclidean distance) for the jth 3D point of
frame t. We then compute a normalized mean 3D error over
all points and frames,

e3D ¼
1

�eTn

XT
t¼1

Xn
j¼1

etj; �e ¼
1

T

XT
t¼1

�ðStÞ;

with �ð�Þ as in (21) and St 2 IR3�n the original 3D shape in
frame t. The first four motion capture sequences have
artificial rotations applied on them. We thus compare
original and estimated rotations using eR as in (22).

Table 6 compares the performance of our 3D shape
trajectory approach, CSF-Bnr, against four state-of-the-art,
nonrigid SFM methods:

1. the shape basis constraints (XCK) method2 [32],
2. the algorithm modeling 3D shape using probabilistic

principal component analysis (EM-PPCA) [30],
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Fig. 5. Result of CSF-Bwp on 806 point tracks (88.6 percent missing) of
the teddy bear sequence: (a) image in the sequence, (b) input 2D tracks,
(c)-(d) frontal and top views of the recovered euclidean 3D shape.

TABLE 5
Results of Rigid SFM Methods on the Teddy Bear Data Set

2. We did not implement the XCK algorithm. Its results on the first five
sequences are reproduced from [2]. Results on the shark, face, and walking
data sets are given in [30], with a different error metric, and found to be
significantly inferior to those of EM-PPCA.



3. the Metric Projections (MP) method3 [24], and
4. the DCT-based 3D point trajectory approach [2].

Following the methodology in [2], we ran the algorithms

with different values of K 2 f2; 3; . . . ; 13g, reporting the best

result. Table 6 also shows the value ofK for the best solutions

obtained with PTA and CSF-Bnr for comparison. We also

report the initial error of CSF-Bnr because it shows the error

that PTA would provide with the sameK and rotations in D.

In all runs, CSF-Bnr had the number of DCT basis set to

d ¼ 0:1T , except for the two face data sets on which we set

d ¼ T
3 due to the presence of higher frequency deformations.

Our results as shown in Table 6 are consistently similar

to or better than the best results provided by the other

methods on each data set. As compared to PTA, CSF-Bnr

computes better solutions and at a lower rank r ¼ 3K þ 1

by more efficiently using higher DCT frequency compo-

nents. Furthermore, our simple strategy of iterating over K

while computing factor D also provides better euclidean

camera estimates than plain PTA.
EM-PPCA, MP, and CSF-Bnr provide comparable results

on the face2 data set, which has mostly rigid motion with

high-frequency deformation seen on the lower lips and

chin. In this case, CSF-Bnr requires at least 75 percent of all

DCT components (d ¼ 0:75T ) to provide a mean 3D error

(0.0328) that is smaller than that of EM-PPCA. PTA is not

capable of modeling this high-frequency deformation and

recovers a mostly rigid mouth, Fig. 6. On the much shorter

face1 sequence, CSF-Bnr obtains an error improvement of

only 0.0012 with a larger d. Setting d > 0:1T resulted in no

significant improvement to the CSF-Bnr solutions on the

other data sets.
CSF-Bnr is the only method that can accurately recon-

struct the deformation of the bending shark. Furthermore,

with a full DCT basis, the resulting e3D is negligible

(0.00004) and perfect reconstruction is achieved. Fig. 7

shows the three best shark reconstructions of Table 6. XCK

fails on this data set due to the bending shark presenting a
2D (degenerate) deformation mode [30].

The motion capture sequences containing highly articu-
lated bodies also show the superiority of CSF-Bnr and PTA
compared to XCK, EM-PPCA, and MP. On the smoothly
deforming shapes in the drink, pickup, and yoga sequences
(used in [2]), the improvement offered by CSF-Bnr over PTA is
marginal. On the other hand, the results on the more difficult
walking sequence of [30] (Fig. 8) highlight the advantages of
using our 3D shape trajectory approach (no artificial rotation
was added to this sequence). MP provides comparable results
with CSF-Bnr on the dance sequence. The supplementary file,
which can be found in the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2011.50, includes additional examples.

To simulate missing data in the shark and walking data
sets, we randomly discard 	 percent of the 2D entries in W.
Before applying CSF-Bnr (with K as in Table 6), we compute
D and t by first using CSF-Baf to reconstruct the complete
2D point trajectories in W. CSF-Baf was run with d ¼ 0:25T
and rank r ¼ 7. Letting W0 be the complete matrix, we
normalize the 2D reconstruction error for the incomplete W
by �ðW0Þ as in (21).

On the smooth shark deformation, results are visually
similar to those in Fig. 7, with 	up to 95 percent (see images in
the supplementary file, which can be found in the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2011.50). Of 10 runs with 	 ¼ 95%, the
average (maximum) 2D reconstruction error for W was
0.0015 (0.0029). The average (maximum) 3D error after
running CSF-Bnr was 0.0163 (0.0488). On the walking
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TABLE 6
Performance of Nonrigid SFM Methods on Synthetic and Motion Capture Data

For the related PTA and CSF-Bnr methods, factorization rank is also indicated by the value of K in parenthesis.

Fig. 6. Overlay of 316 unrotated 3D shapes in the face2 sequence.
Deformation is seen predominantly on the lower-lips and chin. CSF-Bnr

can capture this high-frequency deformation better than PTA.

3. Two MP methods are presented in [24]. Here we experiment with the
method using a generic model of deformable shapes. The supplementary
file, which can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2011.50, shows comparative
results against MP with a specialized articulated model that requires the
columns of W to be initially grouped as corresponding to separate object
parts.



sequence, results with 	 ¼ 75% are still visually similar to

those in Fig. 8. After 10 runs, the average (maximum) 2D and

3D errors were 0.0508 (0.0548) and 0.2063 (0.3910), respec-

tively. These results on incomplete data are still better than

those of XCK, EM-PPCA, MP, and PTA on the complete

shark and walking data sets.
On the complete face2 data set, the performances of EM-

PPCA, MP, PTA, and CSF-Bnr are more similar than on the

other sequences. We thus analyzed their average e3D with

different levels of random occlusion and noise (simulated

independently) on W of face2. EM-PPCA and MP handle

cases of missing data by adopting an alternation approach

as in PowerFactorization. PTA does not handle occlusions

and was tested with added noise only. All methods were

run with their best parameter K for the complete data

(K ¼ 5 for EM-PPCA, MP, PTA; K ¼ 3 for CSF-Bnr). After

random occlusion, we ensured that W had at least 3Kmax þ
1 entries (Kmax ¼ 5) in each row and column. On the high-

frequency deformation and motion of face2 (combined in

the columns of W), the initial CSF-Baf step of CSF-Bnr

reconstructed the 2D point trajectories in W with d ¼ 0:5T

and r ¼ 5. Results were averaged over 100 trials and are

shown in Fig. 9.
In our trials on face2 with missing data, EM-PPCA was

unstable and presented both small and very large errors for

random occlusions 	 as low as 10 percent. Thus, Fig. 9a

shows the results of CSF-Bnr in comparison to those of MP,

which was shown in [24] to outperform EM-PPCA in a
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Fig. 7. Results on the bending shark sequence. Reconstructed 3D shapes (blue circles) are shown against the original 3D data (dark dots).
Frames 20, 50, 80, 115, 148, 175, and 200 are displayed above.

Fig. 8. Results on the walking sequence. Reconstructed 3D shapes (blue circles) are shown against the original 3D data (dark dots). Frames 34, 74,
122, 160, 198, 223, and 255 are displayed above.



similar experiment on face2. Note that the average e3D of
MP begins to increase with 	 above 30 percent, while that of
CSF-Bnr presents almost no variation over all the tested
levels of random occlusion.

For levels of added Gaussian noise below 0:15�ðWÞ
(15 percent), the increase in e3D is similar for all four
methods, Fig. 9b. At 15 percent and above, small differences
in performance are observed but the reconstructions still
degrade only gradually with the level of noise. Because PTA
largely oversmooths the deformation of face2, its perfor-
mance suffers a smaller penalty as compared to that of the
other methods. At high-noise levels, correct 3D shape
reconstruction seems to require additional information on
the nature of the 3D shapes and noise [12].

The average runtimes of the algorithms on the face2
trials at 5 percent noise level were, in minutes: 2.52 (EM-
PPCA), 0.34 (MP), 0.05 (PTA), and 0.40 (CSF-Bnr, of which
0.15 was spent to compute D). These times were similar to
those observed for the algorithms on the original data. PTA
is fast due to its use of SVD. Runtimes in minutes on face2
trials with 30 percent missing data were: 2.85 (EM-PPCA),
3.66 (MP), and 2.29 (CSF-Bnr). This runtime of CSF-Bnr

includes time spent running CSF-Baf (0.82) and computing
D (0.19). At above 20 percent random occlusion, CSF-Bnr

was faster than MP and EM-PPCA.

We also applied CSF-Bnr to the (complete) real data set
cubes (200/14) of [2]. With K ¼ 2 and d ¼ 0:1T , the solution
of CSF-Bnr has mean (maximum) 2D reprojection error of
0.4958 (2.0672) pixel. The solution of PTA has an error of
1.6589 (4.8602) also with K ¼ 2. Images and additional
results are given in the supplementary file, which can be
found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2011.50.

Finally, an application of our nonrigid SFM method is in
the interpretation of the facial expression component of sign
languages from video [10]. In this case, head rotation and
hand gesticulation often cause the occlusion of facial
features, leading to incomplete 2D point tracks. We now
consider a 115-image (4 seconds long) face close-up
sequence of an American Sign Language (ASL) sentence.
Facial landmarks were manually annotated in each image
when visible. The resulting matrix W 2 IR230�77 is missing
17.4 percent of its data and has small magnitude noise due to
annotation errors caused by partial occlusion of facial
features and motion blur in the video images. Fig. 10 shows
six example images and their respective 3D face shapes
recovered using CSF-Bnr (K ¼ 2 and d ¼ 0:5T , with the
initial CSF-Baf step run as for face2 above). Figures with the
results of EM-PPCA and MP are given in the supplementary
file, which can be found in the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2011.50. For all tested values of K 2 f2; 3; . . . ; 13g,
the result obtained with EM-PPCA presented visibly large
3D reconstruction errors for a number of facial points that
are occluded frequently in each sequence (e.g., the lateral
contours of the nose and the face). The results of CSF-Bnr and
MP are visually similar and indicate correct recovery of pose
and nonrigid 3D shape despite the occurrence of occlusion.

6 CONCLUSION

In this paper, we have addressed the classical computer
vision problems of rigid and nonrigid SFM with occlusion.
We started by assuming that the columns of the input data
matrix W describe smooth 2D point trajectories over time.
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Fig. 10. Results of CSF-Bnr on the ASL sequence (77 points, 17.4 percent missing data): (top) six out of 115 images with annotated facial landmarks
in green; (middle, bottom) two orthogonal views of the recovered 3D shapes.

Fig. 9. Reconstruction errors on the face2 sequence with missing data
and noise simulated independently (averages over 100 trials).



This assumption is equivalent to considering that 2D
observations in W are obtained by a single camera moving
smoothly around a rigid structure. In nonrigid SFM, our
assumption also requires the structure to deform only
smoothly over time.

Our main contributions are two-fold: 1) We provide new
models for the smooth time-trajectories of camera and
deformable shape with a compact parameterization in the
DCT domain, and 2) we derive a family of efficient Column
Space Fitting methods to estimate such trajectories while
tolerating cases in which W is presented with missing data.

In rigid SFM, we consider a weak-perspective camera
model from the outset and directly reconstruct euclidean
3D shape without requiring postprocessing steps. Our
results on synthetic and real SFM data sets with noise and
high percentages of missing data were positively compared
to the state of the art.

In nonrigid SFM, we propose a novel 3D shape trajectory
approach that solves for the deformable structure as the
trajectory of a single point in an implicitly defined linear
shape space. A comparison against state-of-the-art algo-
rithms shows that our method can better model complex
articulated deformation with higher frequency DCT com-
ponents while still maintaining the low-rank factorization
constraint. We also demonstrate that our nonrigid SFM
algorithm can tolerate high percentages of missing data in
the input matrix W with only a small penalty in 3D
reconstruction accuracy.

Future work will investigate the integration of our weak-
perspective camera model into our nonrigid SFM approach.
We will also consider the automatic selection of the number
of elements in the DCT and shape bases using regulariza-
tion terms that balance the trade-off between higher model
complexity (r, K, and d) and smaller fitting error [23], [25],
[30]. Our CSF algorithms may also benefit from a robust
error term in order to better tolerate the presence of outliers
in W. Finally, nonlinear models for the column space of W
shall be considered.
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