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Abstract

Scene Coordinate Regression (SCR) estimates 3D
scene coordinates from 2D images, and has become
an important approach in visual relocalization. Ex-
isting methods exhibit high localization accuracy in
small scenes, but still face substantial challenges
in large-scale scenes, which usually have signifi-
cant variations in depth, scale, and occlusion. Al-
though structure-guided scene partitioning is com-
monly adopted, the over-partitioned elements and
large feature variances within subscenes impede
the estimation of the 3D coordinates, introducing
misleading information for subsequent processing.
To address the above-mentioned issues, we pro-
pose the Semantic-Structural Determined Visual
Relocalization method for SCR, which leverages
semantic-structural partition learning and partition-
determined pose refinement to better understand
the semantic and structural information on large
scenes. Firstly, we partition the scene into small
subscenes with label assignments, ensuring se-
mantic consistency and structural continuity within
each subscene. A classifier is then trained with
sampling-based learning to predict these labels.
Secondly, the partition predictions are encoded into
embeddings and integrated with local features for
intra-class compactness and inter-class separation,
producing partition-aware features. To further de-
crease feature variances, we employ a discrim-
inability metric and suppress ambiguous points,
improving subsequent computations. Experimen-
tal results on the Cambridge Landmarks dataset
demonstrate that the proposed method achieves sig-
nificant improvements with fewer training costs on
large-scale scenes, reducing the median error by
38% compared to the state-of-the-art SCR method
DSAC*. Code is available: https://gitee.com/VR
NAVE/ss-dvr.

∗Corresponding author.

Figure 1: Quantitative comparison of position error and mapping
time. We evaluate the state-of-the-art SCR and feature matching
methods on the large-scale outdoor dataset Cambridge Landmarks.
The position error and training time of these methods are compared.
The area of the circles represents the model size. SCR-based meth-
ods are marked in blue, and FM-based methods are marked in pink.
Methods based on offline processing are marked with red borders.

1 Introduction
Visual relocalization aims to determine the position and ori-
entation of the camera within a known scene by visual cues.
This task holds significant promise in various fields, such as
robot navigation, augmented reality, and autonomous driv-
ing. In particular, image-based Scene Coordinate Regression
(SCR) encodes the scene in the weight of neural networks and
supports end-to-end inference, showing great potential for a
wide range of applications.

With the same motivation, image retrieval [Camposeco
et al., 2019a; Revaud et al., 2019] and pose regression
[Brahmbhatt et al., 2018; Kendall and Cipolla, 2017] take
the entire image as input and extract image-level features
for matching [Ruan et al., 2023]. However, global fea-
tures often lack local structural details, leading to insuffi-
cient relocalization accuracy. In contrast, methods based on
feature matching [Sarlin et al., 2019; Sarlin et al., 2020a;
Sattler et al., 2016a], which build explicit 3D geometry us-
ing structure-from-motion (SfM) [Schonberger and Frahm,
2016], achieve excellent performance. However, they require
significant storage and extended processing time, ranging
from several minutes to hours. Furthermore, they introduce
privacy risks. With recent advances in deep learning, SCR
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researches [Brachmann et al., 2023; Shotton et al., 2013;
Wang et al., 2024] employ models to regress the 3D scene
coordinates corresponding to each pixel in an image, subse-
quently estimating the camera pose using the Perspective-n-
Point (PnP) algorithm. Consequently, only the raw query im-
age is required during inference, eliminating the need to ac-
cess previously trained data.

Due to constrained receptive fields, SCR methods strug-
gle to differentiate similar local features in large-scale scenes,
leading to decreased performance. Recent SCR methods
focus on improving performance in such scenarios. ACE
[Brachmann et al., 2023] trains four models (Poker) for par-
titioned large-scale scenes. HSC [Li et al., 2020] partitions
the scene into smaller parts with hierarchical labels based on
structural information, guiding the coarse-to-fine relocaliza-
tion process. GLACE [Wang et al., 2024] encodes a sin-
gle image into a global feature to distinguish similar fea-
tures across different images. However, the methods above,
which primarily focus on structural information, partition
large scenes into small subscenes solely based on spatial dis-
tance, without considering scene understanding. This results
in over-partitioned elements and high feature variances within
subscenes. Semantic information plays a crucial role in scene
understanding, guiding more effective scene partitioning.

To address the aforementioned challenges, we propose
a Semantic-Structural Determined Visual Relocalization
method. Specifically, semantic-structural scene partition
learning is applied to divide the large scene into smaller
subscenes, maintaining semantic consistency and structural
continuity within each subscene through label assignments.
Then, accelerated partition localization is performed with
sampling-based learning. To better leverage the semantic and
structural information in the labels and to avoid errors in relo-
calization caused by ambiguous areas, e.g. repetitive textures
and flat regions, we put forward partition-determined pose
refinement. Partition labels are encoded into embeddings and
integrated with local features next, creating partition-aware
features, and guiding the further discriminable point selec-
tion. Our contribution can be summarized as follows:

i) We propose a Semantic-Structural Determined Visual
Relocalization method for scene coordinate regression. It par-
titions the scene into small parts with labels, ensuring seman-
tic consistency and structural continuity, guiding further ac-
celerated partition localization with sampling-based learning.

ii) We design a partition-determined pose refinement
method to reduce the inaccuracy of pose estimation, which
selects determinable points based on discriminability scores
derived from partition-aware features.

iii) Our method achieves the state-of-the-art performance
on Cambridge Landmark in a short training time when depth
maps are provided, and can still achieve the competitive per-
formance without depth maps.

2 Related Work
Typical methods of visual relocalization can be divided into
four categories, e.g. image retrieval, pose regression, feature
matching, and scene coordinate regression.
Image Retrieval. A set of mapping images with known

poses and global descriptors serves as the known environ-
ment in retrieval-based methods. Given a query image, these
methods search for the most similar image in the database
using global descriptor matching [Arandjelovic et al., 2016;
Revaud et al., 2019; Torii et al., 2015], and approximate the
pose of the query image based on the top retrieved images
[Camposeco et al., 2019a]. Since image-level descriptors
are used, retrieval-based methods can scale to large scenes.
Recently, some researches have combined retrieval methods
with structure-based techniques and relative pose estimation.
Pose Regression. Instead of descriptor matching, pose re-
gression [Brahmbhatt et al., 2018; Kendall and Cipolla, 2017;
Kendall et al., 2015; Shavit et al., 2021; Revaud et al., 2019;
Winkelbauer et al., 2021] uses neural networks to predict
the absolute pose of the query image directly, namely abso-
lute pose regression (APR). Some methods predict the rel-
ative pose between the query image and a mapping image.
PoseNet [Kendall et al., 2015] regresses the pose from a
query image with a neural network, but it takes several hours
to train the model. Several variants of it have introduced
improvements, ranging from the loss function [Kendall and
Cipolla, 2017] to the network architecture [Walch et al., 2017;
Wang et al., 2020; Shavit et al., 2021]. However, recent re-
searches indicate that pose regression methods are more sim-
ilar to image retrieval than to feature matching, resulting in
their performance being surpassed by feature matching.
Feature Matching (FM). Methods based on feature match-
ing [Sarlin et al., 2019; Sarlin et al., 2020a; Sattler et al.,
2016a], also known as structure-based, perform well for vi-
sual relocalization. They establish 2D-3D correspondences
between pixels in query images and 3D coordinates in the
scene, usually employing descriptor matching. Thus, they
need to reconstruct the known environment as a 3D point
cloud through Structure-from-Motion (SfM), so that points
can have several feature descriptors from different view-
points. To scale to large scenes, commonly they need a large
amount of storage and a long time for feature extraction.
Some recent researches work on handling the storage prob-
lems. For instance, techniques such as storing fewer descrip-
tors [Sattler et al., 2016b], compressing descriptors [Yang
et al., 2022], and combining image retrieval with descriptor
matching [Arandjelovic et al., 2016; Torii et al., 2015] are
commonly used. Several approaches try to directly match the
descriptors with the point cloud or mesh [Zhou et al., 2022a].
Given all of the above, large storage requirements and long
descriptor generation time are unavoidable.
Scene Coordinate Regression. This family of methods re-
gresses 3D coordinates for the 2D pixels in the query im-
age instead of learning the entire pipeline. These methods
do not rely on traditional feature detection and descriptor
matching. Instead, they implicitly encode the scene infor-
mation within a neural network [Brachmann et al., 2023;
Brachmann et al., 2017; Brachmann and Rother, 2018;
Brachmann and Rother, 2019; Brachmann and Rother, 2021;
Cavallari et al., 2019a; Dong et al., 2022; Li et al., 2020]
or random forests [Brachmann et al., 2016; Cavallari et al.,
2017; Cavallari et al., 2019b; Shotton et al., 2013]. By
doing so, they leverage learned representations of the envi-
ronment to predict the 3D coordinates directly from the in-



Figure 2: Overview of our method. Left: The structural partitioning strategy. Features with unified labels exhibit a large variance in
the feature space. Right: Our semantic-structural partitioning approach partitions the scene based on semantic information while ensuring
structural continuity within each subscene. We use t-SNE to map the features from the high-dimensional space to a 2D space to observe the
relationships between the features. Features labeled by structural partitioning are scattered and disordered, while features labeled by semantic-
structural partitioning form more compact and consistent clusters. We design a feature fusion module to keep intra-class compactness and
inter-class separation, and a discriminability judge module to choose features with high scores for the camera pose estimation.

put image, without the need for explicit feature matching or
descriptor-based techniques. These approaches can be con-
sidered privacy-preserving, as the implicit map cannot be re-
generated without access to the training images of the scene.
However, although SCR-based methods achieve high accu-
racy in small-scale scenes, their performance tends to de-
grade in large-scale environments. Existing methods, such as
DSAC* [Brachmann and Rother, 2021], achieve state-of-the-
art accuracy but require several hours of model training. Re-
cently, ACE [Brachmann et al., 2023] proposed a model that
achieved high accuracy in a short time of training. However,
its performance deteriorates in large-scale environments, re-
quiring the assembly of more separate models for effective
learning of such scenes.

3 Method
Our Semantic-Structural Determined Visual Relocalization
method comprises two components. Semantic-Structural Par-
tition Learning partitions the large scene into smaller sub-
scenes, with labels assigned to each. This is followed by ac-
celerated partition localization with sampling-based learning.
The partition-determined pose refinement enhances features
with partition labels and selects discriminable points.

3.1 Semantic-Structural Partition Learning
In this section, the scene is partitioned into small parts pre-
serving semantic consistency and structural continuity, which
are assigned labels. Subsequently, a label classifier is trained
on the sampled feature set.
Semantic-Structural Label Assignment. Recent works
have shown that in large scenes with many similar local fea-
tures, it is difficult for SCR to form an effective mapping from
features to 3D coordinates. Previous studies, such as HSC [Li
et al., 2020], in Fig. 2 (a-I), employ scene partitioning strate-
gies that disrupt the semantic information of the scene, lead-

ing to over-partitioned elements and large feature variances
in each subscene. Apparently, a scene partitioning strategy
that groups features with similar semantic information into
the same category can maintain semantic consistency within
the feature set. We propose our scene partitioning and point
labeling strategy next. Semantic features are extracted from
the images with the backbone.

fi = FB(Pi;wB), (1)

where Pi ∈ RCI×HP×WP is a patch of image, and FB is
the backbone that extracts semantic features fi ∈ RCf from
image patch Pi with network parameters wB .

To ensure semantic consistency, we perform semantic-level
clustering of the features. Large-scale scenes often contain
many similar local patches. The limited ability of the net-
work to differentiate features from these patches constraints
its performance. Since these patches may be far apart in the
scene, incorrect matching of similar patches can lead to sig-
nificant errors, emphasizing the necessity of structural con-
tinuity. We partition the large scene into smaller subscenes,
ensuring both semantic consistency and structural continuity
within each subscene. We take the semantic feature fi and
the corresponding 3D coordinates yi of the point as input and
output a label vector that determines the cluster assignment.

Recent work [Li et al., 2020] proposes a hierarchical label
assignment approach. During the inference stage, although
the subscene label is correctly predicted, the predicted region
label has a decisive impact on the final result. Our strategy
assigns two labels to each point simultaneously, ensuring the
independence of the two partitions. This decoupling approach
reduces the dependence on a single label and enhances the
robustness of the results. The process is shown as follows:

(c1, c2)i = arg min
(k1,k2)

∥(fi, yi)− (µ1(k1), µ2(k2))∥2, (2)



Figure 3: The architecture of our network. SemSP represents semantic scene partitioning. StrSP represents structural scene partitioning.
When depth maps are unavailable, scene partitioning can be performed using only semantic scene partitioning.

where yi is the 3D coordinates corresponding to the feature,
k1 ∈ {1, . . . , nk1} represents the index of semantic cluster-
ing, k2 ∈ {1, . . . , nk2

} represents the index of structural clus-
tering, µ1(k1) is the k1-th semantic cluster center and µ2(k2)
is the k2-th structural cluster center, and (c1, c2)i represents a
2-dimensional label vector.

Standard k-means algorithms require significant time to
cluster high-dimensional features. We use mini-batch k-
means for semantic consistency partitioning on features and
standard k-means for structural continuity partitioning on co-
ordinates. Here is the process of mini-batch k-means:

µnew
1 (k1) = µold

1 (k1) +
1

β

∑
xi∈Bk

(
fi − µold

1 (k1)
)
, (3)

c1(i) = argmin
k1

∥fi − µ1(k1)∥2 for fi ∈ fB , (4)

where fB is a batch of semantic features. We randomly select
nk1

initial cluster centers µ1(1), µ1(2), . . . , µ1(nk1
). Then

we iteratively perform a random selection of small subsets to
assign each feature to the nearest feature centroid and update
the centroids based on the average of the features in the mini-
batch. This process repeats for several iterations or until the
centroids stabilize. The mini-batch k-means uses only a mini-
batch of data to incrementally update the centroids, while the
centroids of standard k-means are recalculated by taking the
mean of all data in the cluster.

µnew
2 (k2) =

1

|Pstr(k2)|
∑

yi∈Pstr(k2)

yi, (5)

where Pstr(k2) = {yi|c2(i) = k2} denotes the 3D coordinate
set of points with the structural label k2. For the category
with semantic label k1 and structural label k2, we compute
the average of the 3D coordinates.
Accelerated Partition Localization with Sampling-based
Learning. The features surrounding a point are more likely
to belong to the same category as the point itself, both at the
structural and semantic levels. Therefore, it is possible to
predict the labels of other local points on the basis of the label
of a given point. Furthermore, partitioning all points in the
scene incurs significant time overhead. In HSC [Li et al.,
2020], labels are assigned to every pixel in all images offline,

resulting in poor transferability and high computational cost.
Inspired by [Brachmann et al., 2023], we perform a sampling
operation on the features of an image.

F =

N⋃
i=1

S(B(I)), (6)

where N is the number of training images, S represents the
sampling process, and B is the feature extractor.

In addition, we train a small classifier on the sampled fea-
ture set F to predict the label of a feature:

ôi = FL(fi;wL), and fi ∈ F, (7)

where FL is a small MLP head. And it is trained with the
cross-entropy loss:

Lc = −
∑
i

(oi)
⊤logôi, (8)

where oi denotes the one-hot label of pixel i. ôi denotes the
corresponding label probabilities.

3.2 Partition-determined Pose Refinement
In this section, we present the process of pose refinement,
which includes partition-aware feature enhancement and dis-
criminable point selection for pose refinement.
Partition-aware Feature Enhancement. The quality of se-
mantic features significantly affects the accuracy of SCR
models [Nguyen et al., 2024]. Although we assign semantic
and structural labels to each feature in Equation 2, the clus-
ters formed of semantic features with the same label are still
not compact enough, as shown in Fig. 2 (b-II). As a result,
semantic features from different categories remain relatively
close in the feature space. The overlap reduces their sepa-
rability, thereby affecting discriminability. To mitigate this,
we introduce a feature fusion module that encodes labels into
structure-semantic partition-aware embeddings and fuse them
with the semantic features fi extracted from the image, to
promote intra-class compactness and inter-class separation:

f̂i = ϕ(fi, yi), (9)



Mapping Time Mapping Size 7 Scenes (D-SLAM poses) 12 Scenes (D-SLAM poses)

AS (SIFT) [2016a] ∼200MB 68.7% 99.6%
D.VLAD+R2D2 [2020] ∼1GB 77.6% 99.7%
hLoc (SP+SG) [2019] ∼2GB 76.8% 99.8%FM

pixLoc [2021]

∼1.5h

∼1GB 75.7% N/A

DSAC* (Full) [2021] 15h 28MB 84.0% 99.2%
DSAC* (Tiny) [2021] 11h 4MB 70.0% 83.1%
SANet [2019] ∼2.3 min ∼550MB 68.2% N/ASC

R
(w

/D
ep

th
)

SRC [2022] 2 min† 40MB 55.2% N/A

SC
R

DSAC* (Full) [2021] 15h 28MB 81.1% 98.8%
DSAC* (Tiny) [2021] 11h 4MB 69.1% 81.6%
GLACE [2024] 23 min 9MB 81.4% 99.6%
ACE [2023] 4 min 4MB 80.8% 99.6%
Ours w/o depth 4 min 9MB 81.3% 99.8%
Ours w/ depth 13 min 14MB 82.5% 99.8%

Table 1: 7Scenes and 12Scenes Results. We report the percentage of frames below a 5cm, 5◦ pose error. Best results in bold for the “SCR”
group, second best results underlined. We list the time and size needed for mapping.

where ϕ represents the fusion function and f̂i represents the
feature fi fused with the embedding. Specifically, ϕ is a small
network module composed of MLP layers.
Discriminable Points Selection for Pose Refinement.
Some fused features extracted from repetitive textures or flat
regions still struggle to be mapped. We present a pixel-wise
discriminability score ŝi, which is generated by our predic-
tion head, along with the predicted 3D coordinate ŷi:

ŷi, ŝi = LH(f̂i;wH), (10)

where LH is a regression head. We define si = 1 + eŝ to
ensure that it is always greater than 1. The fused feature with
a higher discriminability score is considered to have effec-
tive scene information, leading to an accurate prediction re-
sult. Due to the complexity of large-scale scenes, we find
that using si to represent the discriminability of the mapping
from features to 3D coordinates results in a large overall er-
ror. Therefore, we combine si with the reprojection error ℓ̂ to
ensure that si represents the discriminability of a point along
the line connecting the imaging point and the actual pixel co-
ordinates of that point:

ℓ̂ = ||xi −Kh−1ŷi||1, (11)

where h is the pose of the camera and K is the camera cali-
bration matrix. ŷi denotes the predicted 3D scene coordinates
and xi denotes the ground-truth pixel coordinates.

ℓi = siℓ̂i + αln
1

si
, (12)

where ℓ̂i is the reprojection loss of pixel i, and α is a hyper-
parameter that controls the regularization term.

The partial derivatives of Equation 12 can be computed
with respect to its two parameters:

∂ℓi
∂si

= ℓ̂i −
α

si
, (13)

∂ℓi

∂ℓ̂i
= si, (14)

where si is always greater than one to ensure that model
training continually reduces ℓ̂i and to prevent the gradient
from vanishing. And the Equation 13 is positive only when
si > α

ℓi
. It reaches its minimum when si = α

ℓi
. In other

words, after the training process is complete, for the input
features, the output should have a large si and a small ℓ̂i or a
small si and a large ℓ̂i. Therefore, during the prediction pro-
cess, si can be used to assess the reliability of the feature fi.
However, since si varies depending on the magnitude of the
loss, it cannot directly reflect the reliability of the prediction.
For features with very small si, the probability of high relia-
bility is very low. Therefore, an appropriate threshold needs
to be defined to filter out points with low discriminability.
This helps improve accuracy. In the regression head, the pre-
diction layers of ŷi and ŝi share almost all parameters.

3.3 Optimization
Combined with Equation 12, the reprojection loss is calcu-
lated as follows:

LRep =
∑
i∈P

ℓi, (15)

where P is a batch of points from the sampled point set. How-
ever, reprojection loss, which is based solely on observations
of the same landmark from multiple viewpoints, is insuffi-
cient for the model to encode the map information within its
parameters. Euclidean loss, which represents the Euclidean
distance between predicted and ground-truth 3D coordinates,
imposes strong constraints for coordinate prediction:

LEuc =
∑
i∈P

||yi − ŷi||2. (16)

In reprojection loss, the 2D distances of 3D points are cal-
culated after they are projected onto the camera plane, while
the discrepancy between the predicted and true 3D coordi-
nates is minimized by Euclidean loss. The combination of
these two types of losses eliminates the need for implicit tri-
angulation. The total loss function is given by:

L = LRep + βLEuc + γLc. (17)



Cambridge LandmarksMapping
Time

Map
Size Court King’s Hospital Shop St. Mary’s

Average
(cm / ◦)

AS (SIFT) [2016a] ∼200MB 24/0.1 13/0.2 20/0.4 4/0.2 8/0.3 14/0.2
hLoc (SP+SG) [2019; 2020b] ∼800MB 16/0.1 12/0.2 15/0.3 4/0.2 7/0.2 11/0.2
pixLoc [2021] ∼600MB 30/0.1 14/0.2 16/0.3 5/0.2 10/0.3 15/0.2
GoMatch [2022b] ∼12MB N/A 25/0.6 283/8.1 48/4.8 335/9.9 N/A

FM

HybridSC [2019b]

∼35min

∼1MB N/A 81/0.6 75/1.0 19/0.5 50/0.5 N/A

PoseNet17 [2017] 4 – 24h 50MB 683/3.5 88/1.0 320/3.3 88/3.8 157/3.3 267/3.0

A
PR

MS-Transformer [2021] ∼7h ∼18MB N/A 83/1.5 181/2.4 86/3.1 162/4.0 N/A

DSAC* (Full) [2021] 15h 28MB 49/0.3 15/0.3 21/0.4 5/0.3 13/0.4 21/0.3
SANet [2019] ∼1min ∼260MB 328/2.0 32/0.5 32/0.5 10/0.5 16/0.6 84/0.8

SC
R

w
/D

ep
th

SRC [2022] 2 min† 40MB 81/0.5 39/0.7 38/0.5 19/1.0 31/1.0 42/0.7

SC
R

DSAC* (Full) [2021] 15h 28MB 34/0.2 18/0.3 21/0.4 5/0.3 15/0.6 19/0.4
DSAC* (Tiny) [2021] 11h 4MB 98/0.5 27/0.4 33/0.6 11/0.5 56/1.8 45/0.8
GLACE [2024] 23 min 13MB 19/0.1 19/0.3 17/0.5 4/0.3 9/0.3 14/0.3
Poker (4 ACE Ensemble) [2023] 16 min 16MB 28/0.1 18/0.3 25/0.5 5/0.3 9/0.3 17/0.3
ACE [2023] 4 min 4MB 43/0.2 28/0.4 31/0.6 5/0.3 18/0.6 25/0.4
Ours w/o Depth 4 min 9MB 27/0.1 26/0.3 27/0.5 5/0.3 20/0.6 21/0.4
Ours w/ Depth 13 min 14MB 20/0.1 15/0.3 15/0.5 5/0.3 10/0.3 13/0.3

Table 2: Cambridge Landmarks Results. We report median rotation and position errors. Best results in bold for the “SCR” group, second
best results underlined.

The correctness of the label prediction is crucial to local-
ization performance, and thus a large value γ should be set.
We set β = 0.1 to ensure that the model does not overly focus
on fitting the ground-truth 3D coordinates.

4 Experiment
4.1 Datasets
We conduct our experiments on 7Scenes [Shotton et al.,
2013], 12Scenes [Valentin et al., 2016], Cambridge Land-
marks [Kendall et al., 2015] and Wayspots [Brachmann et al.,
2023]. Experiments are conducted on the first three datasets
with RGB and RGB-D. On Wayspots, experiments are con-
ducted with RGB. 7Scenes and 12Scenes are indoor relocal-
ization datasets. They contain 7 and 12 indoor scenes respec-
tively. For each scene, the dataset contains a set of RGB im-
ages along with their camera poses and depth maps.

Cambridge is an outdoor relocalization dataset. It contains
5 outdoor scenes. For each scene, the scale is large, reach-
ing up to hundreds of meters. It also includes factors such
as lighting, pedestrians, cars, and other influences, consistent
with real-world conditions. The dataset is captured using a
handheld device, resulting in complex motion trajectories.

Wayspots is a dataset with 10 small outdoor scenes, cu-
rated from a publicly available corpus of phone scans. The
ground truth poses are reconstructed using SfM, and the orig-
inal phone trajectories are registered to the SfM poses. Our
method outperforms ACE and DSAC* without depth maps.

4.2 Implementation
Architecture. We implement our method in PyTorch, using
the backbone of ACE [Brachmann et al., 2023] as the feature
extractor. Based on the ACE prediction head, we add a label
prediction head and a feature fusion module. Semantic labels
are generated using mini-batch k-means, while structural la-
bels are generated using k-means. We use a 6-layer MLP

head as the label classifier. It takes the features generated by
the feature extractor as input and outputs the labels for each
feature. The feature fusion module consists of several MLP
layers for feature alignment, as well as a conditioning layer
[Li et al., 2020] that performs linear modulation at each po-
sition. The image features and label embeddings are simply
added together to form the partition-aware features.

Scene DSAC* DSAC* ACE Ours(Full) (Tiny)

Cubes 83.9% 68.7% 97.0% 96.7%
Bears 82.6% 73.1% 80.7% 89.1%
Winter Sign 0.2% 0.3% 1.0% 1.6%
Inscription 54.1% 41.3% 49.0% 50.1%
The Rock 100% 99.8% 100% 100%
Tendrils 25.1% 19.6% 34.9% 40.6%
Map 56.7% 53.3% 56.5% 55.9%
Square Bench 69.5% 60.3% 66.7% 71.2%
Statue 0.0% 0.0% 0.0% 0.0%
Lawn 34.7% 20.0% 35.8% 45.4%
Average 50.7% 43.6% 52.2% 55.1%

Table 3: Wayspots Datasets Results. We show accuracy as the
percentage of frames with pose error below 10cm, 5◦. Best results
in bold.

Training. To accelerate the training process, we implement
mini-batch k-means with CUDA. The batch size is set to
400K, and the maximum number of iterations is 200. We
cluster 64 categories at the structural level and 2 classes at
the semantic level. To better adapt to the scale of the scene,
we define α in Equation 9 as 20, which yields relatively good
results for both large and small scenes. Additionally, we
set β in Equation 15 to 0.1. γ is defined as 100 to encour-



Figure 4: Ablation of discriminability scores on Cambridge dataset.
The accuracy varies with changes in the threshold of discriminabil-
ity scores. The horizontal axis represents the score threshold, while
the vertical axis represents the accuracy. The threshold is expressed
as a percentage (%). We present our results on the GreatCourt,
KingsCollege, and OldHospital, along with the MEAN per-
formance across the Cambridge dataset.

age the network to focus on label prediction accuracy. As
described in Section 3.2, the 0.51 percentile of all discrim-
inability scores is used as the threshold for feature filtering.
We compare mapping times of ACE, GLACE, DSAC* and
ours on NVIDIA GeForce RTX 2080 Ti. The results of other
methods come from ACE [Brachmann et al., 2023].

4.3 Analysis
7 Scenes and 12 Scenes. As shown in Tab. 1, our approach
achieves higher accuracy compared to ACE [Brachmann et
al., 2023] and GLACE [Wang et al., 2024]. Mappings with a
time of less than a quarter of an hour are labeled green, while
ones smaller than 15 MB are labeled green. Our method
achieves the best performance of these methods on 12Scenes,
regardless of the existence of depth maps. Additionally, on
7Scenes, our method demonstrates a significant time advan-
tage over DSAC*, while also achieving competitive results.
Cambridge Landmarks. The advantages of our method
are fully demonstrated in large-scale scenes. As shown in
Tab. 2, our method outperforms state-of-the-art SCR meth-
ods [Brachmann et al., 2023; Wang et al., 2024] and is com-
petitive with FM methods. It is worth noting that effectively
utilizing depth maps in large-scale scenes presents significant
challenges, with DSAC* achieving poor performance when
depth maps are provided. The results show that we effectively
combine Euclidean distance loss and reprojection loss. Using
Euclidean distances as a complement and enhancement to the
reprojection error has yielded favorable results.
Wayspots. We also evaluate our method on a small-scale out-
door dataset without depth maps. The main challenge of this
dataset is that the scenes contain a large amount of repetitive
textures or textureless regions. As shown in Tab. 3, on six of
these scenes, we achieved the best performance, with an accu-
racy improvement of almost 10% points in the Lawn scene.
On average, our method achieves an improvement of 2.9%
over ACE, while maintaining a training time of 4 minutes.

4.4 Ablation Study
We also conduct ablation studies on the main design choices,
modules, and training strategies of our approach on the Cam-
bridge Landmarks dataset.

Structural Semantic Feature Dis. Average
Partition Partition Fusion Score (cm / ◦)

✓ ✓ ✓ ✓ 13.0/0.3
× ✓ ✓ ✓ 18.3/0.4
✓ × ✓ ✓ 15.1/0.3
✓ ✓ × ✓ 15.3/0.3
✓ ✓ ✓ × 16.1/0.3

Table 4: Ablation studies on structural partition, semantic partition,
feature fusion and discriminability score. We report median position
and rotation errors on Cambridge Landmarks.

Scene Partitioning Strategies. As shown in Tab. 4, we com-
pare our method w/ and w/o structural and semantic partition-
ing. Without the structural partitioning strategy, performance
suffers due to structural discontinuity. Without the seman-
tic partitioning strategy, performance shows a slight decline.
Our semantic-structural partitioning strategy preserves both
semantic consistency and structural continuity within each
subscene, achieving the best results.
Feature Fusion Module. As shown in Tab. 4, with the fea-
ture fusion module, the prediction error decreases from 16.1
cm to 13.0 cm.
Thresholds for Discriminability Scores. As shown in Fig.
4, the threshold is expressed as a percentage (%) to prevent
inconsistencies in discriminability scores in different scenes.
As the threshold increases, the position error initially de-
creases and then increases. Here, we provide a reasonable
explanation. When the threshold is small, only ambiguous
points are defined as invalid. Excluding these points enhances
the pose estimation. However, as the threshold increases,
many highly distinguishable points are excluded, leading to
instability in the results. As shown in Fig. 2, where c = 0.51,
invalid points are concentrated in repetitive textures and flat
regions such as grass and sky, while valid points are con-
centrated in highly distinguishable areas, such as buildings.
In the other two scenes of the Cambridge Landmark dataset,
ShopFacade and StMarysChurch, the error does not ex-
hibit a clear trend with score variation. However, the er-
ror does not decrease. With the discriminability score, our
method achieves better results.

5 Conclusion
We propose a novel scene coordinate regression method
named Understanding Matters: Semantic-Structural Deter-
mined Visual Relocalization for Large Scenes. We parti-
tion the scene into small parts, ensuring semantic consistency
and structural continuity, further leading the accelerated par-
tition localization with sampling-based learning. Partition-
determined pose refinement is then put forward to reduce the
inaccuracy of pose estimation. Our method supports RGB-D
and RGB camera relocalization in large-scale scenes. We can
achieve the state-of-the-art performance within 13 minutes.
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Jérôme Revaud, Philippe Rerole, Noé Pion, Cesar
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