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Abstract. This paper considers the problem of factorizing a matrix with missing components into a product of two
smaller matrices, also known as principal component analysis with missing data (PCAMD). The Wiberg algorithm
is a numerical algorithm developed for the problem in the community of applied mathematics. We argue that the
algorithm has not been correctly understood in the computer vision community. Although there are many studies
in our community, almost every one of which refers to the Wiberg study, as far as we know, there is no literature
in which the performance of the Wiberg algorithm is investigated or the detail of the algorithm is presented.
In this paper, we present derivation of the algorithm along with a problem in its implementation that needs to
be carefully considered, and then examine its performance. The experimental results demonstrate that the Wiberg
algorithm shows a considerably good performance, which should contradict the conventional view in our community,
namely that minimization-based algorithms tend to fail to converge to a global minimum relatively frequently. The
performance of the Wiberg algorithm is such that even starting with random initial values, it converges in most cases
to a correct solution, even when the matrix has many missing components and the data are contaminated with very
strong noise. Our conclusion is that the Wiberg algorithm can also be used as a standard algorithm for the problems
of computer vision.

Keywords: matrix factorization, singular value decomposition, principal component analysis with missing data
(PCAMD), structure from motion, numerical algorithm

1. Introduction

This paper deals with the problem of factorizing a ma-
trix into a product of two smaller matrices, assum-
ing the rank of the matrix to be a known number, as
follows:

Y → UV�. (1)

This problem commonly appears in several problems
of computer vision, such as structure from motion
(SFM) (Buchanan and Fitzgibbon, 2005; Chen and
Suter, 2004; Jacobs, 2001; Tomasi and Kanade, 1992)

and computation of shape and illumination from an im-
age set taken under different illumination conditions
(Belhumeur and Kriegman, 1998; Epstein et al., 1996;
Hayakawa, 1994). Considering the presence of noise in
the data, the problem is most often formulated as find-
ing U and V that minimize the error ‖Y − UV�‖2

F . In
this paper, we consider the case where there are missing
components in Y. In this case, the function to be mini-
mized is defined to be the error sum ‖Y−UV�‖2

F only
over the existing components. Unlike the case without
missing components, where the problem is reduced to
an eigenvalue problem, in this case, we have to directly
solve the minimization problem that is truly nonlinear;
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thus, convergence and computational complexity of its
algorithms are of significant interest.

It is the study by Shum et al. (1995) in the com-
puter vision community that first introduced the prob-
lem and numerical algorithms for it. They rediscovered
the study of Wiberg (1976) in the 70’s, based on which
they developed an algorithm and applied it to 3D ob-
ject modeling. Since then, many algorithms have been
proposed in our community for the problem. There is
a good survey of them in the recent study by Buchanan
and Fitzgibbon (2005) (See also Buchanan (2004)).

The study of Wiberg (1976) (and that of Ruhe and
Wedin (1980), on which it is based) should be a basis
for the mentioned initiative work of Shum et al. as well
as many subsequent studies. In fact, the Wiberg name
is cited in almost every one of those studies. How-
ever, we would like to point out the possibility that
the Wiberg algorithm has not been correctly under-
stood in our community. As far as we know, there is
no literature (within our community) in which its nu-
merical performance is investigated or the algorithm
itself is presented. In the paper of Shum et al. (1995)
a brief outline of the Wiberg algorithm is presented,
but no experimental result by the algorithm is shown.
In the recent paper of Buchanan et al. (2005) where
many algorithms are classified into several categories,
the Wiberg algorithm is mentioned but not explicitly
classified. In some literature, the algorithm seems even
to be confused with that of the alternated least squares
(ALS). As will be shown later, the Wiberg algorithm is
based on the Gauss-Newton algorithm and is different
from the ALS algorithm.

The goal of this paper is firstly to present the Wiberg
algorithm correctly and then to accurately investigate
its numerical performance. There are several possible
reasons for the above-mentioned misunderstanding of
the Wiberg algorithm. One is that the Wiberg paper
lacks detailed explanations of the underlying logic of
the algorithm. Our derivation in what follows will sup-
plement these. Another possible reason for the misun-
derstanding might be that the equation for computing
the Gauss-Newton update in the Wiberg algorithm is al-
ways degenerate. This needs to be borne in mind when
implementing the algorithm. We prove the degeneracy
and show how to handle it.

As will be shown in what follows, our experimental
results show that the Wiberg algorithm (with our imple-
mentation) shows a considerably good numerical per-
formance, which may contradict the conventional view
in our community concerning the performance of algo-

rithms for the problem. For example, there are several
studies (Jacobs, 2001; Chen and Suter, 2004) of a dif-
ferent type of algorithm that is based on imputation, in
which missing components are locally estimated from
those existing. These studies are motivated by a recog-
nition that the minimization-based algorithms do not
have good convergence performance, and good initial
values are necessary to have them converge to a global
minimum. However, as far as the Wiberg algorithm is
concerned, choosing good initial values does not seem
to be necessary. Even starting with completely random
initial values, the algorithm will converge to a global
minimum for most of the cases, as will be shown in
what follows. We also show brief comparisons of some
of the minimization-based algorithms in terms of com-
putational complexity, in which the Wiberg algorithm
is superior to others.

2. Notation

In this paper, we consider factorization of the form:

Y → UV�, (2)

as well as factorization with a mean vector:

Y → UV� + 1mμ�, (3)

where Y, U and V are matrices of m × n, m × r , and
n × r , respectively, 1m is a m-vector of all 1’s and
μ is a n-vector. Although in what follows, the form
(2) is mainly considered for the sake of simplicity, the
results for (2) are applicable to (3) with only a few
modifications.

Some components of Y are missing. Let H be an
m × n matrix indicating which components are miss-
ing; H is such that the component hi j indicates the ex-
istence of yi j ; hi j = 1 if yi j exists and hi j = 0 if yi j is
missing. This matrix H will be called the indicator ma-
trix and is assumed to be known throughout this paper.
Then, for the factorization form (2), the problem is for-
mulated as a minimization problem with respect to U
and V:

φ(U, V) ≡ ‖H � (Y − UV�)‖2
F → min., (4)

where � represents the component-wise product of ma-
trices. For the factorization form (3) with a mean vector,
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the problem is formulated as minimization with respect
to U, V, and μ:

φ′(U, V, μ) ≡ ‖H � (Y − UV� − 1mμ�)‖2
F → min.

(5)

The functions φ and φ′ are inconvenient to ma-
nipulate analytically, because of the � product with
H. Thus, we rewrite them into a simpler form with-
out H, by introducing several notations. Let U =
[u1, . . . , um]� and V = [v1, . . . , vn]�; ui and v j are
both r -vectors. Also, let u ≡ [u�

1 , . . . , u�
m]� and v ≡

[v�
1 , . . . , v�

n ]�. In what follows, U and the mr -vector u
will be used in an interchangeable manner, and so are V
and the nr -vector v; for example, φ(U, V) = φ(u, v).
Let p be the number of observed components, and y be
a p-vector containing only observed components yi j in
lexical order of i and j . Using a p × mr matrix F con-
taining u1, . . . , um and a p × nr matrix G containing
v1, . . . , vn , φ(u, v) can be rewritten as follows:

φ(u, v) = ‖Fu − y‖2 = ‖Gv − y‖2 (6)

The matrices F and G have the following structures:

F≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v�
1

v�
2

...

v�
n

v�
1

v�
2

...

v�
n

. . .

v�
1

v�
2

...

v�
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u�
1

u�
1

. . .

u�
1

u�
2

u�
2

. . .

u�
2

...

u�
m

u�
m

. . .

u�
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

Note that the above shows only the basic structures of
the matrices for notational simplicity, and in the pres-
ence of missing components, v j ’s and ui ’s do not reg-
ularly appear in them, as implied above. The matrices
will have only the rows corresponding to the observed

components. For example, if y12 is missing, the second
rows of the above F and G are removed, and if ymn is
missing, the last rows are removed. Thus, the number
of rows of F and G becomes the number p of observed
components.

The distribution of the missing/observed compo-
nents in Y (i.e., the indicator matrix H) determines the
size and structure of F, and therefore, for a fixed H, F
can be viewed as a function of v; thus, we will write
F(v). Similarly, we will write G = G(u).

For the factorization form (3) with a mean vec-
tor (and the corresponding cost φ′), we define m =
[μ1, . . . , μn, . . . , μ1, . . . , μn]� (m-repetition of a
vector [μ1, . . . , μn] while excluding the entries cor-
responding to the missing components) and then Ṽ ≡
[V, m]. We denote each row vector of Ṽ by ṽ j , i.e.,
Ṽ = [ṽ1, ṽ2, . . . ṽn]�. Then stacking these vectors, de-
fine ṽ� = [ṽ�

1 , ṽ�
2 , . . . ṽ�

n ]. Using these notations, φ′ is
represented as

φ′(u, ṽ) = |Fu + m − y|2 = |G̃ṽ − y|2,
where G̃ is a p × n(r + 1) matrix such that (G̃ṽ − y)k

yields u�
i v j + μ j − yi j assuming that yi j is the k-th

observed element; G̃ is formally obtained by replacing
u�

i ’s on G by [ui , 1]�’s on Eq. (7).

3. The Wiberg Algorithm and Its
Implementation

The Wiberg algorithm was proposed for the minimiza-
tion problem (5) (Wiberg, 1976). (It is straightforward
to make it applicable to the problem (4).) This section
shows the derivation of the algorithm in detail and then
its implementation.

3.1. Alternated Least Squares Algorithm

To begin with, we summarize the alternated least
squares (ALS) algorithm that are often confused with
the Wiberg algorithm. From now on, we deal with only
the factorization form (2) without a mean vector.

We want to find a minimum of φ. Then, we search for
a solution to the equations ∂φ/∂u = ∂φ/∂v = 0. Us-
ing the notations introduced above, these are expressed
as [

∂φ/∂u

∂φ/∂v

]
=

[
F�(Fu − y)

G�(Gv − y)

]
=

[
0
0

]
. (8)
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When considering the two equations independently, so-
lutions are given by

û = (F�F)−1F�y, (9a)

v̂ = (G�G)−1G�y. (9b)

Based on these bilinear relations, the ALS algorithm
updates u from v by Eq. (9a) and v from u by Eq. (9b)
in an alternative manner, starting from some initial val-
ues of u(0) or v(0). An interpretation of the algorithm is
that it searches for a fixed point of the mapping (u, v)
to (û, v̂) by the iteration. Although φ decreases mono-
tonically with the iterations, there is no guarantee as
to the speed of its convergence. In fact, as is pointed
out in Buchanan and Fitzgibbon (2005), it tends to be
quite slow, especially for “badly conditioned” data such
as those with there are many missing components and
strong noise.

3.2. Naive Gauss-Newton Algorithm

Before going into the Wiberg algorithm, for the sake
of comparison, we summarize the standard Gauss-
Newton algorithm applied to the problem. Defining
x ≡ [u�, v�]�, we write φ as

φ(x) = 1

2
f�f, (10)

where f ≡ Fu − y = Gv − y. In order to find a so-
lution x to dφ/dx = 0, the Newton’s algorithm seeks
a solution by iteratively updating x as x + �x → x
where the update is computed as a solution to (dφ/x)+
(d2φ/dx2)�x = 0. Using f, the first and second deri-
vatives are represented as dφ/dx = (df/dx)�f and
d2φ/dx2 = (df/dx)�(df/dx) + (d2f/dx2)�f. In the
Gauss-Newton algorithm, the second term (d2f/dx2)�f
is neglected. Then, the equation for the update �x turns
to

(
df
dx

)�
f + (

df
dx

)� (
df
dx

)
�x = 0, or equivalently

∣∣∣∣f + df
dx

�x

∣∣∣∣2

→ min. (11)

Note that the popular Levenberg-Marquardt (LM) al-
gorithm, which is widely used in the literature of SFM
bundle adjustment and will be later compared with
the Wiberg algorithm, is a composite method of the
(Gauss-)Newton and steepest descent algorithms.

3.3. Derivation of the Wiberg Algorithm

In some of the nonlinear least squares problems with
multiple parameters, when assuming part of the pa-
rameters to be fixed, minimization of the least squares
with respect to the rest of the parameters becomes a
simple problem, such as a linear problem, and gives
a closed form solution. For such problems, by elimi-
nating the latter parameters, the original minimization
problem can be rewritten into a minimization prob-
lem of a function only of the former parameters (i.e.,
those assumed to be fixed). There are some cases where
deriving a Newton-based algorithm for the rewritten
problem achieves better algorithms in terms of com-
putational complexity etc., than deriving one for the
original problem. A general framework of this method-
ology is shown by Ruhe and Wedin Ruhe and Wedin
(1980). Wiberg applied this framework to the specific
problem, factorization of a matrix with missing com-
ponents (Wiberg, 1976).

Thus, the basic idea is to rewrite the minimization
problem of φ(u, v) into that of a function ψ(v) of only
v using (half of) the bilinearity of Eq. (8). For a fixed
v, an optimal u can be linearly computed according to
Eq. (9a). We may represent this by a function û(v). By
substituting this into φ(u, v), we have

ψ(v) ≡ φ(û(v), v). (12)

It is clear that this new minimization problem yields the
same solution as the original, since v minimizing ψ(v)
together with u = û(v) minimizes φ(u, v). Then, the
application of the standard Gauss-Newton algorithm to
solve this minimization of ψ , yields what we call the
Wiberg algorithm.

Because of the structure of its square-sums, ψ(v) can
be written as

ψ(v) = 1

2
g�g, (13)

where g = g(v) = f(û(v), v) = Fû(v) − y. Then we
want to solve an equation dψ(v)/dv = 0. An updat-
ing scheme of the Newton method for this equation is
immediately given as∣∣∣∣g + dg

dv
�v

∣∣∣∣2

→ min. (14)

The �v minimizing this gives the optimal update to-
ward a local minimum. Thus, we now want to calculate
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the function on the left hand side of (14). Since g =
f(û(v), v), its first-order derivative is given according
to the chain rule as

dg
dv

= ∂f
∂u

dû
dv

+ ∂f
∂v

. (15)

The partial derivatives of f can be written using f =
Fu − y etc. as

∂f
∂u

= F,
∂f
∂v

= G. (16)

The remaining derivative dû/dv can be calculated as
follows. Since φu(û(v), v) ≡ 0 independently of v,
its derivative with respect to v should also be zero.
From φu(û(v), v) = F�(Fû − y) = F�g, we have
d(F�g)/dv = 0. By neglecting the term (dF/dv)�g
in the spirit of the Gauss-Newton algorithm, it is writ-
ten as

d

dv
(F�g) ≈ F� dg

dv
= F�

(
∂f
∂u

dû
dv

+ ∂f
∂v

)
. (17)

Since this should be zero, we have

dû
dv

= −(F�F)−1F�G. (18)

Using this along with Eq. (16), Eq. (15) is rewritten as

dg
dv

= (I − F(F�F)−1F�)G. (19)

Let QF ≡ I−F(F�F)−1F�. Note that QF is a projector
to the space orthogonal to the column space of F. Using
QF, g is rewritten as g = Fû(v) − y = −QFy. The
substitution of this and Eq. (19) into Eq. (14) yields

|QFG�v − QFy|2 → min. (20)

Now, the optimal update �v is determined from this.
However, this minimization does not have a unique so-
lution, since QFG is always singular (not of full rank),
as shown in the next section, although this is not men-
tioned in the Wiberg paper (Wiberg, 1976).

3.4. Determination of the Gauss-Newton Update

We first show that the following holds for the rank of
QFG.

Proposition 1. When U, V, F and G are all of full
rank, the rank of the matrix QFG is at most (n − r )r .

Proof: For any arbitrary r ×r matrix, it always holds
that U′V� = (UA)V� = U(VA�)� = UV′�. This
equality can be rewritten as

Fdiagm(A�)u = Gdiagn(A)v, (21)

where diagm(A) represents an m-block diagonal matrix
with the diagonal subblock A. Defining an mr × r2

matrix Xu and an nr × r2 matrix Xv appropriately, the
equation is further rewritten as

FXua = GXva, (22)

where a is an r2-vector containing the components of
A. The matrix Xu consists only of u1, . . . , um and the
matrix Xv only of v1, . . . , vn . Since Eq. (22) always
holds for any arbitrary a, we have FXu = GXv.

Let C(u, v) ≡ FXu = GXv. From the definition, the
column space of C is always a subspace of F and G. If
V is of full rank, it is easy to see that Xv is of full rank
(X�

v Xv = diagr (V�V)). Thus, if G is also of full rank,
C = GXv is of full rank, too. Then, the column space
of C has the dimension of r2. Thus, it has been shown
that the column spaces of F and G share a subspace of
at least r2 dimension.

Since QF is a projector to the space orthogonal to
the column space of F, the rank of QFG is given as the
number nr of its columns minus the dimension of the
common subspace of the column spaces of F and G.
Thus, we have shown that rank (QFG) ≤ nr − r2 =
(n − r )r .

This result is clearly connected to the fact that fac-
torization Y → UV� is always not unique; for any
arbitrary non-singular r × r matrix A, it is possible
to rewrite UV� = U′V′� by setting U′ = UA−1 and
V = VA�. The degree of freedom of the ambiguity is
r2, the number of components of A.

In the above proof, U, V, F, and G are all assumed to
be of full rank. This does not limit the applicability of
the result for the following reasons. Firstly, the matrices
U and V should be of full rank to make factorization
meaningful. Also, F and G should be of full rank, too,
since if they are not, the factorization is not unique.
Thus, the assumption should hold for non-degenerate,
valid data, from which meaningful solutions can be
derived.
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Figure 1. The Wiberg algorithm for the factorization form without
a mean vector.

Since QFG is always not of full rank, the Eq. (20)
for the update has an infinite number of solutions. A
promising choice is

�v = (QFG)†QFy, (23)

where (QFG)† is the Moore-Penrose inverse of QFG.
This solution corresponds to choosing �v that mini-
mizes |�v|2. Representing the singular value decom-
position of QFG as QFG → SDT�, (QFG)† is given
as

(QFG)† ≡ TD̃−1S�, (24)

where D̃−1 is defined as D̃−1 = diag[1/d1, . . . , 1/dq ,

0, . . . , 0], where d1, . . . , dq are non-zero singular val-
ues. The algorithm is summarized as Fig. 1.

As shown above, the rank of QFG is equal to or
smaller than (n − r )r . However, it can be shown, from
the result of one of our studies, that in order for fac-
torization to be unique, the rank should not be smaller
than (n − r )r and should namely be exactly (n − r )r .
Therefore, when computing (QFG)† on Eq. (24), we
need only select the q = (n − r )r largest singular val-
ues. This enables a secure implementation of the algo-
rithm in which the numerical difficulty of identifying
non-zero singular values from a numerical result of the
SVD is avoided.

For the factorization form (3) with a mean vector,
instead of Proposition 1, we show:

Proposition 2. The rank of the matrix QFG̃ is at most
(n − r )(r + 1).

Figure 2. The Wiberg algorithm for the factorization form with a
mean vector.

The proof is omitted here. Figure 2 shows the algorithm
for the case with a mean vector. As in the above, it can
be conveniently used in its implementation that the rank
of QFG̃ is expected to be exactly (n − r )(r + 1), unless
the given data are ill-conditioned.

3.5. Consideration of Computational Cost

In the Wiberg algorithm, there are two linear equations
to be solved per iteration. As for the equation in step 2
for updating u, we should use the block property of the
matrix to reduce its computational cost; F has m block
submatrices of at most n × r size. Then, assuming the
computational cost of solving a linear equation with a
M × N coefficient matrix to be O(M N 2), the cost is
evaluated as O(mnr2).

As for the equation in step 4, there is no way of re-
ducing the computational cost, and thus it is evaluated
as O(pn2r2), since QFG is of p × nr . Since this is
much larger than the cost O(mnr2) of Step 2, Step 4
is the dominant part in terms of computational cost.
Thus, the overall computational cost can be evaluated
as O(pn2r2) per iteration. Note that it depends on n,
the number of columns of Y, but not on m, the number
of rows of Y. Therefore, the better one between fac-
torizing Y and Y� should be chosen to minimize the
computational cost, whenever the choice is possible.

The computational cost for the naive Gauss-Newton
algorithm that was shown earlier can similarly be eval-
uated as O(p(m + n)2r2). Thus, it can be seen that
the Wiberg algorithm is faster than the naive Gauss-
Newton algorithm, and the ratio of the costs is given as
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n2/(m + n)2. Thus, if m ≈ n, it will be 1/4 and it will
further decrease when m is larger than n.

In the ALS algorithm, there are two equations to
solve, whose computational cost are comparable to the
solution of the equation in step 2 of the Wiberg algo-
rithm. Thus, as for the ALS algorithm, its computa-
tional cost per iteration is by far smaller than even the
Wiberg algorithm. However, it should be noted that the
ALS algorithm tends to need many iterations to con-
verge, hence the total computational time tends to be
rather larger than the other two, especially for badly
conditioned data.

4. Experimental Results

This section presents the experimental results. Only the
factorization with a mean vector is considered here; in
our experience, there is little difference in numerical
behavior between the algorithms for the two factoriza-
tion forms.

4.1. Comparison with the Levenberg-Marquardt
Algorithm

We compared the described implementation of the
Wiberg and Levenberg-Marquardt (LM) algorithms.
Comparisons of LM with the ALS algorithm and
its variants are detailed in Buchanan and Fitzgib-
bon (2005). As an implementation of the LM algo-
rithm, the function lmder from the MINPACK library
is used. There is the following fundamental ambigu-
ity in the factorization: UV� + 1mμ� = (UA−1 +
1mb�)(VA�)� + 1m(μ� − b�A�V). In order to con-
strain this, the necessary number of components of U
and m are fixed in the implementation of the LM algo-
rithm.

4.1.1. Synthetic Data. As test data, matrices of 30 ×
20 (i.e. m = 30 and n = 20) with rank r = 3 are used.
Each component is randomly generated according to
yi j = u�

i v j + μ j + εi j , where ui j , vi j , and μ j are all
random variables generated according to a normal den-
sity N (0, 1), and the noise ε according to N (0, 0.052)
(i.e. 5% noise corruption). The missing components are
also randomly chosen in the 30 × 20 matrix. The two
algorithms are run for these data. The simulation re-
peats for 500 trials, and during each trial, initial values
are randomly chosen and supplied to each of the two
algorithms.

Figures 3 and 4 show the results for the data with 30%
and 65% missing components, respectively. The upper
row shows the histograms of iteration counts for each
algorithm, and the lower row shows the histogram of the
residue

∑
(yi j − ui v j −μ j )2. The two algorithmsx are

forced to stop when the iteration count exceeds 100. It
can be seen from Fig. 3 that the Wiberg algorithm con-
verges in every trial, whereas the LM algorithm does
not converge (at most within 100 iteration counts) in
10% of the trials. The histograms of the residue show
that both algorithms converge to a global minimum
whenever they converge. Figure 4 shows the results
for 65% missing components. As in the case of 30%
missing components, it can be seen that the Wiberg al-
gorithm converges in almost every trial, whereas the
LM algorithm does so in only a few. We can con-
clude that the Wiberg algorithm showed a much better
performance than the LM algorithm for the data used
here.
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Figure 3. Results for synthetic data with 30% missing components.
Upper: The iteration counts for 500 trials with random initial val-
ues. Lower: The residue after convergence. Left: Wiberg. Right:
Levenberg-Marquardt.
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Figure 4. Results for synthetic data with 65% missing components.
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Figure 5. Real images used for the test. Selected three of 177
images.

Figure 6. Trajectories of feature points. Left: Observed compo-
nents (in black) in the data matrix. Middle: Initial trajectories. Right:
Recovered trajectories.

4.1.2. Real Data. We also compared the two algo-
rithms using a real image sequence of a cube rotated
through 360 degrees on a turntable. There are 177 im-
ages in the sequence, a few of which are shown in
Fig. 5.

The Lucas-Kanade-Tomasi tracker is first applied to
the image sequence, and trajectories of feature points
are extracted, from which wrong trajectories are man-
ually removed. A few erroneous trajectories are in-
tentionally left unremoved to test the robustness of
the algorithms. As a result, 106 trajectories survive,
which are shown on the left of Fig. 6. The number
of observed data is 5550, which means that 70.4%(=
(106 × 177) − 5550/(106 × 177)) of components are
missing.

Then, the LM and the Wiberg algorithms are run for
100 trials. In the same way as above, random initial
values are used for each trial. Figure 7 shows the re-
sults. It is seen that the Wiberg algorithm converged
to an identical solution, which is therefore considered
to be a correct solution, in every trial. On the other
hand, the LM algorithm did not converge in any of
the 100 trials. To examine the behavior of the LM al-
gorithm, we run the LM algorithm also using good
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Figure 7. The number of iterations needed for SFM using the trajectories of Fig. 6. From left to right, the Wiberg algorithm starting from
random initial values, and the LM algorithm starting from “good” initial values that are generated by perturbing the solutions obtained by the
Wiberg with 10% and 30% random noise, respectively.

initial values, which are synthesized by multiplying
(1 + α) to each component of true U and V, where
α ∼ N (0, σ 2

1 ). The second and third histograms on
Fig. 7 show the results for σ1 = 0.1 and 0.3, respec-
tively. It can be seen from this that when good initial
values are given, the LM algorithm converges, and also
that its convergence performance deteriorates quickly
as the initial values become distant from the global
minimum. We can conclude that the Wiberg algorithm
outperforms the LM algorithm for the real data used
here.

4.2. Convergence Performance vs. Fraction of
Missing Data and Noise Strength

Clearly there are two factors that affect the conver-
gence performance of the Wiberg algorithm: the frac-
tion of missing components and noise strength. Using
synthetic data, we examined how these factors affect
the convergence performance. The data is generated in
the same way as above, except that the matrix size is set
to 50 × 50, and the missing components are determin-
istically selected so that H is a band diagonal matrix.
The bandwidth of H varies from 29 to 13, which corre-
sponds to a range from 50.4% to 75.7% of the fraction
of the missing components. The variance of the noise
ε is varied in the range from 0.005(0.5% corruption) to
0.5(50% corruption). Then, we run the algorithm for
100 trials, for each of which random initial values are
used.

Figure 8 shows the results. The left plot shows
the percentage of the number of successful trials vs.
the fraction of missing components, for each noise
strength. The success/failure of a trial is identified by
checking if the final residue after the convergence is
the same, in a numerical sense, as the minimum of
the residues for the 100 trials. The minimum of the
residues for each data set is shown on the right plot,
which confirms that the algorithm actually reaches the
global minimum for the trials identified as successful.
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Figure 8. Effects of fraction of missing components and noise strength (0.5, 5, and 50% noise corruption) on the convergence performance.
Left: The number of trials (%) for which the algorithm converges to the solution of minimum residue. Right: The minimum residue per yi j .

It can be seen from the results that the convergence
rate decreases with the number of missing components,
and deteriorates very quickly over around the fraction
65% of missing components. The “theoretical ceiling”
of the missing component fraction, which is given at
the percentage where the number of observed data is
the same as the number of parameters minus factor-
ization ambiguity (i.e., p = mr + (n − r )(r + 1)), is
calculated to be 86.5%. Thus, a gap is evident between
the theoretical ceiling and the percentage at which the
algorithm starts to fail to converge. It can also be seen
that noise strength does not appear to significantly af-
fect the convergence performance. It seems even that
the number of converged trials slightly increases for
larger noise strength. It should be noted that for most
of the unconverged trials, the algorithm either diverged
completely or was trapped in an infinite (oscillatory)
loop, and only for a few trials, did it converge to another
minimum.

5. Conclusion

We have shown the derivation of the Wiberg algorithm
for the problem of matrix factorization in the presence
of missing components. In the derivation, we prove
the degeneracy of the equation for determining the
Gauss-Newton update in the algorithm, which needs
to be taken care of when implementing the algorithm.
We show through several experiments, that our imple-
mentation of the algorithm demonstrates a relatively
good convergence performance, as compared to a stan-
dard implementation of the Levenberg-Marquardt al-
gorithm. As inferior performance of the ALS algorithm
and its variants, even to the LM algorithm, is reported
in Buchanan and Fitzgibbon (2005), we believe that the
Wiberg algorithm (with the described implementation)

should also be used as a standard tool for the problems
in computer vision.
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