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Abstract—The transferability of adversarial examples is vital1

for black-box attacks, as it enables the adversary to deceive the2

target model without knowing its internals. Despite numerous3

methods focusing on transferability, they still struggle with trans-4

ferring across models with distinct architectural components (e.g.,5

CNNs and ViTs). In this work, we argue that the limited adver-6

sarial perturbation diversity leads to overfitting of the surrogate7

model, which acts as a key factor in reducing transferability. To8

this end, we propose a Masked Adversarial Perturbation (MAP)9

method to boost adversarial transferability across various archi-10

tectures from a novel perspective of diversifying perturbation.11

Specifically, MAP randomly masks perturbation patches during12

iterations and compels the remaining ones to retain the attack13

effect, which diversifies perturbations to mitigate their overfitting14

to the surrogate model. Naturally, MAP spreads perturbation15

over local patches to alleviate their co-adaptation and prevent16

perturbations from overly relying on specific patterns. Conse-17

quently, it can deceive convolution operation and self-attention18

mechanism indiscriminately by attacking their basic input units,19

i.e., a single patch, showing superior transferability over previous20

methods. Extensive experiments illustrate that MAP consistently21

and significantly boosts diverse black-box attacks to achieve state-22

of-the-art performance.23

Index Terms—Adversarial examples, Black-box attack, Adver-24

sarial transferability, Masked Perturbation.25

I. INTRODUCTION26

DEEP neural networks (DNNs) [1–3] are highly vul-27

nerable to adversarial examples (AEs), where small,28

well-designed perturbations can cause their incorrect predic-29

tions [4, 5]. This raises concerns about their reliability in real-30

world applications and highlights the need for effective attacks31

to expose these vulnerabilities. More importantly, AEs show32

some transferability, i.e., AEs crafted for a surrogate model33

remain adversarial for others [6]. Such transferability enables34

black-box attacks for real-world applications without accessing35

the target model, thus posing a greater security issue. However,36

existing attacks [7, 8] demonstrate superior white-box attack37

performance but relatively poor transferability.38

Recently, numerous black-box methods have emerged39

to boost adversarial transferability, including gradient-based40

methods [5, 8, 9, 12], input transformations [10, 13–15],41

advanced objective functions [16, 17], model-related [18, 19]42

and ensemble-based attacks [20, 21]. Despite their progress,43

there is still a large performance gap compared to white-44

box attacks [4, 7, 22] with access to the knowledge of the45

target model. We attribute this to insufficient perturbation46

diversity, which can lead to their overfitting to the surrogate47

model and limit their transferability. For example, while attack48
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Fig. 1. Comparison of attack performance on different model architectures. (a)
Previous attacks (e.g., MI-FGSM [9] and DIM [10]) suffer from overfitting to
the surrogate model. With iteration, the performance on the surrogate model,
ResNet-18 [2], improves significantly, while decreases on the target model
(e.g., ViT-B/16 [11]). (b) They also struggle with huge architecture differences,
where adversarial examples crafted for CNNs often exhibit poor transferability
to ViTs. By contrast, the proposed method, MAP, can effectively alleviate
overfitting and markedly boost the attack success rate.

performance improves on the surrogate model, it declines on 49

the target models as in Fig. 1(a). Especially, they also fail in 50

transferring across models with huge architecture differences 51

(e.g., CNNs and ViTs) as in Fig. 1(b). To address the above 52

issues, we propose enhancing black-box attack transferability 53

with more diverse adversarial perturbations. Although previous 54

attacks [6, 10, 14, 15] have employed input transformations 55

to diversify the input to mitigate overfitting, they still fail 56

to reach the full potential of input diversity as they perform 57

transformations at the input level rather than perturbation. 58

Therefore, we introduce a novel strategy to explicitly 59

encourage perturbation diversity. Specifically, we propose 60

Masked Adversarial Perturbation (MAP), a plugin for black- 61

box attacks (Fig. 2(a)), to boost adversarial transferability 62

across architectures. While masking techniques have been 63

adopted in some works [6, 23], where they improve trans- 64

ferability by masking AEs, the introduced masks, especially 65

hard masks [24], directly modify the image content, bringing 66

serious statistical shifts (between training and testing) and 67

unexpected gradient feedback (during training), leading to 68

their lackluster performance. By contrast, we take a novel 69

perspective of masking adversarial perturbation instead of 70

masking AEs, as illustrated in Fig. 2(b). Despite being a 71

seemingly minor change, we ensure a more consistent and 72

stable training and testing process, mitigating the above is- 73

sues. Specifically, MAP masks out a random selection of 74

perturbation patches and constrains the remaining patches to 75

maintain the attack effectiveness. On the one hand, this acts 76

like Dropout [25] on perturbation patches, which reduces co- 77

adaptation between them to prevent perturbations from overly 78
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Fig. 2. Mask-based adversarial attack methods. (a) Our MAP explicitly
diversifies adversarial perturbations by randomly masking perturbations during
iterations to mitigate overfitting and boost transferability. (b) Comparison of
previous masked adversarial attacks and our proposed method, highlighting
the differences in masking adversarial examples versus perturbations.

relying on specific patterns. On the other hand, over training79

iterations, different perturbation patches are masked out to80

generate diverse perturbation patterns, alleviating overfitting81

between the surrogate model and perturbations. Naturally,82

MAP spreads out perturbations over local patches, and pro-83

motes the attack intensity of each patch, which fools convo-84

lution and self-attention mechanism by attacking their basic85

input units, i.e., a single patch, thus showing better black-box86

attack transferability over prior methods.87

Further, vanilla mask generation methods [6, 24] use hard88

masks with a fixed mask ratio, leading to two issues. One is89

hard masks lead to statistical shifts [26] and zero gradient [27]90

of the perturbation, hindering its effective learning. Another91

is that using fixed mask ratios poses a trade-off dilemma: a92

lower one improves optimization stability but fail to introduce93

sufficient perturbation diversity, while a higher one reduces94

overfitting but destabilizes training. To this end, we design95

a novel mask generation method that combines Soft Mask96

Generation (SMG) and Curriculum Mask Learning (CML).97

SMG generates soft, continuous-valued masks that preserve98

partial responses in masked regions, mitigating gradient van-99

ishing. Meanwhile, CML progressively increases the mask100

ratio from a low initial value during training, which enhances101

diversity and ensures stable perturbation learning by gradually102

increasing task complexity. In the MAP, SMG and CML work103

jointly to further enhance black-box transferability.104

To our knowledge, MAP is the first method to exploit105

masked adversarial perturbation to boost adversarial transfer-106

ability. Due to its simple and universal concept, MAP can be107

straightforwardly integrated into various black-box attacks and108

consistently improve their performance, as shown in Fig. 1. In109

summary, the main contributions are summarized as follows:110

1) We propose to mask out a random selection of perturba-111

tion patches to increase perturbation diversity for better112

adversarial transferability, which sheds new light on how113

to craft more transferable adversarial examples.114

2) We design a novel mask generation method that intro-115

duces soft masks with progressively increasing mask116

ratios, alleviating statistical shift and zero gradient issues117

caused by hard masks with a fixed mask ratio.118

3) Extensive experiments on the ImageNet dataset illustrate119

that our method is generally compatible with the state-120

of-the-art black-box attacks and consistently boosts their121

transferability to both CNNs and ViTs.122

II. RELATED WORKS 123

In this section, we provide a concise review of adversarial 124

attacks and adversarial defenses. 125

A. Adversarial Attacks 126

Since Szegedy et al. [28] identify the existence of adver- 127

sarial examples, numerous black-box attacks [29–32] have 128

emerged to discover the vulnerability of DNNs. Existing meth- 129

ods can be classified into query-based [31–33] and transfer- 130

based attacks [14–16, 34]. Among them, the latter does not 131

require any information about the target model, making it 132

more practical for real-world scenes. Transfer-based black-box 133

attack methods mainly include: 134

Gradient-based methods. MI-FGSM [9] incorporate mo- 135

mentum into iterations to stabilize update directions and 136

escape from poor local optima. Variance tuning [12] uses 137

gradient variance of previous iteration to tune the current 138

gradient in MI-FGSM [9] to boost transferability. Differently, 139

GRA [5] proposes two gradient relevance frameworks to 140

exploit the information in the neighborhood to adaptively 141

correct the update direction. 142

Input transformation-based attacks. DIM [10] applies 143

random resizing and padding to inputs to alleviate overfitting 144

to white-box models. TIM [22] adopts an ensemble of trans- 145

lated inputs to avoid overfitting. Spectrum Simulation Attack 146

(SSA) [13] apply a spectrum transformation to diversify input 147

image, thus generating more transferable adversarial examples. 148

Block Shuffle and Rotation (BSR) [14] splits the image into 149

multiple blocks, then randomly shuffles and rotates these 150

blocks to craft a set of diverse images for gradient calculation. 151

Structure Invariant Attack (SIA) [15] applies random image 152

transformations to each image block to generate a variety of 153

images for gradient calculation. Wang et al. [35] propose to 154

select and constrain adversarial optimization in a subset of 155

frequency components that are more critical to model predic- 156

tion. MaskBlock [23] repeatedly masks a patch of adversarial 157

images to generate multiple masked images for collaboratively 158

crafting more transferable adversarial examples. Learnable 159

Patch-wise Mask (LPM) [6] proposes to drop out selected 160

patches of adversarial images to prune the model-specific re- 161

gions during perturbation generation, thus avoiding overfitting 162

the surrogate model. Unlike the above methods [6, 35], MAP 163

introduces a random perturbation masking strategy, eliminat- 164

ing the need to optimize specific frequency components or 165

image masks based on surrogate models. This randomness ef- 166

fectively avoids overfitting of perturbations to specific models 167

or image regions. In particular, MAP significantly alleviates 168

statistical shifts and unexpected gradient feedback by masking 169

perturbations rather than images, further improving cross- 170

model transferability and versatility. 171

Advanced objective functions. While many attacks use 172

cross-entropy (CE) loss as the cost function, some works 173

find that regularization terms are conducive to transferability. 174

For example, Transferable Adversarial Perturbation (TAP) [16] 175

introduces two regularization terms to alleviate gradient van- 176

ishing and remove the high-frequency perturbations to promote 177
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Fig. 3. Black-box attack with the proposed Masked Adversarial Perturbation (MAP). During iterations, we generate diverse soft masks with different mask
ratios according to iterations t, which masks several patches in the adversarial perturbation to reduce its complexity and improve its diversity.

transferability. Random Patch Attack (RPA) [17] obtains crit-178

ical features of objects by random patch transformations, thus179

adjusting the weight of feature loss to improve transferability.180

In contrast, we improve transferability by masking adversarial181

perturbations to explicitly increase their diversity.182

Model-related attacks. Some attacks adjust the surrogate183

model’s architecture to promote transferability. BPA [18] re-184

covers the truncated gradient of non-linear layers to boost185

transferability. Self-Attention Patches Restructure (SAPR) [29]186

randomly permutes input tokens at each attention layer in187

ViTs to improve transferability. Zhang et al. [36] recomposes188

the ViTs to add Virtual Dense Connections (VDC) to back-189

propagate deeper gradients, enhancing AEs’ transferability.190

Ensemble-based attacks. Liu et al. [20] found that aver-191

aging the predictions of multiple models to get an ensemble192

loss resulted in more transferable samples. Recently, Chen et193

al. [21] propose adaptively adjusting the weight of the outputs194

from each model to further improve transferability. Further,195

SMER [30] adopts reinforcement learning to reweigh ensem-196

ble models to optimize adversarial transferability. Compared197

with other methods, ensemble-based attacks show promising198

performance. However, finding multiple proper models for199

same task is tricky, and training on multiple models is time and200

resource-intensive, making them prohibitive in some cases.201

As failing to encourage perturbation diversity, existing202

methods still struggle with transferring across models with203

huge differences, even for input transformation-based attacks204

(e.g., SIA [15] and BSR [14]). In this work, we propose a novel205

plug-in method that boosts black-box attacks by explicitly di-206

versifying perturbation, achieving highly transferable attacks.207

B. Adversarial Defenses208

Adversarial defenses have been extensively studied to209

mitigate the risks posed by adversarial attacks. Adversarial210

Training (AT) [37] is one of the most effective methods211

by injecting AEs into training to enhance model robustness.212

Another prominent way involves preprocessing inputs before213

feeding them into the target model. For instance, High-level214

representation Guided Denoiser (HGD) [38], integrates multi-215

ple networks (e.g., Inception-ResNetV2 [3], InceptionV3 [1]),216

each with a denoising component based on U-Net to eliminate 217

the adversarial perturbation, to make predictions. Neural Rep- 218

resentation Purifier (NRP) [39] trains a neural representation 219

purifier by a self-supervised adversarial training mechanism 220

to purify the input sample. DiffPure [40] leverages diffusion 221

models for adversarial purification by diffusing adversarial 222

examples with noise and recovering clean images through a 223

reverse generative process. R&P [41] uses random resizing and 224

random padding to defend adversarial threat. Aside from the 225

above methods, certified defenses provide provable robustness 226

guarantees within a given radius. For example, RS [42] trains 227

a robust ImageNet classifier (i.e., ResNet-50 [2]) with a tight 228

robustness guarantee to defense adversarial examples. 229

III. METHODOLOGY 230

In this section, we first introduce the preliminaries. Then we 231

detail our MAP with two proposed mask strategies. Finally, 232

we provide theoretical analysis about different methods. The 233

black-box attack process with MAP is illustrated in Fig. 3. 234

A. Preliminaries 235

Given a benign image x ∈ RH×W×3 with its label y, let 236

fφ be a classification model. Adversarial attack aims to find 237

a small perturbation δ to generate the adversarial example 238

xadv = x+δ, which is indistinguishable from x (i.e., ‖δ‖p ≤ 239

ε) but can fool the network, i.e., fφ
(
xadv

)
6= y. Here ε is 240

the maximum perturbation, and ‖·‖p is the `p norm distance. 241

We use `∞ to align with previous methods [9, 10, 15]. The 242

generation of the adversarial examples can be formalized as: 243

xadv = arg max
‖δ‖∞≤ε

J (fφ (x+ δ) ,y) , (1)

where J (·, ·) is the loss function of fφ (e.g., cross-entropy 244

loss). However, under the black-box setting, it is impractical 245

to directly optimize Eq. 1 via the target model fφ as it 246

is inaccessible. To address this issue, a common practice 247

is to craft adversarial examples via an accessible surrogate 248

model fθ and rely on the transferability to deceive the target 249

model. Taking I-FGSM [7] as an example, it generates small 250
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perturbations δt+1 in the direction of the gradient sign to craft251

an adversarial example at iteration t+ 1:252

δt+1 = Clip (δt + α · sign (∇δtJ (fθ (x+ δt) ,y)) ,−ε,+ε) ,
(2)

where Clip (·) restricts perturbation into the range [−ε, ε], α253

denotes step size.254

B. Masked Adversarial Perturbation255

Due to limited perturbation diversity, existing transfer-256

based attacks [10, 43] tend to overfit the surrogate model257

and exhibit poor transferability. To this end, we propose a258

Masked Adversarial Perturbation (MAP) method to explicitly259

diversify perturbations. MAP randomly masks out perturbation260

patches at each iteration to construct more diverse perturbation261

patterns, thus preventing it from overfitting to a specific model.262

From another perspective, MAP spreads perturbations across263

various local patches, alleviating excessive co-adapting be-264

tween patches to prevent the adversarial nature of perturbations265

from overly relying on specific patterns.266

Specifically, MAP withholds local perturbations by ran-267

domly masking out patches of the entire adversarial pertur-268

bation at each iteration. For that purpose, a patch mask M is269

randomly sampled from a uniform distribution:270

Mmb+1:(m+1)b
nb+1:(n+1)b

= [v > r] with v ∈ U (0, 1) , (3)

where b denotes the patch size, m ∈ [0, H/b− 1] and271

n ∈ [0,W/b− 1] index the patch, [·] denotes the Iverson272

bracket, r is the mask ratio, U is the uniform distribution. The273

masked adversarial perturbation δM is obtained by element-274

wise multiplication between the mask and perturbation:275

δM =M� δ. (4)

Thus, MAP replaces Eq. 1 with:276

xadv = arg max
‖δ‖∞≤ε

J
(
fθ
(
x+ δM

)
,y
)
. (5)

The masked adversarial attack only utilizes limited information277

of the unmasked regions, as in Fig. 3. In this way, MAP278

spreads perturbation over local patches to increase their attack279

intensity. Meanwhile, as MAP masks various patches during280

training, it promotes perturbation diversity explicitly to prevent281

it from overfitting the surrogate model.282

C. Soft Mask Generation283

Hard masks generated by Eq. 3 will lead to statistical284

shifts [26], where the mean and variance of the perturbation285

distributions differs between the training and testing phases,286

potentially leading to suboptimal attack results. In addition,287

hard masks will also cause issues with zero gradients and288

patch death [27], which increases the risk of overreliance on289

specific patches. To this end, we further propose a Soft Mask290

Generation (SMG) strategy to mitigate the above issues by291

using smoother transitions on the mask boundaries.292

To generate soft mask Msoft, we first generate a low-293

resolution binary matrix B ∈ RH
b ×

W
b :294

Bm,n = [v > r] with v ∈ U (0, 1) , (6)

(a) Hard mask

(b) Soft mask (d) Mask value of green line(c) Mask value of red line

M
as

k
 v

al
u

e

Pixel Index w Pixel Index w

Fig. 4. Comparisons between hard and soft masks. We visualize the mask
values of the red and green lines in both masks respectively.

and then use bilinear interpolation to upsample B to the same 295

size as adversarial perturbation δ to obtain soft mask: 296

Msoft
h,w =

H
b∑
m

W
b∑
n

Bm,n ·max(0, 1− |h/b−m|)

·max(0, 1− |w/b− n|),

(7)

where h ∈ [0, . . . ,H − 1], w ∈ [0, . . . ,W − 1]. As in Fig. 4, 297

hard masks have obvious step phenomena at the junction of 298

the masked and unmasked regions, whereas soft masks allow 299

for a smoother transition. That is, soft masks preserve a certain 300

degree of response in the masked regions, which relieves 301

zero gradient and statistical shift issues, helping to boost the 302

generalization of the perturbation and training stability. 303

D. Curriculum Mask Learning 304

By randomly masking adversarial perturbations, MAP dra- 305

matically improves attack transferability. However, finding a 306

suitable mask ratio is non-trivial. A lower mask ratio facil- 307

itates early convergence of perturbation learning, but limits 308

its generalization to unseen models. By contrast, a higher 309

one reduces overfitting risk, but makes it harder to capture 310

basic perturbation patterns, leading to lower learning efficiency 311

and unstable updates. To this end, we propose a Curriculum 312

Mask Learning (CML) strategy that gradually increases the 313

mask ratio during training. This balances diversity and stability 314

to guide perturbations from simple patterns toward more 315

generalizable ones, thereby enhancing transferability. 316

Specifically, instead of manually specifying a fixed value to 317

mask ratio r, we propose to dynamically set r based on the 318

number of attack iterations. The intuition behind the dynamic 319

schedule is to start with an easier learning task (low mask 320

ratio) in early iterations to stabilize optimization and accelerate 321

convergence. As training progresses, the increasing mask ratio 322

introduces greater task complexity to create more general per- 323

turbation patterns that improve transferability and adversarial 324

robustness by reducing reliance on specific patterns. We list 325

some instances of dynamic schedules: 326

r (t) = rs +
re − rs
T

× t,

r (t) = rs + (re − rs)×
(

2t/T − 1
)
,

r (t) = rs + (re − rs)× (t/T )
1.2
,

(8)

where rs and re denote the starting and ending mask ratio, 327

respectively, t is the current iteration and T is the total number 328
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of iterations. Experiments show that all instances are equally329

effective. In this paper, we mainly adopt the first simple linear330

schedule. Fig. 5 illustrates the mask evolution during training,331

where CML generates varying mask patterns across iterations,332

promoting more diverse perturbation inputs.333

Fig. 5. Illustration of the Curriculum Mask Learning strategy.

Our MAP is widely applicable to various existing transfer-334

based black-box attacks. Here we integrate MAP into MI-335

FGSM [9] and summarize the algorithm in Algorithm 1. Fur-336

thermore, MAP introduces negligible overhead during training,337

as its masking step involves only simple tensor operations, and338

it incurs no extra cost during testing, as the generated pertur-339

bations can be directly applied without further processing.340

Algorithm 1 MAP algorithm.
Input: A model fθ with loss function J ; A benign example x

with label y; initial perturbation δ0; step size α; maximum
perturbation ε; iteration number T ; decay factor µ; patch
size b; starting mask ratio rs and ending mask ratio re.

Output: Adversarial example xadv .
1: xadv0 = x+ δ0, g0 = 0
2: for t = 0 to T − 1 do
3: Calculate the mask ratio r (t) = rs + re−rs

T × t based
on Eq. 8 defined by CML

4: Generate soft mask Msoft based on Eq. 7 and r (t)
5: xadvt = x+Msoft � δt
6: Input xadvt to fθ and get the gradient ∇δJ

(
xadvt ,y

)
7: Update the momentum:

gt+1 = µgt +
∇δJ

(
xadvt ,y

)∥∥∇δJ (xadvt ,y
)∥∥

1

(9)

8: Update perturbation δ by applying the gradient sign:

δt+1 = Clip (δt + α · sign (gt+1) ,−ε,+ε) (10)

9: end for
10: xadv = x+ δT
11: return xadv

E. Theoretical Analysis341

Previous methods (e.g., LPM [6]) propose the Masked Ad-342

versarial Examples (MAE) strategy, i.e., xadv = (x+δ)×M,343

leading to significant statistical shifts between training and 344

testing and unexpected gradient feedback during optimization. 345

In contrast, MAP masks adversarial perturbations instead, i.e., 346

xadv = x+(δ×M), aiming to reduce these shifts and stabilize 347

gradient feedback, causing more transferable AEs. To support 348

this claim, we theoretically compare the statistical shift and 349

gradient feedback of both masking strategies. 350

Statistical Shift Analysis. We derive the mean shift ∆E and 351

variance shift ∆D for both methods as follows: 352

∆EMAE = |E[(x+ δ1)×M]− E[x+ δ1]|
= |E [Mx] + E [Mδ1]− E [x]− E [δ1]| ,

∆EMAP = |E[x+ (M× δ2)]− E[x+ δ2]|
= |E [x] + E [Mδ2]− E [x]− E [δ2]| ,

∆DMAE = |D[(x+ δ1)×M]− D[x+ δ1]|

=
∣∣∣E [(Mx+Mδ1)

2
]
− (E [Mx+Mδ1])

2

−E
[
(x+ δ1)

2
]

+ (E [x+ δ1])
2
∣∣∣ ,

∆DMAP = |D[x+ (M× δ2)]− D[x+ δ2]|

=
∣∣∣E [(x+Mδ2)

2
]
− (E [x+Mδ2])

2

−E
[
(x+ δ2)

2
]

+ (E [x+ δ2])
2
∣∣∣ .

(11)
where E [·] and D [·] denotes the expectation and variance func- 353

tion, respectively. In this case, we assume M is independent 354

of x and δ after training, then we have: 355

∆EMAE = |E [M]E [x] + E [M]E [δ1]− E [x]− E [δ1]| ,
∆EMAP = |E [x] + E [M]E [δ2]− E [x]− E [δ2]| ,
∆DMAE =

∣∣E [M2
]
E
[
x2
]

+ 2E
[
M2

]
E [xδ1] + E

[
M2

]
×

E
[
δ1

2
]
− (E [M])

2
(E [x])

2 − 2 (E [M])
2 E [x]E [δ1]

− (E [M])
2

(E [δ1])
2 −

(
E
[
x2
]

+ 2E [xδ1] + E
[
δ21
]

− (E [x])
2 − (E [δ1])

2 − 2E [x]E [δ1]
)∣∣∣ ,

∆DMAP =
∣∣E [x2

]
+ E

[
M2

]
E
[
δ22
]

+ 2E [M]E [δ2x]−(
(E [x])

2
+ (E [M])

2
(E [δ2])

2
+ 2E [x]E [M]E [δ2]

)
−
(
E
[
x2
]

+ 2E [xδ2] + E
[
δ22
]
− (E [x])

2−

2E [x]E [δ2]− (E [δ2])
2
)∣∣∣ .

(12)

Here, we have E [Z] = µz , D [Z] = σ2
z , D (Z) = E

(
Z2
)
− 356

(E [Z])
2. For hard mask, we have M2 = M, and E [M] = 357

1
N

(∑K
i=1 (mi = 1) +

∑N
i=K+1 (mi = 0)

)
= K

N = 1 − r, 358

where we denote 1− r as α. Then, Eq. 12 is re-written as: 359

∆EMAE = |αµx + αµδ1 − µx − µδ1 | = (1− α) |µx + µδ1 | ,
∆EMAP = |µx + αµδ2 − µx − µδ2 | = (1− α) |µδ2 | ,
∆DMAE =

∣∣−α2
(
µ2
x + 2µxµδ1 + µ2

δ1

)
+ α

(
σ2
x + µ2

x+

2E [xδ1] + σ2
δ1 + µ2

δ1

)
−
(
σ2
x + σ2

δ1 + 2E [xδ1]−
2µxµδ1)| ,

∆DMAP =
∣∣−α2µ2

δ2 + α
(
σ2
δ2 + µ2

δ2

)
+ (2α− 2) (E [xδ2]−

µxµδ2)− σ2
δ2

∣∣ .
(13)
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From the above derivations, we obtain:360

1. Mean Shift. It is evident that ∆EMAE > ∆EMAP since361

µx � µδ in general, indicating that MAP exhibits a smaller362

mean shift compared to MAE.363

2. Variance Shift. To compare ∆DMAE and ∆DMAP , we364

proceed in two steps:365

(a) Determine the sign intervals of ∆D. Since ∆D is a366

quadratic function of α, we can get that ∆DMAE ≥ 0367

at [α1, 1], and ∆DMAP ≥ 0 at [1, α2]. According to the368

properties of the function, the values of α1, α2 can be369

calculated as:370

α1 =
σ2
x + µ2

x + 2E [xδ1] + σ2
δ1

+ µ2
δ1

µ2
x + 2µxµδ1 + µ2

δ1

− 1,

α2 =
2 (E [xδ2]− µxµδ2) + σ2

δ2

µ2
δ2

,

(14)

From ImageNet statistics [44], we can obtain the value of µx371

and σx, and µx � µδ . Meanwhile, E [xδ] − µxµδ ≈ 0 as372

|δ − 0| ≤ ε. Hence, we have that α1 ≈ 0.22 and α2 > 1.0.373

That is, when α ∈ [α1, 1] ≈ [0.22, 1], ∆DMAE ≥ 0, and when374

α ∈ [0, 1], ∆DMAP ≤ 0.375

(b) Compare ∆DMAE and ∆DMAP . For simplicity, we376

compare them only at α ∈ [0.22, 1] since other intervals yield377

similar conclusions:378

∆ = ∆DMAE −∆DMAP = −α2
(
µ2
x + 2µxµδ1 + µ2

δ1 + µ2
δ2

)
+ α

(
σ2
x + µ2

x + 2E [xδ1] + µ2
δ1 + σ2

δ1 + µ2
δ2 + σ2

δ2

+2E [xδ2]− 2µxµδ2)−
(
σ2
x + σ2

δ1 + 2E [xδ1]− 2µxµδ1
)

− 2 (E [xδ2]− µxµδ2)− σ2
δ2 ,

≈ −α2µ2
x + α

(
σ2
x + µ2

x + σ2
δ1 + σ2

δ2

)
−
(
σ2
x + σ2

δ1 + σ2
δ2

)
,

(15)
where ∆ ≥ 0 at [α3, 1], and α3 =

σ2
x+µ

2
x+σ

2
δ1

+σ2
δ2

µ2
x

−1 ≈ 0.26.379

That is, when mask ratio r = 1 − α ∈ [0, 0.74], our method380

enjoys smaller variance shift, which is better performance381

as previous methods [6] generally set r ≤ 0.3 to avoid382

unexpected gradient feedback, as discussed below. Particularly,383

our SMG strategy can further reduces the statistical shifts as384

it preserves some responses in the masked regions, and we385

provide the derivation in the Supplementary Material.386

Gradient Stability Analysis. We now analyze how MAP and387

MAE influence gradient feedback during the initial training388

phase. Given that perturbation δ is generally initialized to 0,389

we derive the gradients under both methods:390

∂fθ (x+Mδ)

∂δ
=
∂fθ (x+Mδ)

∂ (x+Mδ)
M δ=0

=
∂fθ (x)

∂x
M, (16)

391

∂fθ ((x+ δ)M)

∂δ
=
∂fθ ((x+ δ)M)

∂ ((x+ δ)M)
M δ=0

=
∂fθ (Mx)

∂ (Mx)
M.

(17)
As observed, our MAP only masks the gradient of the392

perturbation, while MAE directly modify the overall gradient,393

which brings unexpected gradient feedback as the surrogate394

model typically has not encountered masked images.395

Experimental Analysis. Finally, we experimentally verify the396

above derivation. As in Fig. 6(a) and (b), MAP exhibits smaller397

mean and variance changes under different mask ratios, with398

SMG further reducing these changes. In addition, MAE causes 399

large deviations in model output as it directly modify the 400

image content, while MAP does not, as in Fig. 6(c). Output 401

deviation can lead to unexpected behavior of the surrogate 402

model, since the model often has never encountered masked 403

images, causing the model to produce optimization targets and 404

gradient feedbacks that are skewed from what is expected. 405

Hence, when the mask ratio becomes larger, its performance 406

performance drops sharply, as in Fig. 6(d). By contrast, MAP 407

maintains outstanding performance even with higher mask 408

ratios, and SMG can further boost performance, demonstrating 409

the robustness and effectiveness of our method. 410

In summary, our MAP ensures smaller statistical changes 411

and accurate gradient feedback by masking perturbations 412

instead of adversarial examples, improving the stability and 413

transferability of the attack. 414

IV. EXPERIMENTS 415

A. Experimental Settings 416

Datasets. Similar to previous methods [9, 12, 14], we ran- 417

domly sample 1,000 images from the ImageNet validation 418

set [44], where each image is from one category and can be 419

correctly classified by the employed model. 420

Baseline Attacks. Our MAP can be combined with existing 421

transfer-based black-box attacks. To verify its effectiveness, 422

we choose existing state-of-the-art (SOTA) methods, including 423

gradient-based methods, e.g., MI-FGSM [9], GRA [5], and 424

input transformation-based attacks, e.g., SIA [15], L2T [48], 425

and advanced objective-based, e.g., TAP [16], RPA [17], 426

and model-related attacks, e.g., BPA [18], VDC [36] as our 427

baselines. For fairness, all methods, except gradient-based 428

ones, are integrated into MI-FGSM [9]. 429

Models. We choose Convolutional Neural Networks (CNNs), 430

including ResNet-18 (Res-18) [2], ResNet-101 (Res-101) [2], 431

ResNext-50 (ReX-50) [50], DenseNet-121 (DN-121) [51], and 432

Vision Transformers (ViTs), including ViT-B/16 (ViT-B) [11], 433

PiT-B [52], Visformer-S (Vis-S) [53], Swin-Tiny (Swin- 434

T) [54], and CNN-ViT hybrid models, including MaxViT- 435

T [55], MobileViTv2-2.00 [56], and MLP-Mixers, including 436

MLP-Mixer-B/16 [57], and MambaOut-Tiny [58] to evaluate 437

the attack performance. 438

Metrics: We use Attack Success Rate (ASR), which de- 439

notes the misclassification rates of the target model on the 440

adversarial examples, to evaluate attack methods. We also 441

adopt the Mean Attack Success Rate (MASR) to measure 442

the transferability of an attack method across multiple target 443

models (except for the surrogate model). 444

Implementation Details. During training, we use randomly 445

masked perturbations to boost adversarial transferability, while 446

during evaluation we use complete perturbations. By default, 447

we set patch size b = 16, initial mask ratio rs = 0.4 and 448

ending mask ratio re = 0.9 for CNNs as the surrogate model, 449

while rs = 0.3 and re = 0.7 for ViTs as the surrogate model, 450

iteration number T = 40. Regarding other hyper-parameters of 451

the baseline methods, for fair comparison, we strictly follow 452

their original settings. For example, for MI-FGSM [9], the 453

maximum perturbation ε = 16, decay factor µ = 1. 454
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(a) Absolute value of mean shift (c) Output deviation of different models (d) Attack performance using ResNet-18(b) Absolute value of variance shift

Fig. 6. Comparison of different mask methods. In (a) and (b), we list the absolute shift values of the statistics of the three methods at different mask ratios.
In (c), we visualize the prediction deviation of the model for the images before and after masking at the initial phase. In (d), we present the Mean Attack
Success Rate (MASR) of the three methods on the CNN models.

TABLE I
ASR (%) OF VARIOUS TRANSFER-BASED ATTACKS AGAINST NORMALLY TRAINED MODELS, AND THEIR ENHANCED VERSION BY OUR METHOD, USING

RES-18 [2] AS THE SURROGATE MODEL.

Category Attacks CNNs ViTs MASR
(CNNs)

MASR
(ViTs)Res-101 ReX-50 DN-121 ViT-B PiT-B Vis-S Swin-T

Gradient-based

MI-FGSM [9] 41.6 49.2 78.7 17.3 24.5 36.2 42.3 56.5 30.1
+Ours 69.3 75.9 94.7 28.0 39.9 57.7 58.5 80.023.5↑ 46.015.9↑

VMI-FGSM [12] 70.1 75.7 94.2 31.8 43.0 60.2 62.0 80.0 49.3
+Ours 86.6 89.2 98.4 41.5 56.2 75.4 75.6 91.411.4↑ 62.212.9↑

EMI-FGSM [45] 56.6 62.6 90.6 21.7 33.4 47.5 53.0 69.9 38.9
+Ours 85.7 88.5 98.6 39.1 53.3 74.0 74.6 90.921.0↑ 60.321.4↑

AI-FGTM [46] 34.6 40.5 70.1 12.7 20.1 28.9 34.9 48.4 24.1
+Ours 55.2 61.1 88.4 20.8 30.6 46.7 51.5 68.219.8↑ 37.413.3↑

GRA [5] 64.6 70.3 94.1 30.5 40.5 55.0 61.1 76.3 46.8
+Ours 83.0 86.3 97.8 43.4 54.6 69.1 75.5 89.012.7↑ 60.713.9↑

PGN [8] 68.5 72.2 94.3 31.9 42.5 58.6 65.1 78.3 49.5
+Ours 72.9 77.2 94.4 38.2 49.7 63.1 70.6 81.53.2↑ 55.45.9↑

Input
transformation-

based

TIM [22] 39.6 46.8 78.1 17.0 19.4 30.4 40.0 54.8 26.7
+Ours 58.0 65.9 90.2 23.2 27.9 45.1 52.3 71.416.6↑ 37.110.4↑

DIM [10] 69.9 74.7 93.4 32.7 40.8 59.3 60.5 79.3 48.3
+Ours 86.3 89.1 98.8 48.5 59.6 76.3 77.1 91.412.1↑ 65.417.1↑

SSA [13] 69.8 73.6 94.6 31.1 42.0 56.8 63.5 79.3 48.4
+Ours 87.6 90.0 97.7 45.1 56.7 75.5 77.6 91.812.5↑ 63.715.3↑

DeCowA [47] 91.6 92.3 99.6 59.4 69.5 85.9 82.9 94.5 74.4
+Ours 97.4 98.3 99.9 74.9 83.0 93.0 91.7 98.54.0↑ 85.711.3↑

BSR [14] 90.2 93.2 99.6 44.2 59.7 80.8 76.5 94.3 65.3
+Ours 97.7 98.2 99.9 65.2 77.1 92.9 90.8 98.64.3↑ 81.516.2↑

SIA [15] 93.9 95.9 99.6 45.2 60.6 83.7 77.3 96.5 66.7
+Ours 98.4 99.0 100.0 65.2 78.6 94.0 91.0 99.12.6↑ 82.215.5↑

L2T [48] 93.3 95.7 100.0 58.0 70.8 87.7 85.5 96.3 75.5
+Ours 98.2 98.7 100.0 73.7 84.2 95.0 92.7 99.02.7↑ 86.410.9↑

Advanced
objective-

based

TAP [16] 36.1 43.4 69.9 13.6 17.3 26.1 33.0 49.8 22.5
+Ours 61.0 67.0 93.5 18.0 23.8 43.4 46.3 73.824.0↑ 32.910.4↑

RPA [17] 64.9 68.6 92.5 26.2 35.5 53.0 58.6 75.3 43.3
+Ours 74.2 76.0 95.1 31.2 41.0 59.4 63.7 81.86.5↑ 48.85.5↑

TAIG [49] 40.6 47.0 78.7 13.7 22.5 32.7 41.1 55.4 27.5
+Ours 77.5 80.8 96.9 32.7 44.6 64.7 66.3 85.129.7↑ 52.124.6↑

Model-
related

SGM [19] 47.2 52.7 81.6 21.1 29.8 42.1 48.7 60.5 35.4
+Ours 71.5 76.8 95.2 33.9 46.3 62.7 64.3 81.220.7↑ 51.816.4↑

BPA [18] 61.4 68.0 92.7 24.1 36.6 52.2 58.9 74.0 43.0
+Ours 85.7 88.3 98.6 37.6 51.9 72.1 72.7 90.916.9↑ 58.615.6↑

B. Evaluating Adversarial Transferability455

To verify the effectiveness of our method, we integrate456

MAP with various black-box attack methods. Concretely, we457

generate the adversarial examples on a single model, i.e., Res-458

18 [2] and evaluate them on the other models. The evaluation459

results of the target model on the crafted adversarial examples460

are summarized in Tab. I. As expected, our MAP consistently461

demonstrates much better transferability than the baselines on462

all models with different architectures, ranging from +2.6 up463

to +29.7 MASR for CNNs, and +5.5 up to +24.6 MASR 464

for ViTs. For example, compared to SIA [15], MAP enhances 465

transferability to ViTs by 15.5%. Even compared to previous 466

SOTA method L2T [48], MAP still achieves a notable gain, 467

boosting transferability from 75.5%→ 86.4%. Similar results 468

are also observed when using ViT-B [11] as the surrogate 469

model, as in Tab. II. For example, our MAP also boosts 470

SIA [15] by a large margin of 5.9% on the MASR for CNNs. 471

Even for model-related attacks (e.g., VDC [36]), MAP also 472
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TABLE II
ASR (%) OF TRANSFER-BASED ATTACKS AGAINST THE NORMALLY TRAINED MODELS, AND THEIR ENHANCED VERSION BY OUR METHOD, USING

VIT-B [11] AS THE SURROGATE MODEL.

Category Attacks CNNs ViTs MASR
(CNNs)

MASR
(ViTs)Res-18 Res-101 ReX-50 DN-121 PiT-B Vis-S Swin-T

Gradient-based

MI-FGSM [9] 57.1 36.9 40.2 54.9 43.3 47.6 58.9 47.3 49.9
+Ours 70.5 51.2 54.5 67.6 61.7 64.9 75.9 61.013.7↑ 67.117.2↑

VMI-FGSM [12] 70.3 52.7 59.0 68.2 64.6 67.1 76.0 62.6 69.2
+Ours 77.3 67.3 69.5 78.5 77.5 78.2 86.5 73.210.6↑ 80.711.5↑

EMI-FGSM [45] 77.6 61.1 63.2 77.4 73.0 75.8 85.7 69.8 78.2
+Ours 86.4 78.7 79.1 87.4 87.0 88.9 93.5 82.913.1↑ 89.811.6↑

AI-FGTM [46] 51.1 32.9 38.5 49.9 42.4 44.7 58.4 43.1 48.4
+Ours 55.0 41.9 45.1 54.7 51.9 52.7 65.1 49.26.1↑ 56.68.2↑

GRA [5] 79.4 68.3 70.7 79.2 80.0 80.9 85.8 74.4 82.2
+Ours 85.7 79.5 79.8 85.5 87.8 87.8 91.7 82.68.2↑ 89.16.9↑

Input
transformation-

based

TIM [22] 55.7 33.2 41.2 54.6 38.6 42.2 50.3 46.2 43.7
+Ours 63.8 45.4 51.3 62.6 51.3 55.6 62.3 55.89.6↑ 56.412.7↑

DIM [10] 70.9 60.8 63.1 71.6 71.5 73.0 76.7 66.6 73.7
+Ours 76.4 69.6 71.5 77.9 79.6 77.5 81.2 73.97.3↑ 79.45.7↑

SSA [13] 75.8 61.2 63.9 74.6 72.1 72.7 83.1 68.9 76.0
+Ours 84.1 73.3 76.1 85.0 83.7 84.7 91.0 79.610.7↑ 86.510.5↑

BSR [14] 88.6 81.5 85.9 91.3 90.9 90.1 90.7 86.8 90.6
+Ours 91.9 90.8 92.0 93.4 94.2 94.1 94.3 92.05.2↑ 94.23.6↑

SIA [15] 89.2 81.7 83.9 91.3 91.0 90.2 93.2 86.5 91.5
+Ours 92.9 90.5 91.5 94.5 94.4 94.4 95.5 92.45.9↑ 94.83.3↑

DeCowA [47] 93.1 85.1 88.2 95.0 94.1 93.3 93.5 90.4 93.6
+Ours 95.7 92.5 93.4 97.3 96.8 97.0 96.8 94.74.3↑ 96.93.3↑

L2T [48] 94.2 97.1 97.0 96.3 98.0 97.3 98.1 96.2 97.8
+Ours 98.8 97.8 98.4 99.2 99.2 99.3 99.4 98.62.4↑ 99.31.5↑

Advanced
objective-

based

TAP [16] 29.8 15.6 19.2 26.5 18.2 21.0 31.8 22.8 23.7
+Ours 57.3 34.8 37.8 54.0 42.8 47.0 65.2 46.423.6↑ 51.728.0↑

TAIG [49] 50.5 30.3 35.2 47.3 37.1 41.5 57.8 40.8 45.5
+Ours 77.1 62.7 66.6 77.8 73.7 76.6 88.0 71.130.3↑ 79.433.9↑

Model-
related

VDC [36] 76.3 58.0 60.1 75.4 67.4 72.1 82.5 67.5 79.8
+Ours 86.0 68.1 69.5 83.0 76.7 80.1 89.8 76.79.2↑ 82.22.4↑

SAPR [29] 79.3 52.2 58.1 73.2 64.3 67.6 82.5 65.7 71.5
+Ours 85.9 74.7 77.9 87.7 84.6 87.5 94.0 81.615.9↑ 88.717.2↑

TABLE III
ASR (%) OF VARIOUS ENSEMBLE-BASED ATTACKS. THE ADVERSARIAL

EXAMPLES ARE CRAFTED ON THE RES-18 [2], RES-101 [2],
REX-50 [50], AND DN-121 [51].

Attacks ViT-B PiT-B Vis-S Swin-T MASR
(ViTs)

ENS [20] 37.9 53.2 67.8 67.6 56.6
+Ours 62.5 79.1 91.0 86.9 79.923.3↑

AdaEA [21] 38.6 53.1 68.7 66.8 56.8
+Ours 63.6 78.4 90.2 86.8 79.823.0↑

SMER [30] 42.3 56.5 71.3 70.8 60.2
+Ours 62.1 73.5 81.3 79.9 74.214.0↑

provides considerable performance gains. Moreover, we com-473

pare various ensemble-based attacks in Tab. III. By integrating474

ours, substantial improvements in ASR are observed across all475

methods. For example, MAP improves MASR (ViTs) by up476

to 23.3% compared to SMER [30]. Finally, we evaluate the477

performance of MAP on more diverse architectural paradigms.478

As in Tab. IV, MAP still shows strong generalizability across479

architectures, such as MLP-Mixers [57] and hybrid models like480

MaxViT [55]. These improvements highlight the robustness481

and effectiveness of MAP in boosting transferability.482

TABLE IV
ASR (%) OF VARIOUS ATTACKS ON MODELS OF DIFFERENT

ARCHITECTURES. THE ADVERSARIAL EXAMPLES ARE CRAFTED ON THE
RES-18 [2].

Attacks MaxViT MobViTV2 Mixer MambaOut MASR

MI-FGSM [9] 26.8 53.1 40.3 35.3 40.9
+Ours 43.9 75.8 52.5 57.6 57.516.6↑

DIM [10] 47.3 81.2 57.5 61.0 63.4
+Ours 65.3 91.2 70.0 74.6 75.311.9↑

BSR [14] 66.5 96.4 69.6 77.2 77.9
+Ours 88.7 98.8 81.8 90.9 90.112.2↑

SIA [15] 70.8 97.5 67.5 81.6 79.6
+Ours 88.2 99.0 84.1 91.8 90.811.2↑

To further emphasize the generalization of the MAP, 483

we evaluate its performance using more surrogate models 484

(both CNN-based and ViT-based) and under varying hyper- 485

parameters (e.g., mask ratios). The results, summarized in 486

the Supplementary Material, demonstrate that our method 487

has explored a perspective of diversifying perturbations that 488

existing methods have not yet considered, and therefore is 489

general to almost all methods to boost their transferability 490

without bells and whistles. 491
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TABLE V
ASR (%) OF VARIOUS DEFENSE METHODS ON THE ADVERSARIAL EXAMPLES GENERATED BY DIFFERENT ATTACKS. THE ADVERSARIAL EXAMPLES ARE

CRAFTED ON THE RES-18 [2]. W/O AND W/ RESPECTIVELY INDICATE WHETHER MAP IS ADOPTED.

Method AT [37] HGD [38] RS [42] NRP [39] R&P [41] DiffPure [40]
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

MI-FGSM [9] 33.3 35.42.1↑ 33.2 57.624.4↑ 23.4 24.81.4↑ 27.8 38.210.4↑ 39.5 68.428.9↑ 28.5 34.76.2↑
TIM [22] 40.1 43.63.5↑ 41.3 55.414.1↑ 34.5 42.37.8↑ 40.0 51.411.4↑ 40.3 56.516.2↑ 59.5 70.711.2↑
DIM [10] 37.4 40.53.1↑ 64.9 82.117.2↑ 26.6 29.52.9↑ 42.5 54.512.0↑ 70.4 88.217.8↑ 42.5 53.511.0↑
BSR [14] 40.4 42.72.3↑ 83.1 96.113.0↑ 28.0 31.53.5↑ 51.4 68.517.1↑ 88.5 98.19.6↑ 45.1 57.011.9↑
SIA [15] 40.6 43.42.8↑ 87.1 95.68.5↑ 28.8 32.13.3↑ 53.8 70.216.4↑ 91.1 98.06.9↑ 47.5 58.511.0↑

TAIG [49] 33.2 38.75.5↑ 32.2 65.032.8↑ 22.1 27.35.2↑ 25.9 48.122.2↑ 41.8 75.033.2↑ 19.3 43.023.7↑

TABLE VI
ASR (%) OF VARIOUS DEFENSE METHODS ON THE ADVERSARIAL EXAMPLES GENERATED BY DIFFERENT ATTACKS. THE ADVERSARIAL EXAMPLES ARE

CRAFTED ON THE VIT-B [11]. W/O AND W/ RESPECTIVELY INDICATE WHETHER MAP IS ADOPTED.

Method AT [37] HGD [38] RS [42] NRP [39] R&P [41] DiffPure [40]
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

MI-FGSM [9] 34.2 35.21.0↑ 30.9 40.69.7↑ 22.9 24.71.8↑ 28.5 32.54.0↑ 48.1 63.515.4↑ 23.1 25.01.9↑
TIM [22] 39.0 40.11.1↑ 29.4 39.39.9↑ 29.1 34.75.6↑ 33.8 40.87.0↑ 41.0 51.810.8↑ 38.3 43.85.5↑
DIM [10] 36.2 37.51.3↑ 57.4 67.910.5↑ 26.4 28.52.1↑ 41.2 48.97.7↑ 72.4 77.04.6↑ 32.8 38.65.8↑
BSR [14] 37.6 40.73.1↑ 76.3 85.49.1↑ 29.3 32.12.8↑ 52.0 63.011.0↑ 88.2 93.14.9↑ 37.6 47.09.4↑
SIA [15] 38.3 40.52.2↑ 76.5 88.111.6↑ 29.3 32.83.5↑ 54.6 65.510.9↑ 91.7 95.13.4↑ 37.8 47.49.6↑

TAIG [49] 32.2 35.33.1↑ 24.4 54.930.5↑ 22.0 27.15.1↑ 24.0 39.615.6↑ 47.7 78.330.6↑ 14.6 29.114.5↑

TABLE VII
MASR (%) OF OUR PROPOSED METHOD FOR DIFFERENT BLACK-BOX ATTACK METHODS. THE EXPERIMENT IS CONDUCTED BY USING RES-18 [2] AS

THE SURROGATE MODEL. MASR IS OBTAINED BY AVERAGING ASRS OF DIFFERENT TYPES OF BLACK-BOX TARGET MODELS.

MAP CML SMG
MI-FGSM [9] DIM [10] RPA [17] BPA [18]

MASR
(CNNs)

MASR
(ViTs)

MASR
(CNNs)

MASR
(ViTs)

MASR
(CNNs)

MASR
(ViTs)

MASR
(CNNs)

MASR
(ViTs)

56.5 30.1 79.3 48.3 75.3 43.3 74.0 43.0
X 70.5 40.7 83.7 55.8 76.6 44.7 84.6 52.9
X X 73.0 40.6 85.2 58.0 77.5 45.6 86.6 53.2
X X 75.5 42.7 90.1 62.4 81.3 46.9 88.8 57.2
X X X 80.0 46.0 91.4 65.4 81.8 48.8 90.9 58.6

C. Evaluating on Defense Methods492

MAP performs excellently on diverse normally trained mod-493

els when attacking both single and ensemble models. Recently,494

several defense methods have been proposed to deal with the495

threat of AEs. To fully validate the effectiveness of MAP, we496

use the AEs generated on a single model using various attacks497

to attack the defense models, including AT [37], HGD [38],498

RS [42], NRP [39], R&P [41], and DiffPure [40].499

As presented in Tab. V, MAP achieves consistent improve-500

ments across various attacks and defenses, ranging from +1.4501

up to +33.2 ASR. In particular, BSR [14] (w/ MAP) achieves502

96.1% ASR on the powerful denoising method HGD [38] with503

a weaker surrogate model, i.e., Res-18 [2]. Besides, similar re-504

sults are also observed when using ViT-B [11] as the surrogate505

model, as shown in Tab. VI. For example, SIA [15] (w/ MAP)506

achieves 88.1% ASR on the HGD, which outperforms vanilla507

SIA by 11.6%. Such improvement can be attributed to the508

fact that MAP makes AEs more generalizable by enhancing509

perturbation diversity while distributing perturbations across510

individual patches and directly targeting the basic processing511

units (patch) of existing models, thus effectively resisting512

existing defense methods. This characteristic further validates513

MAP’s effectiveness against models equipped with carefully514

designed defense strategies and helps identify the shortcom- 515

ings of existing defense methods. 516

D. Ablation Studies 517

To gain further insights into the superior performance of 518

MAP, we perform detailed ablation studies to validate its 519

effectiveness and two proposed strategies, i.e., CML and SMG. 520

As in Tab. VII, using any of the components can boost trans- 521

ferability. Concretely, MAP individually leads to noticeable 522

improvement over the baseline, verifying its effectiveness. 523

For example, by adding MAP to MI-FGSM [9], MASR is 524

improved by 14.0% for CNNs (70.5% vs. 56.5%) and 10.6% 525

for ViTs (40.7% vs. 30.1%). Further, both CML and SMG 526

can bring impressive improvements on the basis of MAP. For 527

instance, CML increase MASR (CNNs) and MASR (ViTs) 528

by 1.5% (85.2% vs. 83.7%) and 2.2% (58.0% vs. 55.8%) re- 529

spectively on DIM [10] with MAP, while SMG increase them 530

by 6.4% (90.1% vs. 83.7%) and 6.6% (62.4% vs. 55.8%), 531

respectively. The improvement proves that updating the mask 532

ratio via curriculum learning and generating soft masks can 533

indeed boost performance. Finally, combining MAP with CML 534

and SMG achieves the best performance, indicating the latter 535

two complement MAP to further improve transferability. 536
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Fig. 7. ASR (%) of the CML strategy under different settings. For the first and third figures, we adopt Res-18 [2] as the surrogate model, while for others,
we adopt ViT-B [11]. Linear (CNNs) denotes the MASR for CNNs based on DIM [10] with the proposed MAP and Linear schedule, otherwise similar.

TABLE VIII
PERFORMANCE COMPARISON OF DIFFERENT MASKED ADVERSARIAL ATTACKS AND OUR METHOD. THE SURROGATE MODEL IS RES-18 [2].

Attacks CNNs ViTs MASR
(CNNs)

MASR
(ViTs)Res-101 ReX-50 DN-121 ViT-B PiT-B Vis-S Swin-T

MI-FGSM [9] 41.6 49.2 78.7 17.3 24.5 36.2 42.3 56.5 30.1

+ Oval Mask 41.8 47.9 73.3 15.4 22.0 32.4 38.7 54.32.2↓ 27.13.0↓
+ Circular Mask 42.0 47.1 74.1 15.6 21.4 33.5 39.3 54.42.1↓ 27.52.6↓
+ Triangular Mask 42.0 46.2 73.4 15.6 21.9 31.8 40.1 53.92.6↓ 27.42.7↓
+ MaskBlock [23] 49.2 51.4 78.6 18.0 25.1 38.1 45.6 59.73.2↑ 31.71.6↑
+ LPM [6] 53.0 59.6 85.1 17.1 24.9 41.3 45.3 65.99.4↑ 32.22.1↑
+ Ours 69.3 75.9 94.7 28.0 39.9 57.7 58.5 80.023.5↑ 46.015.9↑

Ablation on Mask Ratio Schedules. In this paper, we537

propose a Curriculum Mask Learning strategy to dynamically538

adjust mask ratio during iterations. Initially, the mask ratio is539

lower to ensure effective learning of adversarial perturbations.540

With iteration, the mask ratio is gradually increased to cope541

with overfitting on specific patterns. In Eq. 8, we list three542

schedule instances, i.e., Linear, Exp, and Poly schedules,543

respectively. We represent the case as a baseline where the544

mask ratio is fixed to a constant (e.g., 0.5 or 0.7) during itera-545

tions, which is denoted as Fixed schedule. We report ASR of546

DIM [10] attacks (known as classic input transformation-based547

attack) under various ratio schedules in Fig. 7. We observe548

that the ASR improves with more iterations, and our dynamic549

schedule consistently outperforms the Fixed schedule. In par-550

ticular, the three schedules exhibit similar performance and551

are all better than the Fixed schedule. Given its simplicity, we552

adopt Linear schedule in our method and leave the exploration553

of more dedicated mask ratio schedules in future work. Finally,554

we find that while the fixed schedule outperforms the baseline555

(DIM), its additional gain is somewhat lower compared to the556

dynamic schedule, likely due to limited perturbation variation557

and insufficient exploration of diverse perturbation patterns.558

Ablation on Mask Strategies. We further analyze the559

impact of different masking strategies on adversarial trans-560

ferability. As in Tab. VIII, compared to MAE strategy (e.g.,561

LPM and MaskBlock), our MAP significantly improves trans-562

ferability by avoiding large statistical shifts and unexpected563

gradient feedback. In addition, we evaluate different mask564

shapes (e.g., triangle, circle) and find that rectangular masks565

we used achieve the best performance, likely due to their better566

alignment with the feature extraction mechanisms of CNNs567

and ViTs. These results highlight the effectiveness of MAP’s568

TABLE IX
COMPARATIVE EXPERIMENTS ON DIFFERENT MASK LOCATION

STRATEGIES. THE ADVERSARIAL EXAMPLES ARE CRAFTED ON THE
RES-18 [2]. FM, BM, AND RM DENOTE THE USE OF FOREGROUND

MASKS, BACKGROUND MASKS, AND RANDOM MASKS, RESPECTIVELY.

Attacks MASR(CNNs) MASR(ViTs)
FM BM RM FM BM RM

MI-FGSM [9] 73.3 75.8 80.0 40.0 41.8 46.0
DIM [10] 89.0 90.0 91.4 61.3 62.3 65.4
BSR [14] 97.1 97.3 98.6 74.3 75.1 81.5
SIA [15] 98.2 98.5 99.1 77.5 80.1 82.2

perturbation masking strategy and its superior adaptability 569

across models. Finally, we study the performance of different 570

mask localization strategies in Tab. IX. The results show that 571

random masks (RM) achieve the best transferability across 572

CNNs and ViTs, while foreground (FM) and background 573

masks (BM) perform worse due to limited perturbation di- 574

versity caused by over-emphasizing specific image regions. 575

E. Parameter Studies 576

We perform parameter studies to discuss the effect of the 577

hyper-parameters of MAP, namely mask patch size b and mask 578

ratio r. They determine the learning efficiency and effect of 579

the adversarial examples during iterations. To find the proper 580

combination for b and r, we evaluate MAP on two classic 581

attack methods (i.e., DIM [10] and TIM [22]) with various b 582

and r, and the results are shown in the Tab. X and Tab. XI. 583

For Tab. X, we adopt DIM [10] (w/ MAP) to generate the 584

adversarial examples on Res-18 [2]. Compared to the baseline 585

DIM attack, which enjoys 79.3% MASR for CNNs and 48.3% 586

MASR for ViTs, MAP achieves remarkable improvements in 587

a range of b between 4 and 32 and r between 0.3 and 0.7. In 588
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TABLE X
PARAMETER STUDY OF THE PATCH SIZE AND THE MASK RATIO OF MAP WITH DIM [10]. WE USE RES-18 [2] AS THE SURROGATE MODEL.

MASR (CNNs)/
MASR (ViTs)

Mask Ratio
0.3 0.5 0.7 0.9 [0.3-0.5] [0.3-0.7] [0.4-0.9]

Patch Size

4 86.7/55.7 88.4/58.9 87.6/60.3 78.5/52.6 88.8/59.1 91.2/62.4 89.9/64.2
8 86.9/56.4 89.2/60.0 89.0/61.7 80.4/53.4 89.0/59.9 91.3/64.1 90.7/64.6
16 87.6/56.5 88.8/60.0 89.2/61.8 81.4/54.6 90.1/60.0 91.2/63.5 91.4/65.4
32 86.6/55.0 89.0/59.1 89.1/61.3 76.7/49.6 89.2/59.6 90.0/61.5 90.3/63.1

TABLE XI
PARAMETER STUDY OF THE PATCH SIZE AND THE MASK RATIO OF MAP WITH TIM [22]. WE USE VIT-B [11] AS THE SURROGATE MODEL.

MASR (CNNs)/
MASR (ViTs)

Mask Ratio
0.3 0.5 0.7 [0.2-0.5] [0.2-0.6] [0.3-0.6] [0.3-0.7]

Patch Size

4 50.4/47.3 53.2/51.9 50.3/49.2 53.3/51.0 53.9/52.4 54.8/52.5 54.9/53.7
8 51.5/49.5 52.6/53.2 51.0/50.0 54.5/51.9 54.8/55.7 54.5/55.2 56.0/55.9
16 51.8/50.6 52.9/53.8 49.5/48.3 54.6/55.0 54.8/56.3 55.6/56.2 55.8/56.4
32 51.7/50.5 52.1/53.5 49.2/49.3 53.7/53.8 53.9/54.8 53.8/55.0 53.9/55.7

(a) Attention Maps (b) Top-5 Confidence Distribution Plots

Benign Image SIA SIA (w/ MAP) Benign Image SIA SIA (w/ MAP)

D
N

-1
21

V
iT

-B
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D
N

-1
21

V
iT
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Benign Image

Fig. 8. Comparisons between SIA [15] and SIA (w/ MAP) attacks using Res-18 [2] as the surrogate model. We visualize the benign input, as well as Grad-
CAM map (for DN-121 [51]) and self-attention map (for ViT-B [11]) of adversarial examples generated by two attacks in (a), respectively. The ground-truth
labels of the two benign images are Lion and Go-kart, and are marked as orange in (b). Best viewed in color and zoom in.

particular, as discussed earlier, a lower mask ratio (r = 0.3)589

is inferior to a higher one (r = 0.7), but an excessively high590

mask ratio (r = 0.9) rather leads to performance degradation.591

For example, when b = 16, r = 0.7, MAP achieves 61.8%592

MASR (ViTs), outperforming r = 0.3 by 5.3% and r = 0.9593

by 7.2%. In contrast, CML achieves better performance with594

various mask ratio ranges, indicating its robustness to mask595

ratios. The best performance is achieved for b = 16, rs = 0.4,596

and re = 0.9. Hence, we adopt this setting by default when597

using CNNs (e.g., Res-18 [2]) as the surrogate model.598

For Tab. XI, we adopt TIM [22] (w/ MAP) to generate the599

adversarial examples on ViT-B [11]. Similarly, compared to the600

baseline TIM attack, which exhibits 46.2% MASR for CNNs 601

and 43.7% MASR for ViTs, MAP also achieves noticeable 602

improvements in a range of b between 4 and 32 and r between 603

0.3 and 0.7. In particular, we also found that an excessively 604

high mask ratio (r = 0.7) decays the attack performance, 605

which can be attributed to underfitting to the surrogate model. 606

To strike a balance between overfitting (an excessively low 607

mask ratio) and underfitting (an excessively high mask ratio), 608

we introduce the CML strategy for better performance, as in 609

Tab. XI. When rs = 0.3, re = 0.6 or 0.7, b = 8 or 16, the 610

black-box attack performance is relatively optimal. Hence, we 611

set rs = 0.3, re = 0.7, and b = 16 in our experiments when 612
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Benign Image  Baseline AE  MAP AE (Hard) MAP AE (Soft) Benign Image  Baseline AE  MAP AE (Hard) MAP AE (Soft)

Fig. 9. Visualization of adversarial examples, perturbations, and corresponding spectrums from various methods. “Baseline AE” refers to adversarial examples
from the baseline attack, while “MAP AE (Hard)” and “MAP AE (Soft)” denote those generated by MAP with hard and soft masks, respectively.

using ViTs (e.g., ViT-B [11]) as the surrogate model.613

F. Visualizations614

To analyze the effectiveness of our MAP, we visualize the615

attack effects of the SIA [15] (w/ and w/o MAP), with attention616

maps, which can highlight the discriminative regions for the617

classification network. Specifically, we use Grad-CAM [59]618

to visualize the heatmaps of the CNN-based model, DN-619

121 [51], and use self-attention maps to visualize the attention620

of the ViT-based model, ViT-B [11]. As shown in Fig. 8(a),621

both attacks perturb the network’s attention maps. However,622

by comparison, MAP weakens the network’s attention to the623

objects more effectively. For example, the attention maps of624

the adversarial examples generated by SIA [15] still highlight625

object regions to some extent, while SIA (w/ MAP) focuses626

on highlighting non-object regions to perturb the network.627

In addition, we present the Top-5 confidence scores of the628

two black-box target network outputs under both attacks. As629

in Fig. 8(b), when the difference in model architecture is630

small (i.e., the target model is also a CNN-based model),631

both methods can perturb the classification confidence. For632

example, both methods, i.e., SIA without and with MAP, can633

deceive DN-121 [51]. However, when the model difference634

is large (i.e. the target model is a ViT-based model), we find635

that vanilla SIA [15] sometimes fails to mislead ViT-B [11].636

For instance, for the first image, although the adversarial637

examples generated by SIA [15] weaken the confidence of638

the ground-truth label, it still cannot make the target model639

ViT-B [11] output wrong predictions. By contrast, SIA (w/640

MAP) can effectively misguide the networks. This merit can641

be attributed to the intrinsic mechanism of the proposed MAP,642

which increases the attack effect of each patch, and disturbs the643

target model by attracting its attention patterns to the regions644

corresponding to the non-ground-truth classes.645

Finally, to further illustrate the impact of MAP, we visualize646

some adversarial examples, perturbations, and their corre-647

sponding spectrums using Fast Fourier Transform (FFT) [60].648

FFT is used to analyze the frequency components of AEs, 649

offering insights into how MAP affects model features across 650

different frequency ranges. As in Fig. 9, MAP (Soft) induces 651

broader spectrum changes across both low- and high-frequency 652

components compared to the baseline (MI-FGSM [9]) and 653

MAP (Hard), relative to the original benign images. As 654

various models (e.g., CNNs) process frequency information 655

differently [61], this frequency diversification contributes to 656

MAP’s superior attack effect and cross-model generalization. 657

V. CONCLUSION 658

In this paper, we present Masked Adversarial Perturbation 659

(MAP), a universal method to boost black-box adversarial 660

transferability. MAP progressively masks a random selection 661

of adversarial perturbation patches and requires the remaining 662

patches to still retain the attack effect. As MAP masks various 663

patches in each iteration, it diversifies perturbations explic- 664

itly to prevent overfitting between perturbation and surrogate 665

model, and co-adapting between patches, thus showing su- 666

perior transferability for various architectures (either CNNs or 667

ViTs). With an extensive evaluation, we have proven that MAP 668

achieves noticeable performance improvements on various 669

black-box attack methods. We hope that, due to its simplicity, 670

MAP can be adopted as part of future black-box methods to 671

narrow the gap between black-box and white-box attacks. 672

Future. In the future, we will investigate more reasonable 673

mask generation methods (e.g., model-shared discriminative 674

region mining) and apply MAP to more black-box attacks. 675
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