
Time Management in the DoD High Level Architecture

Richard M. Fujimoto
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

Abstract

Recently, a considerable amount of effort in the U.S.

Department of Defense has been devoted to defining the

High Level Architecture (HLA) for distributed

simulations. This paper describes the time management

component of the HLA that defines the means by which

individual simulations (called federates) advance through

time. Time management includes synchronization

mechanisms to ensure event ordering when this is

needed. The principal challenge of the time
management structure is to support interoperability
among federates using different local time management
mechanisms such as that used in DIS, conservative and
optimistic mechanisms developed in the parallel
simulation community, and real-time hardware-in-the-
loop simulations.

1. Introduction

The Defense Modeling and Simulation Office (DMSO),
through its High Level Architecture (HLA) initiative, is
addressing the continuing need for interoperability
between new and existing simulations within the U. S.
Department of Defense. The HLA seeks to generalize
and build upon the results of the Distributed Interactive
Simulation (DIS) world and related efforts such as the
Aggregate Level Simulation Protocol (ALSP)
[Wils94], The HLA actiwty began in March 1995 with
the goal of recommending an architecture to the
Executive Council for Modeling and Simulation
(EXCIMS) before the end of calendar year 1996. The
EXCIMS in turn, after appropriate review, will
recommend the architecture to the Under Secretary of
Defense (Acquisition and Technology) for approval and
standardization. Prototype demonstrations of the use of
the architecture are scheduled to be completed in the
summer of 1996. Information about the HLA concept
and the DMSO Master Plan is available at
http:llwww.dmso. roil.

The HLA consist of three parts: 1) rules governing
certain characteristics of HLA-compliant simulations,
2) an object modeling scheme that describes the
information of common interest to a group (called a
federation) of cooperating simulations (federates), and 3)
the Run-Time Infrastructure (RTI) that provides the
software environment needed by the federates to
exchange information in a coordinated fashion. The
RTI is a special purpose distributed operating system

1087-4097/96 $5.0001996 IEEE

Richard M. Weatherly
The MITRE Corporation

7525 Colshire Drive
McLean, VA 22102-3481

that provides a variety of services, described below.
The specification of these services is evolving through
experimentation and can be found on the web server

mentioned above. In this paper we describe the time
management services. The principal challenge is to
bring together, in a general and extensible way, the
time management mechanisms used by several disparate
communities including DIS, ALSP, and test and
evaluation. Below, we briefly review key concepts in
DIS and ALSP before describing the HLA.

“The primary mission of DIS is to define an
infrastructure for linking simulations of various types
at multiple locations to create realistic, complex,
virtual ‘worlds’ for the simulation of highly interactive
activities” [DIS94]. A DIS exercise can be viewed as a
collection of autonomous simulations each maintaining
a virtual environment representing the portions of the
battlefield relevant to the entities it is modeling. An
exercise may include (1) human-in-the-loop elements
such as tank or flight simulators, (2) computation only
elements such as wargarne simulations. and (3) live
elements such as instrumented tanks. Time advances are
paced by a real-time clock. State changes, e.g., firing a
weapon, are broadcast as they occur. Each element
determines what information is relevant to the entities
it models and discards the rest. Messages are typically
processed in receive order (not time stamp order) to
reduce communication latency, sometimes leading to
anomalies. Some temporal errors are acceptable
because they will not be noticed due to limitations in
human perception. Unreliable communication services
are often used, again to reduce latency. See [DIS94] for
an introduction to DIS, and [Fuji95] for a discussion
contrasting DIS and parallel simulation research.

ALSP was designed to extend the DIS concept, and
focused largely on combining separately developed
wargarne simulations into federations. Wargame
simulations are often referred to as constructive or
aggregated simulations because they model battlefield
components at a higher, more aggregated level of
abstraction, e.g., battalions or divisions rather than
individual aircraft or tanks. A key distinction between
ALSP and the training simulations used in DIS is
ALSP federations require strict adherence to causality,
i.e., simulation events must be processed in time stamp
order. ALSP currently uses the Chandy/Misra/J3ry ant
null message protocol to accomplish this [Chan79].

60

pplv
高亮

pplv
高亮

pplv
高亮

pplv
高亮

pplv
高亮

pplv
高亮

pplv
高亮

pplv
高亮

2. Overview of the HLA

Real-world entities are modeled in the HLA by objects.
Each object contains an identifier, state, and a behavior
description that specifies how the object reacts to state

changes, The relationship of objects to one another is
specified through (1) attributes that indicate those state
variables and parameters of an object that are accessible
to other objects, (2) association between objects (e.g.,
one object is part of another object), and (3) interactions
between objects that indicate the influence of one
object’s state on the state of another object. A
federation object model (FOM) specifies the common
object model used!by all federates

Each object attribute has an owner that is responsible
for updating the value of its attributes (e.g., position
information). At any instant, there can be at most one
owner of an attribute, however, ownership of the
attribute may pass from one federate to another during
an execution. Qther federates subscribe to receive
updates to attributes as they are produced by the owner.

The runtime component defines a set of services
invoked by federates or by the Run-Time Infrastructure
(RTI) during a federation execution. HLA runtime
services fall into lhe following categories:
●

●

●

●

●

Federation management. This includes services to
create and delete federation executions, to allow
federates to join or resign from an execution, and to
pause, checkpoint, and resume an execution.
Declaration management. These services provide
the means for federates to establish their intent to
publish object attributes and interactions, and to
subscribe to updates and interactions produced by
other federates.
Object management. These services allow federates
to create and delete object instances, and to produce
and receive attribute updates and interactions.
Ownership management. These services enable the
transfer of ownership of object attributes during the
federation execution.
Time management. These services coordinate the
advancement of logical time, and its relationship to
wallclock tim~eduring the federation execution.

The remainder of this document is concerned with the
time management services. See [DMS096] for
additional information concerning time management.

3. Time Management Interoperability

The RTI provides a base into which separately
developed simulations can be “plugged in” to form large
distributed simulations. A central goal of the high
level architecture time management (HLA-TM)
structure is to sulpport interoperabdity among federates

utilizing different internal time management
mechanisms. Specifically, a single federation execution
may include:
1.

2.

3.

4.

5.

federates with different event ordering requirements,
e.g., DIS and ALSP federates.

federates using different time flow mechanisms,
e.g., times tepped and event driven mechanisms.
real-time (or scaled real-time) and as-fast-as-
possible simulations; it is assumed that individual
federates executing in conjunction with the RTI
perform at least as fast as scaled wallclock time in
federations requiring (scaled) real-time execution.
federates executing on parallel/distributed platforms
using conservative or optimistic synchronization.
federates using a mixture of event ordennsz and
transportation services, e.g., a DIS-like federate
may use time stamp ordering and reliable message
delivery for certain types of events, and receive-
ordered, best-effort delivery for others. This
facilitates gradual, evolutionary exploitation of
previously unused HLA-TM services.

Time management transparency is important to achieve
interoperability. This means the time management
mechanism used within each federate is not visible to
other federates.

4. Events, Messages, and Time

An execution can be viewed as a collection of federates,
each perfoming a sequence of computations. Some of
these computations are referred to as events, and some
of these events are relevant to other federates. The RTI
notifies other federates that have indicated an interest in
an event by sending a message for each event notifying
the federate the event has occurred. The time stamp of
the message refers to the time stamp of the

corresponding event. Events and messages are not

synonymous; a single event typically produces many
messages to notify other federates of the event.
Lookahead constraints are also placed on events that ate
to be delivered in time stamp order, as discussed later.
Federates need not schedule events in time stamp order.
There are four types of events in the HLA: creation of a
new object, deletion of an object, a state update, or an
interaction.

Time in the system being modeled is represented in the
HLA by a global federation time axis. The federation
time axis is defined as a totally ordered sequence of
values where each value represents an instant of time in
the physical system being modeled, and for any two
points T1 and T2 on the federation time axis, if TI <

T2, then TI represents an instant of physical time that

occurs before the instant represented by T2.

61

pplv
高亮

pplv
高亮

pplv
高亮

pplv
附注
联盟执行的定义

pplv
高亮

Two separate clocks are defined within each federate:
scaled wallclock time is used to synchronize the
execution with humans and live entities, and logical

time is used to ensure that messages are delivered in a

proper temporal sequence. Both represent points on the

federation time axis. Scaled wallclock time is defined as

offset + [rate *(wallclock time - time of last exercise

start or restart)]. Wallclock time is defined as a federate’s
measurement of true global time and is typically
output from a hardware clock. If rate is k, scaled
wallclock time advances k time faster than wallclock

time. Non-real-time (aka as-fast-as-possible) executions

set the rate factor to infinity.

Logical time is synonymous with “simulated time” in
the parallel simulation literature, and is only relevant to
federates that require that messages are not delivered to
the federate “in its past,” i.e., with time stamp smaller
than the federate’s current time. Federates must
explicitly request advances in logical time. The
requirement that messages are not delivered “in the
past” only applies to messages that are not designated
to be delivered in time stamp order. Federates not
requiring this constraint (e.g., DIS federates) request a
time advance to “infinity” at the beginning of the
execution.

Federate time denotes the “current time” of the fderate,
and these two terms are used synonymously. Federate
time is defined as scaled wallclock time or logical time
of the federate, whichever is smaller. At any instant of
an execution different federates will, in general, have
different federate times.

5. HLA-TM Services

Time management is concerned with the mechanisms

for controlling the advancement of time during the

execution of a federation. Time advancement

mechanisms must be coordinated with other

mechanisms responsible for delivering information,

e.g., to ensure messages are not delivered in a federate’s

past. Thus, the time management services must

encompass two aspects of federation execution:
● Transportation services: Different categories of

service are specified that provide different
reliability, message ordering, and cost (latency and
network bandwidth consumption) characteristics.

● Time advancement services: Different primitives
are provided for federates to request advances in
logical time. These primitives provide the means
for federates to coordinate their time advances with
the time stamp of incoming information, if this is
necessary. The time advance mechanism in the
RTI must accommodate both scaled real-time, and
as-fast-as-possible executions.

5.1 Transportation Services

The different categories of transportation service are
distinguished according to (1) reliability of message
delivery, and (2) message ordering. With respect to
reliability, reliable message delivery means the RTI
utilizes mechanisms (e. g., retransmission) to increase
the probability that the message is eventually delivered
to the destination federate. This improved reliability
normally comes at the cost of increased latency. On the
other hand, the best effort message delivery service
attempts to minimize latency, but with the cost of
lower probability of delivery.

Message ordering characteristics specify the order and
time at which messages may be delivered to federates
and are central to the HLA time management services.
A variety of services are provided to support
interoperability among federates with diverse
requirements. Five ordering mechanisms are currently
specified in the HLA: receive, priority, causal, causal
and totally ordered, and time stamp ordered. These
provide, in turn, increased functionality but at increased
cost.

The ordering mechanisms currently defined are:

●

●

✎

Receive Order. Messages are passed to the federate
in the order that they were received. Logically,
incoming messages are placed at the end of a first-
in-first-out (FIFO) queue, and are passed to the
federate by removing them from the front of this
queue. This is the most straightforward, lowest
latency ordering mechanism.
Priority Order. Incoming messages are placed in a
priority queue, with the message time stamp used
to specify its priority. Messages are passed to the
federate lowest time stamp first, This service doea
not prevent a message from being delivered in a
federate’s “past” (time stamp less than the federate’s
current time), but it is less costly in terms of
latency and synchronization overhead than the time
stamp ordered delivery mechanism. Priority order
with best effort delivery may be used for federates
where sequences of messages require ordering, but
the increased latency associated with either reliable
delivery or guaranteed order cannot be tolerated.
For example, speech packets may utilize this
service.
Causal order. This service guarantees that if an

event E “causally precedes” another event F, then

any federate receiving messages for both events

will have the message for E delivered to it before

the message for F. For example, E and F might

indicate firing a weapon, and the target being

destroyed, respectively; if causal ordering is used, a

fxierate observing both events will be notified of

62

pplv
高亮

pplv
高亮

pplv
高亮

pplv
高亮

pplv
高亮

the fire event before it is notified of the destroyed
event.

The “causally precedes” relationship is identical to
Lamport’s “happens before” relationship [Larnp78].

This relationship is defined between a pair of
actions Al and A2, where an action is an event, and
RTI message send, or an RTI message receive.
This relationship (denoted +) is defined as follows:
(i) if A, and A, occur in the same federate/RTI, and
Al precedes AZ in that federate/RTI, then Al +Az,
(ii) if Al is a message send action and Az is a
receive action for the same message, then Al +Az,

and (iii) if Al +Az and Az +A~, then Al +AB
(transitivity).

● Causal and totally ordered In the causally ordered
service defined above, messages corresponding to
events that are not causally related (referred to as
concurrent events) may be delivered to federates in
any order. The causal and totally ordered service
extends causal ordering to guarantee that for any
pair of concurrent events, messages for these events
will be delivered to all federates receiving both
messages in the same order, thereby defining a total
ordering of events. This service is commonly
referred to as CATOCS (causally and totally ordered
communicate ons support) in the literature (e.g., see
[Birrn91]).

take off first
A

(enemy aircraft 1)

Eb
take off second

B

(enemy aircraft 2)

attack aircraft 2

(pi;t 1) —

D
attack ~rcraft 2

(pilot 2)

Time (real-time)

Figure 1. Scenario demonstrating
causal and total ordering.

Figure 1 illustrates where CATOCS may be
useful. Twc) federates (A and B) modeling enemy
aircraft are taking off from an air field. Two pilots
are assigned to intercept, with pilot 1 (federate C)
given orders to attack the first enemy aircraft to
take off, and pilot 2 (fderate D) assigned to attack
the second. Assume the “take-off” events ae
concurrent, e.g., the aircraft are taking off from
different runways. Without total ordering,
messages for the take-off events may arrive at the
two federates in different orders. Figure 1 shows a
scenario where pilot 1 incorrectly believes aircraft 2
took off first, while pilot 2 correctly believes

aircraft 1 took off first. The end result is both
pilots attack aircraft 2! CATOCS would

circumvent this anomaly by ensuring that both

pilots see the same ordering of events. Both pilots

may perceive an incorrect order (e.g., both might

believe aircraft 2 took off first if the messages from

Federate A are delayed), but the result of this error

is likely to be less severe than having both pilots

attack the same aircraft,

● time stamp order (TSO). Messages utilizing this
service will be delivered to federates in time stamp
order. Further, the RTI also ensures that no
message is delivered to a federate “in its past,” i.e.,
no TSO message is delivered that contains a time
stamp less than the federate’s current time. A
conservative synchronization protocol is used to
implement this service. All federates receiving
messages for a common set of events will receive
those messages in the same order, i.e., a total
ordering of events is provided. The RTI provides a
consistent tie breaking mechanism so messages
containing identical time stamps will be deliveuxl
to different federates in the same order. Further, the
tie-breaking mechanism is deterministic, meaning
repeated executions of the federation will yield the
same relative ordering of these events if the same
initial conditions and inputs are used, and all
messages are transmitted using time stamp
ordering.

The relationship between causal and time stamp order is
described in greater detail in [Fuji96]. The above
orderings yield, in turn, successively stronger
guarantees concerning message ordering, at the cost of
increased latency, communication bandwidth, and in the
case of time stamp ordering, constraints on scheduling
events. Each federate may intermix different message
ordering services for different types of information
within a single federation execution. For example,
periodic position updates may utilize a best effort,
receive order category of service. These messages may
be intermixed with messages for ordnance detonation
events utilizing reliable, time stamp ordered delivery.

5.2 Object Management Services

The object management services include primitives to
schedule and retract events, and primitives to receive
messages. For example, Update Attribute Values
and Send Interaction schedule events. The sender
assigns a time stamp to the event to indicate when it is
to occur, and specifies the category of transportation
service (reliability and message ordering) that is to be
used. The RTI delivers messages to the federate by
invoking services that must be provided by the federate.
Specifically, the RTI invokes the federate’s Reflect

63

pplv
高亮

pplv
高亮

pplv
高亮

Attribute Values and Receive Interaction
services to deliver messages denoting state changes and
interactions.

Event retraction refers to the ability of a federate to

retract or unscheduled a previously scheduled event.
This is a common discrete-event simulation primitive
often used to model interrupts and other preemptive
behaviors. As discussed later, event retraction is also
utilized by optimistic federates to implement anti-
messages. The Update Attribute Values and
Send Interaction services return an event handle that
is used to specify the event that is to be retracted.

If the RTI at the destination federate receives a retraction

request for an event that is not buffered in the RTI (e.g.,

because the corresponding message has already been

forwarded to the federate), the retraction request is

forwarded to the federate.

5.3 Lookahead

The time stamp order service requires specification of

lookahead. Here, lookahead is defined as the minimum

distance into the future that a TSO event will be

scheduled. A lookahead value is associated with each

federate. If the federate’s lookahead is L, all TSO

events must have time stamp of at least the federate’s

current time plus L.

Lookahead can change dynamically during the
execution. However, lookahead cannot instantaneously
be reduced. At any instant, a lookahead of L indicates
to the RTI that the federate will not generate any event
(using time stamp ordering) with time stamp less than
C+L, where C is the federate’s current time. If the
Iookahead is reduced by K units of time, the federate
must advance K units before this changed lookahead can
take effect, so no events with time stamp less than
C+L are produced.

A federate’s lookahead must be strictly greater than
zero. This is necessary because if the RTI has advanced
the federate’s logical time to T, then (in most cases) it
guarantees that all TSO messages with time stamp less
than or equal to T have been delivered to the federate.
This would be impossible to guarantee if lookahead
were zero because a federate A at logical time T could
schedule an event with time stamp T that is received by
another federate B, which in turn schedules a second
event also with time stamp T that is received by A,
violating the guarantee that the RTI had delivered all
TSO messages with time stamp T or less. The RTI
will always use a small, nominal value for lookahead to
circumvent situations such as this.

Lookahead restrictions must be applied to retracting
previously scheduled events utilizing the time stamp
ordered message delivery service if it is important that

messages for retracted events never be passed on to
other federates. Specifically, if the current time of a
federate is T, and its lookahead is L, then the federate
can only retract events containing time stamps greater
than T+L. Messages for events containing a smaller
time stamp may have already been passed to other
federates.

It is possible that a message for a retracted event may
be lost in the network, especially if best effort delivery
is used. In this case, if the retract request was
successfully delivered, the message for the retracted
event will never appear, yet the retract request would
still be passed to the receiving federate. Federates must
be designed to allow for situations such as this. The
RTI does guarantee that if a retraction request is
forwarded to a federate, the retracted message will not be
later delivered to the federate.

5.4 Time Advance Services

The time advance primitives serve several purposes.
First, it provides a protocol for the federate and RTI to
jointly control the advancement of logical time. The
RTI can only advance the federate’s logical time to T
when it can guarantee that all TSO messages with time
stamp less than or equal to T have been delivered to the
federate. At the same time, the fkderate must delay
processing any local event until logical time has
advanced to the time of that event, or else it is possible
it will receive a TSO message in its past.

The time management primitives also control the
delivery of messages to the federate. TSO messages
will not be delivered until the receiving federate has
requested a time advance up to at least the time stamp
of the message. In addition, the time management
primitives provide information to the RTI that is used
to synchronize the execution, as discussed below.

Two services for advancing logical time are defined:

Time Advance Request and Next Event

Request. Here, we assume these are invoked to
request that all eligible messages are delivered to the
federate. A provision is also provided to only deliver
one message at a time. Time Advance Request is

intended to be used by time-stepped federates, and Next
Event Request by event-driven federates. Each
invocation of either primitive eventually results in the
RTI calling Time Advance Grant to indicate that

logical time has been advanced, and all TSO messages
with time stamp less than or equal to the grant have
been delivered.

Time Advance Request with parameter t requests
an advance of the federate’s logical time to t. When
used in a time-stepped simulation, t will usually

64

pplv
高亮

pplv
高亮

pplv
高亮

pplv
高亮

indicate the time of the next time step. Invocation of
this service implies that the following messages m
eligible for delivery to the federate: (i) all incoming
receive ordered messages, and (ii) all messages using
other ordering services with time stamp less than or

equal to t. The federate may simply note the occurrence
of these events for later processing, or immediately
simulate actions resulting from the occurrence of the
events. When the RTI can guarantee that it has passed
all TSO messages to the federate with time stamp less
than or equal to t, logical time is advanced to t, and the
RTI calls the federate’s Time Advance Grant
primitive. At this point, a time-stepped federate may
proceed to simulate the next time step.

Next Event Request with time parameter t requests
an advance of logical time to t, or the time stamp of the

next TSO message from the RTI, whichever is smaller.
When used in an event driven federate, t will usually
indicate the time stamp of the next local event within
the federate. After the primitive is invoked, the federate
will either (i) deliver the next TSO message (and all
other TSO messages containing exactly the same time
stamp) if that message has a time stamp of t or less,
and advance logical time to the time of that message, or
(ii) not deliver any TSO messages and advance logical
time to t. In either case, a Time Advance Grant is
issued to indicate completion of the request. Other non-
TSO messages may also be delivered as a result of
invoking this primitive. If no TSO messages are
delivered as a result of this request, this indicates to the
federate that it may process its local event with time
stamp t because no externally generated TSO messages
with time stamp less than or equal to t are forthcoming.

In an as-fast-as-possible execution if a federate invokes
Time Advance Request with parameter t, it
unconditionally guarantees that it will not generate a
TSO message at any time in the future with time stamp
less than t plus that federate’s lookahead. By invoking
Next Event Request with parameter t, the federate
is making a conditional guarantee that if it does not
receive any additional TSO messages in the future with
time stamp less than t, the federate will not later
generate any TSO messages with time stamp less than t
plus the federates lookahead. This information is not
unlike that used in the framework described in [Jha94].

It is noteworthy that as defined above, Time Advance
Request, Next Event Request, and Time
Advance Grant only pertain to the advancement of
logical time. Wallclock time advances independent to

the federate’s actions (of course!). The Time Advance
Grant call (or any action that advances logical time)
will only be made after the RTI can guarantee no future
messages will arrive with time stamp less than or equal
to the federate’s]new logical time. The time required to

make this advance depends on the performance of the
synchronization protocol.

6. Synchronization Protocol

A conservative synchronization protocol implements

the time stamp order message delivery service, and is
used to advance logical time. The principal task of the
protocol is to determine a value called LBTS for each
federate, defined as a lower bound on the time stamp of
future TSO messages that it will receive from other
federates. Any TSO message with time stamp less than
LBTS is eligible for delivery to the federate. The
logical time of the federate cannot be advanced beyond
LBTS. The specific synchronization protocol that is
used is not visible to the federate to facilitate later
inclusion of new protocols. Simulations that =
dependent on the particular protocol that is used are
considered non-HLA-compliant.

It is instructive to outline one possible implementation
of the synchronization protocol. The following
describes an implementation that is a variation of the
well-known Chandy/Misra/Bry ant “null message”
algorithm. It is assumed that communications ate
reliable, and messages sent from one processor to
another are delivered in the order that they were sent.
This is important to prevent null messages from
“passing” messages with smaller time stamps.

Federates are not constrained to send messages in time
stamp order. Thus, the time stamp of incoming
messages do not provide useful information that can be
used by the synchronization protocol. Instead, null
messages must be relied upon to carry all
synchronization information.

LBTS for a federate F is computed as the minimum

(current_timei + lookahead,) computed over all other

federates that send TSO messages to F. In an as-fast-as-

possible execution, “current time” is identical to logical

time, so LBTS can be maintained if each federate sends

a null message each time it advances in logical time.

However, in a real-time execution, current time

advances with scaled wallclock time if logical time

remains larger than scaled wallclock time. Further, DIS

federates may not utilize logical time. Thus, it is not

feasible to send a null message with each current time

advance. This problem can be solved by observing that

each fderate can determine a lower bound on scaled

wallclock time in each other federate provided the

difference in wallclock values is bounded.

The synchronization protocol consists of two
components: a sender and a receiver component. They
operate as follows:

65

pplv
高亮

pplv
高亮

pplv
高亮

1.

2.

3.

7.

After each (local) logical time advance, the sender
component transmits a null message to each
destination to which it sends TSO messages with
time stamp equal to the federate’s current logical
time, plus a lookahead value. This time stamp
indicates a lower bound on the time stamp of any
TSO message the federate will send in the future.
The RTI for each federate maintains a local bound
for messages received from each source i called
LB[i]. Upon receiving a null message for source i,

the receiving RTI sets LB [i] equal to the time

stamp of the null message. If this causes LBTS to
change (increase; LBTS can never decrease), LBTS
is also modified. This may, in turn, cause an
increase in logical time, resulting in additional null
messages.
In a real-time federation execution, each RTI also
determines a lower bound on the wallclock time of
neighboring federates (federates that send it
messages) provided skew between the wallclock
time of different simulations is bounded. This,
along with lookahead information, enables the RTI
to determine a lower bound on the time stamp of
future TSO messages sent from other federates
(even DIS federates) and can be used to set LB[i].
In general, LB [i] may be defined as the minimum
of(1) the predicted real-time clock of simulation i

plus its lookahead, and (2) the time stamp of the
last null message received from simulation i.

Optimistic Time Management Services

The HLA-TM services described next are intended to
enable optimistic federates to utilize HLA-TM services
while still enjoying the advantages afforded by
optimistic execution. These services do not require all

federates to support a rollback and recove~ capability,

Indeed, it is envisioned that federations may include
both optimistic and conservative federates within a
single execution. Conservative federates not needing or
desiring to utilize optimistic processing techniques may
completely ignore the optimistic time management
services with no ill effects.

An important goal of the optimistic time management
services is to enable optimistic messages to be delivered
to other optimistic federates (but not conservative
federates). Thus, simple solutions such as requiring
that the optimistic simulation only send messages that
it can guarantee will not be later canceled are

undesirable, because they do not fully exploit the

potential offered by optimistic execution.

Several modest additions to the above services are used

to support optimistic execution, as described below.

These are collectively referred to as optimistic time

management services. The discussion that follows only
pertains to TSO messages.
1. Simulations may receive TSO messages before the

RTI can guarantee that no smaller time stamped
messages will be later received, i.e., before the RTI
can guarantee time stamp ordered delivery.

2. An RTI primitive is provided for the fkderate to
indicate to the RTI its logical time value, as
discussed below.

3. The LBTS value is made available to the
optimistic federate.

To illustrate how these services can be used by an
optimistic simulation, the following outlines how a
Time Warp [Jeff85] based simulation (TW) could be
included in an HLA federation:
●

●

●

●

●

●

The TW simulation uses the optimistic event
facility to receive, and optimistically process
events.
Optimistically generated messages are transmitted
through the RTI to other federates, the same as
ordinary, non-optimistic messages. The RTI does
not distinguish between optimistic and
conservative events.
The event retraction primitive provided by the RTI
is used to cancel optimistic messages that later
prove to be incorrect.
If the canceled event has not been delivered by the
RTI to the receiving simulation, annihilation
happens within the RTI. If the message has
already been delivered to the receiving simulation,
the retraction request is forwarded to the simulation
which must perform the cancellation itself,
typically by performing a rollback in the receiving
federate, possibly generating additional cancellation
(retraction) requests.
The RTI’ S conservative synchronization
mechanism is used to prevent conservative federates
from receiving optimistic messages. Specifically,
the logical time of an optimistic federate is set
equal to the GVT of the federate. Any event with
time stamp less than GVT is guaranteed not to be
prone to future rollbacks, and since events must be
generated at least L time units into the future.
where L is the lookahead, any event with time
stamp less than GVT+L is guaranteed not to be
subject to any future rollback. In effect, the GVT
acts as the “local clock” for the TW federate from
the perspective of the RTI. Lookahead is only used
in the optimistic federate to enhance the
performance of the GVT computation.
Within the Time Warp simulation, GVT is
computed as the minimum of the local GVT, and
LBTS, provided by the RTI. This is because
LBTS indicates a lower bound on the time stamp
of any future TSO message, so it therefore provides

66

pplv
高亮

pplv
高亮

a lower bound on the time stamp of any future

rollback caulsed by receiving a message (or anti-

message) in the federate’s past.

A key property of this approach is it enables Time
Warp federates to “plug into” the RTI, without any
other federate (even optimistic ones) realizing there is
an optimistic federate in the execution. The RTI allows
for optimistic exchange of messages among optimistic
federates, and at the same time, guarantees that
optimistic messages are not released to conservative
federates, all transparent to the federates participating in
the execution. Further, no special GVT messages must
be exchanged between optimistic federates, as the RTI
automatically provides the information necessary for
each optimistic federate to compute GVT locally.
Finally, another attractive feature of this approach is it
requires only modest modification of the “conservative”
time management services already specified in the RTI.

One limitation c)f the above approach is it assumes a
receive time stamp based definition of GVT. Some
memory management protocols (e.g., Cancelback,
message sendhack) require a somewhat different
definition of GVT. Some modifications to the above
mechanism are required to support this alternate
definition of GVT for optimistic federates using such
techniques.

8. Conclusions

Thus far, research in the DIS and parallel simulation
communities have proceeded largely independent of one
another. Indeed, because of their different goals and
requirements, there has been little reason for techniques
in one domain to find application in the other.
However, as DIS expands to encompass simulations
requiring causality and event ordering, new
opportunities arise for research in the parallel
simulation community to have a large impact in future
distributed simulation systems. The DoD High Level
Architecture effort provides a framework into which
research from tbe parallel simulation community can
readily impact real-world systems.

9. Acknowledgments

The time management approach used in the HLA is the
result of the collective efforts of many individuals,
including Judith Dahmann, the technical lead of the
HLA effort, and the members of the HLA time
management working group. Individuals contributing
to this design include David Bruce, Chris Carothers,
Danny Cutts, Charles Duncan, Jerry Dungee, Jean
Graffagnini, Richard Henderson, Jack Kramer, Michael
Langen, Margaret Loper, Larry Mellon, Henry Ng,
Ernie Page, Kiran Panesar, Les Parish. Dana Patterson,
E. L. Perry, Jerry Reaper, Paul Reynolds Jr., Sudhir

Srinivasan, Jeff Steinman, Bill Stevens, and Darrin
West. Sudhir Srinivasan suggested inclusion of causal

ordering in the HLA. Richard Fujimoto’s work as chair
of the HLA Time Management group was funded by the

Defense Modeling and Simulation Office (DMSO).

10, References

[Birm91] K. Birman, A. Schiper and P. Stephenson,
Lightweight Causal and Atomic Group Multicast,
ACM Transactions on Computer Systems, 9(3): 272-

314, August 1991.

[Chan79] K. M, Chandy and J. Misra, “Distributed
Simulation: A Case Study in Design and Verification
of Distributed Programs,” IEEE Transactions on
Software Engineering, SE-5(5), pp. 440-452.

[DIS94] “The DIS Vision, A Map to the Future of
Distributed Simulation” Institute for Simulation &
Training, Orlando FL, May 1994.

[DMS096] Defense Modeling and Simulation Office,
“HLA Time Management: Design Document,” 1996.

[Fuji95] R. M. Fujimoto, “Parallel and Distributed
Simulation,” In 1995 Winter Simulation Conference
Proceedings, pp. 118-125, December 1995.

[Fuji96] R. M. Fujimoto and R. M. Weatherly, “HLA
Time Management and DIS,” In 14th Workshop on
Standards and Interoperability of Distributed
Simulations, March 1996.

[Jeff85] D. R. Jefferson, Virtual Time, ACM

Transactions on Programming Languages and Systems,

7(3): 404-425, July 1985.

[Jha94] V. Jha and R. Bagrodia, “A Unified Framework
for Conservative and Optimistic Distributed
Simulation,” 1994 Workshop on Parallel and
Distributed Simulation, pp. 12-19, July 1994.

[Lamp78] L. Lamport, Time, Clocks, and the Ordering
of Events in a Distributed System, Communications of

the ACM, 21(7): 558-565, July 1978.

[Wils94] A. L. Wilson and R. M. Weatherly, ‘The
Aggregate Level Simulation Protocol: An Evolving
System,” In 1994 Winter Simulation Conference
Proceedings, pp. 781-787, December 1994.

67

