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Figure 1. Comparisons between existing methods and ours. (a) Existing methods generally fine-tune parameters inherited from old
stages and avoid catastrophic forgetting by keeping distribution of old class features. (b) Our method learns novel classes by tailoring
multi-granular knowledge to input images achieved by adaptive switching prompts. (c) We compare the overall performance evaluated by
Harmonic Mean of mIoU on base and novel classes.

Abstract

Existing incremental few-shot semantic segmentation001
(IFSS) methods often learn novel classes by fine-tuning pa-002
rameters from previous stages. This inevitably reduces the003
distinguishability of old class features, leading to catas-004
trophic forgetting and overfitting to limited new samples. In005
this paper, we propose a novel prompt-based IFSS method006
with a visual prompt pool to store and switch multi-granular007
knowledge across stages, boosting new class learning ca-008
pability. Specifically, we introduce three levels of prompts:009
1) Task-persistent prompts: capturing generalizable knowl-010
edge shared across stages, such as foreground-background011
distributions, to ensure consistent recognition guidance; 2)012
Stage-specific prompts: adapting to unique requirements013
of each stage by integrating its discriminative knowledge014
(e.g., shape difference) with common knowledge from pre-015
vious stages; and 3) Region-unique prompts: encoding016
category-specific structures (e.g., edges) to accurately guide017
the model to retain local details. In particular, we introduce018
a prompt switching mechanism that adaptively allocates019
the knowledge required for base and new classes, avoid-020
ing interference between prompts and preventing catas-021
trophic forgetting and reducing increasing computation.022
Our method achieves new state-of-the-art performance,023

outperforming previous SoTA methods by 30.28% mIoU-N 024
on VOC and 13.90% mIoU-N on COCO under 1-shot. 025

1. Introduction 026

Incremental few-shot semantic segmentation (IFSS) [1–5] 027
aims to extend segmentation models to novel classes con- 028
tinuously using limited new data without accessing old data. 029
As models expand with few-shot samples, IFSS faces two 030
critical challenges: 1) catastrophic forgetting of old classes 031
and 2) overfitting to limited samples of novel classes. To ad- 032
dress the first, existing methods [1, 6–9] reduce old knowl- 033
edge forgetting by preserving the distribution consistency 034
of old class features, but fine-tuning still harms the abil- 035
ity to distinguish old classes when learning novel classes 036
and cannot solve the dilemma of competition between new 037
and old abilities (see Fig. 1 (a)). Regarding the second is- 038
sue, current approaches facilitate the rapid learning of novel 039
classes by tailoring the prototypes of these classes [1–3] or 040
using surrogate modalities to construct inter-class relation- 041
ships [4, 5]. Unfortunately, due to insufficient model gen- 042
eralization ability and inadequate modal alignment, these 043
methods struggle to effectively differentiate novel classes, 044
resulting in confusion between novel and old classes. 045
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Recently, prompt-based incremental learning [10–046
14] has garnered attention in image classification. This047
paradigm maintains an updatable prompt pool for frozen048
pre-trained vision transformers, adding new prompts to ac-049
commodate novel classes and prevent catastrophic forget-050
ting in succeeding stages. However, its application in se-051
mantic segmentation remains challenging. On the one hand,052
embedding multiple background classes into a single con-053
tinuous feature space leads to a decrease in feature dis-054
tinguishability and confusion between unseen classes and055
background features. On the other hand, semantic segmen-056
tation requires collaborative prompts with multiple granu-057
larities to capture both global context and local details, en-058
abling more meticulous segmentation.059

In this paper, we innovatively propose an IFSS method060
based on multi-level switchable prompts (see Fig. 1 (b)).061
Specifically, we first introduce a prompt-based dense pre-062
diction framework that leverages well-structured text se-063
mantics to achieve seamless integration of novel classes064
with existing ones. First, the framework predefines multiple065
background semantics to help the model construct clearer066
background feature boundaries in the feature space, reduc-067
ing overlap between background and foreground features.068
Secondly, it introduces a focus decomposition decoder con-069
sisting of two separators to align text embeddings with070
pixel features of foreground and background, respectively.071
Meanwhile, it further enhances alignment by updating vi-072
sual prompts inserted into the frozen visual encoder, and073
expands the model by adding new prompts. This design074
enables the model to process the salient features of novel075
classes separately and adapt to background changes during076
incremental learning, effectively alleviating the confusion077
between novel and background classes.078

Vanilla visual prompts exhibit several limitations in079
semantic segmentation, including a lack of fine-grained080
contextual information, growing computational costs as081
prompts accumulate, and interference from new prompts082
causing catastrophic forgetting. To address these chal-083
lenges, we propose a method of multi-level switchable084
prompts (MSVP), a prompting strategy to balance knowl-085
edge retention and adaptability across incremental learn-086
ing stages. MSVP consists of three levels of prompts: 1)087
Task-persistent prompts (TP): preserving general knowl-088
edge shared across stages (e.g., foreground-background dis-089
tributions); 2) Stage-specific prompts (SP): adapting to the090
unique requirements of each stage by integrating its dis-091
criminative knowledge (e.g., shape difference) with com-092
mon knowledge from previous stages; and 3) Region-093
unique prompts (RP): encoding category-specific struc-094
tures (e.g., edges) to enhance local detail recovery. TP is095
frozen after base-stage training, preventing general knowl-096
edge from being disrupted by new tasks. SP, initialized097
during base training and continuously expanded, transfers098

generalizable experience to novel tasks, balancing rigid- 099
ity and plasticity. RP is generated for fine-grained infor- 100
mation aggregation of new classes. These three prompts 101
enable multi-granularity knowledge transfer across stages, 102
enhancing learning ability. To further mitigate interfer- 103
ence and control computational costs, we introduce a flexi- 104
ble prompt-switching mechanism that dynamically tailors 105
prompts for input images. Specifically, a pretrained im- 106
age encoder (e.g., DINOv2 [15]) serves as a query func- 107
tion, generating global and local query features. Global fea- 108
tures aggregate stage-specific prompts through an attention- 109
based mechanism, while local features select region-unique 110
prompts via nearest neighbor matching. This mechanism al- 111
leviates interference between prompts from different stages 112
and keeps a constant number of active prompts, thus avoid- 113
ing catastrophic forgetting and increasing computation. 114

Our method outperforms previous methods by a large 115
margin (see Fig. 1 (c)) proving the effectiveness of the 116
prompt-based dense prediction framework and multi-level 117
switchable visual prompts. In conclusion, our contributions 118
are summarized as: 119

1. We propose the first prompt-based IFSS framework, 120
which introduces textual semantics and visual prompts 121
to encode foreground and background classes separately, 122
enabling incremental semantic segmentation. 123

2. We propose multi-level switchable visual prompts that 124
customizes multi-granular knowledge tailored to input 125
images, enhancing the model’s ability to learn novel 126
classes while maintaining knowledge of old classes. 127

3. Extensive experiments demonstrate the effectiveness of 128
the proposed method. Under the 1-shot condition, it 129
achieves 49.1% mIoU-N on VOC and 25.6% mIoU-N 130
on COCO, setting a new SOTA performance. 131

2. Related Work 132

2.1. Incremental Few-Shot Semantic Segmentation 133

Semantic segmentation [16–21] is a basic computer vi- 134
sion task that involves partitioning an image into meaning- 135
ful segments. Incremental few-shot semantic segmentation 136
aims at continuously learning to segment novel categories 137
via a few given samples, without forgetting knowledge of 138
old categories. To achieve this, PIFS [1] and OINet [3] 139
adopt a distillation training paradigm to avoid forgetting old 140
knowledge and an effective prototype updating strategy of 141
novel categories to learn novel classes. EHNet [2] maintains 142
the old knowledge using the hyperclass representation bank 143
and adaptively updates it to combine novel classes. Instead 144
of distillation or storing old knowledge, CaLNet [4] em- 145
ploys a class-agnostic mask proposal to generate masks for 146
both base and novel categories and integrates language em- 147
bedding into visual features to enrich the representation of 148
a few novel categories. However, the mask proposal mod- 149

2



ICCV
#7277

ICCV
#7277

ICCV 2025 Submission #7277. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ule is prone to overfit base data, causing low recall rates for150
novel categories. Different from these methods, we propose151
an innovative prompt-based incremental few-shot learning152
method, which learns multi-level visual prompts and filters153
appropriate prompts for input images, facilitating keeping154
old knowledge and learning novel classes.155

2.2. Prompt-based Incremental Learning156

Prompt-based incremental learning has been studied in im-157
age classification [10–14]. Inspired by VPT [22], these158
methods generally freeze the pre-trained parameters and159
fine-tune only a set of novelly-added learnable prompts at160
the incremental stage without a rehearsal buffer to store past161
pristine examples for experience replay, which achieves re-162
markable performance. L2P [10] is the first method that in-163
troduces this training paradigm, which selects the most rele-164
vant prompts from a prompt pool in a key-value mechanism.165
Instead of merely leveraging task-specific prompts, Dual-166
Prompt [11] proposes to introduce general prompts shared167
by all tasks, achieving novel SOTA performance. Unlike the168
above two methods which learn a pool of key-value pairs169
to select learnable prompts, CODA-Prompt [12] introduces170
a decomposed prompt that consists of learnable prompt171
components that assemble to produce attention-conditioned172
prompts and optimizes the model in an end-to-end fashion.173
As far as we know, this is the first work that introduces174
prompt-based incremental learning methods in IFSS. In par-175
ticular, we propose multi-level prompts to meet the needs of176
dense prediction tasks for multi-granular contexts.177

3. Methods178

In this section, we propose a prompt-based IFSS method179
that expands and updates multi-granularity switchable180
prompts to learn novel classes. It involves a prompt-based181
IFSS framework (see Fig. 2) to generate robust class repre-182
sentation and enable the model to expand by simply adding183
prompts, and an enhanced multi-level prompt generation184
method (see Fig. 3) to provide fine-grained knowledge and185
switch prompts to expand the model dynamically.186

3.1. Prompt-based IFSS Framework187

To avoid the interference of background classes on new188
class learning, we design an IFSS framework based on189
frozen visual-language models, which leverages textual se-190
mantics and visual prompts to encode foreground and back-191
ground classes separately, thus enabling incremental learn-192
ing using prompts. The framework encompasses four key193
components: image encoding, text encoding, pixel decod-194
ing, and targeted optimization objectives.195

Image encoding. An image is encoded into a sequence196
of tokens by a Patch Embedding block as in [23]. Visual197
prompts concatenated with image tokens are input into each198
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Figure 2. The proposed IFSS framework. Image tokens, con-
catenated with visual prompts, are encoded through successive
Transformer blocks. Foreground and background text embed-
dings, along with image features, are fed into the Focus Decompo-
sition Decoder for final predictions. Two pixel separators are used
to distinguish foreground from background and identify specific
foreground classes, respectively. The cross-modal query engine
(CMQE) generates queries with robust fused modal information.

Transformer block as: 199

[xi+1; po] = fi(xi, p
(i)) (1) 200

where xi denotes the input tokens output by layer i − 1, 201
xi+1 denotes the output of layer i, po denotes the encoded 202
p(i) which will not be input into next layer. These visual 203
prompts are composed of learnable vectors and are distinct 204
between layers, providing an effective way to inject knowl- 205
edge into pre-trained models. In the incremental stage, the 206
expanded visual prompts are concatenated with the original 207
ones as supplementary to recognize novel classes, as: 208

[xi+1; p
′
o] = fi(xi, [p

(i),t−1; p(i)e ]) (2) 209

where p(i)e denotes the expanded prompts of layer i of stage 210
t − 1, p(i),t−1 denotes the prompts of stage t − 1, and [·; ·] 211
denotes the concatenation operation. We take this vanilla 212
prompt extension approach as our baseline. 213

Text encoding. To discriminate background pixels, in- 214
stead of adding a class of ”background”, we pre-define a 215
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series of background classes, such as ”sky”, ”room”, etc,216
to pre-isociate backgroud into possible classes. In line with217
previous works, class names are formatted as ”a photo of218
CLASS NAME” and encoded using the frozen CLIP Text219
Encoder to obtain embeddings for both background and220
foreground classes, denoting as Tbg ∈ RCbg×D and Tfg ∈221
RCfg×D, where Cbg ,Cfg represent the number of intro-222
duced background classes and foreground classes.223

Pixel Decoding. We propose a focus decomposition de-224
coder (FDD) to predict pixel semantics by aligning pixel225
features with class embeddings derived from the language226
modality. This decoder is composed of a cross-modal query227
engine (CMQE), inspired by [24], which generates class228
queries with robust generalization capabilities, along with229
two separators: one for identifying foreground and back-230
ground pixels and the other for classifying the semantics231
of foreground pixels. The dual-decoder architecture en-232
ables the model to separately process salient features of233
new classes and adapt to background variations during in-234
cremental learning, making it easier to seamlessly embed235
features of novel classes into existing class representations.236

CMQE integrates visual and linguistic information to237
generate robust class-specific queries, enhancing segmen-238
tation performance on both base and novel classes. Denot-239
ing Tfg = {t0, t1, ..., tCfg

} and g ∈ RD, the class-specific240
query can be denoted as Qfg = {q̂0, q̂1, ..., q̂i, ..., q̂Cfg

},241
where q̂i is calculated as:242

q̂i = MLP([ti ⊙ g; ti]) (3)243

where g denotes the global feature, ti denotes the class em-244
bedding of the i-th class, ⊙ denotes the Hadamard product245
and MLP is used to align the dimension with pixel features.246
The background queries Qbg is calculated the same as Qfg .247

Subsequently, class-specific queries Qbg, Qfg are for-248
ward to BG isolation separator and FG refinement separa-249
tor to align with pixel features, respectively. We employ250
a cascaded cross-attention structure to facilitate this align-251
ment, where Qbg and Qfg are the query, and pixel features252
P ∈ RHW×d are the keys and values. Finally, we take the253
scaled dot-product attention in the separator’s last block as254
the final semantic masks, as:255

Mbg =
ϕbg
q (Q̂bg)ϕ

bg
k (P)T

√
dk

,Mfg =
ϕfg
q (Q̂fg)ϕ

fg
k (P)T

√
dk

,

(4)

256

where Q̂bg, Q̂fg denote queries aligned by cross-attention257
blocks before the last block, ϕ denotes the linear pro-258
jection, dk is the dimension of the keys, and Mbg ∈259
RHW×Cbg ,Mfg ∈ RHW×Cfg are the scores of each class.260

Optimization objectives. Since we pre-define multiple261
background classes while the ground truth includes only a262
generic ’background’ label, we propose a background ag-263
gregation loss Lba, to address this discrepancy. We regard264

the maximum scores of all background classes at each pixel 265
as final background scores M̂bg ∈ RHW×1, and we re- 266
gard the maximum logits of all foreground classes at each 267
pixel to represent the likelihood of being a foreground pixel 268
M̂fg ∈ RHW×1, as: 269

M̂bg =max
i

Mbg
j,i, j = 1, 2, ...,HW 270

M̂fg =max
i

Mfg
j,i, j = 1, 2, ...,HW. (5) 271

An intuitive and vanilla way is to optimize two separators 272
independently, as: 273

Lvan =Lseg(y, [1− M̂fg;Mfg]) 274

+ α1Lseg(y, [M̂bg; 1− M̂bg]), (6) 275

where y ∈ RHW×(Cfg+1) denotes the one-hot labels of 276
all classes including background and y ∈ RHW×2 denotes 277
the one-hot labels of foreground and background, α1 is the 278
weight to balance representation of FG and BG, and Lseg 279
denotes the widely used pixel-wise classification loss as 280
in [24] [18], the combination of focal loss [25] and dice 281
loss [26]. To mitigate the potential issue of misaligned opti- 282
mization directions, we introduce a more flexible loss func- 283
tion that prevents feature confusion among novel, old, and 284
background classes during incremental learning, as: 285

Lba = Lseg(y, [M̂bg;Mfg]) + α2Lseg(y, [M̂bg; M̂fg]),
(7) 286

which jointly constrains the masks output by the two heads, 287
on the one hand to distinguish the specific categories of 288
foreground pixels as the first term of Lba, and on the other 289
hand to separate foreground and background pixels to al- 290
leviate the problem of class imbalance as the second term. 291
This dual constraint encourages accurate pixel classification 292
and facilitates model expansion. 293

3.2. Multi-level Switchable Visual Prompts 294

Simply adding visual prompts during incremental learn- 295
ing has shown improvements (see Sec. 4.4). However, it 296
presents three challenges: 1) computation increase: an in- 297
crease in visual prompts raises computational complexity, 298
2) information dilution: stage-wise incremental prompts 299
dilute the information of each stage, leading to knowl- 300
edge forgetting and a diminished capacity to learn novel 301
classes, and 3) insufficient granularity: a single level of 302
prompts fails to meet the multi-granularity contextual needs 303
essential for semantic segmentation. To address these, we 304
propose to switch appropriate multi-level visual prompts 305
tailored for input images, as shown in Fig. 3. It in- 306
cludes task-persistent prompts, stage-specific prompts, and 307
region-unique prompts, alongside a flexible prompt switch- 308
ing mechanism. 309

Task-persistent Prompts (TP). According to the the- 310
ory of Complementary Learning Systems (CLS) [27, 28], 311
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Figure 3. The pipeline of the proposed multi-level switchable visual prompts. Images are inputs into the query function to obtain global
query features qg and pixel-wise query features qc. Stage-specific prompts ps are generated by an attention-like integration way through
qg . Region-unique prompts pl are generated by nearest neighbor matching through clustered qc. Image tokens, concatenated with these
selected prompts, are input into pre-trained models to produce predictions. At incremental training stage, the model extends by fine-tuning
novelly-added stage-specific prompts and region-unique prompts.

humans learn continually via the synergy between the hip-312
pocampus and the neocortex. The former learns pattern-313
separated representation on specific experiences while the314
later focuses on learning more general and transferable315
representation to enhance the capability of learning future316
stages. Inspired by this, we propose task-persistent prompts317
to mitigate catastrophic forgetting and capture generaliz-318
able representation to facilitate encoding shared seman-319
tic structures or relationships for novel classes, including320
foreground-background distribution, shared contours and321

edges between categories, and so on. Specifically, p(i)g ∈322
RLg×D are learnable vectors with pre-defined sequence323
length Lg and embedding dimension D, which is trained324
during base training stage to learn generalizable knowledge325
and frozen during incremental stages.326

Stage-specific Prompts (SP). Although TP maintains327
invariant core knowledge, they lack flexibility for rapid328
adaptation in incremental stages. To address this, we329
propose stage-specific prompts that dynamically guide the330
model to adapt fine-grained distinctions to learn new stages.331
However, limited training samples hinder learning robust332
stage-specific representations. To overcome this, we de-333
sign a knowledge inheritance mechanism that integrates dis-334
criminative information from current stages with preserved335
prior knowledge. This is achieved through an attention-like336
mechanism that aggregates stage-specific prompts based on337

the correlation between knowledge required for inputting 338
images and learned knowledge across stages. 339

Specifically, we take a pre-trained image encoder (e.g., 340
DINOv2 [15]) as query function to obtain the global fea- 341
tures qg ∈ R1×D to aggregate relevant knowledge stored 342
in stage-specific prompts S(i) ∈ RM×Ls×D, where M de- 343
notes the number of current training stage and Ls denotes 344
the number of learnable vectors for each stage. We then cal- 345
culate the correlation γ between the knowledge required by 346
the input image and knowledge learned from all stages, as: 347

γ = Softmax(< qg ⊙A(i),K(i) > /τ) ∈ RM (8) 348

where < · > denotes cosine similarity, ⊙ denotes element- 349
wise multiplication, τ denotes the temperature coefficient, 350
K(i) ∈ RM×D are keys corresponding to each stage- 351
specific prompt. To allow the query to focus on specific pat- 352
terns, an attention vector A(i) ∈ RM×D corresponding to 353
each stage-specific prompt is added. For example, a prompt 354
designed for recognizing car textures can focus on details 355
like headlights while ignoring unrelated features. Addition- 356
ally, in contrast to [12], where the weight vector is derived 357
directly from the cosine similarity, we employ a normal- 358
ized similarity computed with softmax as the weight vector, 359
which ensures that stage-specific prompts unrelated to the 360
input image are not aggregated into the final prompts. Note 361
that all the vectors S(i),A(i),K(i) are learnable vectors. 362
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After obtaining γ, stage-specific prompts p(i)s for the in-363
put image are aggregated as:364

p(i)s = γ · S(i) = γ1S
(i)
1 + γ2S

(i)
2 + ...+ γMS

(i)
M , (9)365

where p
(i)
s ∈ RLs×D. Thus, knowledge required by each366

image is integrated according the similarity between qg and367
K(i). For example, assuming that the input image contains368
class ’COW’, the knowledge required to segment this class369
is similar to that of class ’SHEEP’ learned from stage s. γ370
between the query and the key corresponding to stage s and371
current stage can be calculated as 0.8, 0.2. It means most372
of knowledge required by the input image can be inherited373
from stage s and combined with discriminative information374
learned from current stage.375

Region-unique Prompts (RP). As a dense prediction376
task, semantic segmentation requires more fine-grained377
knowledge of typical structures for specific categories used378
for storing local details. To this end, we propose to query379
the best region-unique prompts conditioned on the distance380
between the keys and local features of the input image.381

Firstly, we obtain the pixel-wise features qc from the382
query function. Secondly, querying a prompt for pixel-wise383
features undoubtedly increases the computational complex-384
ity and generates redundant noise. Instead, we apply the385
KMeans algorithm to cluster these features into h cate-386
gories and let the clustered centroids qv ∈ Rh×D repre-387
sent the local information of the image. Thirdly, qv is388
utilized to query local prompts corresponding to the key389

K
(i)
l ∈ RN×D closest to qv , where N = Cbg + Cfg . We390

have a set of local prompts L(i) ∈ RN×D for layer i. This391
process can be formalized as:392

qv = KMeans(qc, h) (10)393

idx = argmax1≤j≤NqvK
(i)
l,j (11)394

p
(i)
l = L(i) [idx, :] (12)395

where p
(i)
l ∈ Rh×D denotes the selected local prompts396

when given the query qc. Thereby, a prompt is assigned to397
each background and foreground class and is queried using398
the image’s local information via nearest matching.399

However, the argmax operator prevents gradient back-400
propagation, necessitating additional supervision. To en-401
able end-to-end training, we employ a Gumbel Softmax402
operation to replace the above procedure, similar to [29],403
which can be simply formulated as404

p
(i)
l = Gumbel Softmax(qvK

(i)
l )L(i). (13)405

The detailed process is described in Appendix. A.1.406
Furthermore, we incorporate attention masks into these407

visual prompts to prevent prompts specific to individual408
pixel segments from influencing other segments. When409

given pixel-wise query features qc, the feature similarity be- 410
tween pixels can be calculated as Sc ∈ RHW×HW . The 411
pixels with similarity higher than the threshold ζ are the 412
pixels prompted by region-unique prompts, while the rest 413
are the masked pixels, which can be formulated as: 414

Ŝc =

{
0, Sc > ζ

−∞, Sc <= ζ,
(14) 415

where a higher ζ means that the area prompted by the region 416
is smaller, while the opposite means it is larger. Finally, 417
extracting the mask corresponding to centroids qv from Ŝc 418
and inserting it into the attention mask of the self-attention 419
structure can limit the scope of the region-unique prompts. 420

Incremental training. During incremental training, 421
task-persistent prompts, stage-specific prompts of previous 422
stages and region-unique prompts of old classes remain 423
frozen. We expand S(i),A(i),K(i) to learn knowledge of 424

new stages and expand K
(i)
l ,L(i) to learn local details of 425

new classes, and exclusively train the newly expanded com- 426
ponents. The detail is formulated in Appendix A.5. 427

The multi-level switchable prompts generate multi- 428
granular contextual information essential for semantic seg- 429
mentation,enhancing new-class adaptability. And it ad- 430
dresses two critical limitations of the conventional method 431
by simply adding prompts: 1) preventing information in- 432
terference and dilution through adaptive prompts selection 433
thus reducing catastrophic forgetting, (See Tab. 3), and 2) 434
alleviating increasing computation by maintaining fixed in- 435
put sequence length (See Appendix B.6). 436

4. Experiments 437

4.1. Datasets 438

We conduct experiments on Pascal VOC 2012 [40] and 439
COCO [41, 42] as in previous works [1, 2, 4]. VOC con- 440
tains 20 classes and one background class. In COCO, we 441
use the 80 classes and the residual classes are labeled as 442
background. We consider 15 and 60 of the classes as base 443
and 5 and 20 classes as novel, for VOC and COCO respec- 444
tively. The protocols start with pretraining on base classes 445
and multiple steps on novel classes in line with [1, 4], i.e., 446
5 steps of 1 novel class on VOC and 4 steps of 5 novel 447
classes on COCO. We divide the VOC dataset into 4 folds 448
of 5 classes each and the COCO dataset into 4 folds of 20 449
classes each. We run experiments 5 times, with each ex- 450
periment considering one fold at a time as the set of novel 451
classes. In each setting, we explore incremental steps using 452
1, 2, or 5 images. Following the previous methods [1, 2, 4], 453
we evaluate the performance via three metrics based on 454
the mean Intersection over Union (mIoU): mIoU on base 455
classes (mIoU-B), mIoU on novel classes (mIoU-N) and the 456
Harmonic Mean (HM) of the two. 457
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Table 1. Comparison with SOTA methods on VOC. Bold/Underline
indicate SoTA/The Second Best.

Method
1-shot 2-shot 5-shot

Base Novel HM Base Novel HM Base Novel HM

FS
C

WI [30] 66.6 16.1 25.9 66.6 19.8 30.5 66.6 21.9 33.0
DWI [31] 67.2 16.3 26.2 67.5 21.6 32.7 67.6 25.4 36.9
RT [32] 49.2 5.8 10.4 36.0 4.9 8.6 45.1 10.0 16.4

FS
S AMP [33] 58.6 14.5 23.2 58.4 16.3 25.5 57.1 17.2 26.4

SPN [34] 49.8 8.1 13.9 56.4 10.4 17.6 61.6 16.3 25.8

IL

LwF [35] 42.1 3.3 6.2 51.6 3.9 7.3 59.8 7.5 13.4
ILT [36] 43.7 3.3 6.1 52.2 4.4 8.1 59.0 7.9 13.9
MiB [6] 43.9 2.6 4.9 51.9 2.1 4.0 60.9 5.8 10.5

IF
L

SubReg [37] 55.4 13.2 21.3 56.7 12.7 20.8 59.7 13.5 22.0
Const [38] 58.4 12.1 20.0 61.3 13.4 22.0 62.2 17.2 27.0
FACT [39] 57.0 14.6 23.2 57.4 15.1 23.9 58.8 15.2 24.2
PIFS [1] 64.1 16.9 26.7 65.2 23.7 34.8 64.5 27.5 38.6
OINet [3] 66.1 18.0 28.3 66.3 25.2 36.5 66.4 28.2 39.6
CaLNet [4] 74.2 17.4 28.2 74.4 26.1 38.6 74.7 30.1 42.9
SRAA [5] 66.4 18.8 29.3 65.1 26.4 37.6 64.3 28.7 39.7
Ours 73.04 49.08 58.71 73.21 52.19 60.93 73.36 58.13 64.86

Table 2. Comparison with SOTA methods on COCO.
Bold/Underline indicate SoTA/The Second Best.

Method
1-shot 2-shot 5-shot

Base Novel HM Base Novel HM Base Novel HM

FS
C

WI [30] 46.3 8.3 14.0 46.5 9.3 15.4 46.3 10.3 16.8
DWI [31] 46.2 9.2 15.3 46.5 11.4 18.3 46.6 14.5 22.1
RT [32] 38.4 5.2 9.1 43.8 10.1 16.4 44.1 16.0 23.5

FS
S AMP [33] 36.6 7.9 13.1 36.0 9.2 14.6 33.2 11.0 16.5

SPN [34] 40.3 8.7 14.3 41.7 12.5 19.2 41.4 18.2 25.3

IL

LwF [35] 41.0 4.1 7.4 42.7 6.5 11.3 42.3 12.6 19.4
ILT [36] 43.7 6.2 10.8 47.1 10.0 16.5 45.3 15.3 22.8
MiB [6] 40.4 3.1 5.8 42.7 5.2 9.3 43.8 11.5 18.2

IF
L

SubReg [37] 38.4 8.0 13.2 39.5 10.1 16.0 40.0 10.3 16.4
Const [38] 39.0 8.2 13.6 40.6 11.4 17.8 41.1 11.3 17.7
FACT [39] 37.9 8.6 14.0 38.9 11.7 18.0 39.4 12.3 18.7
PIFS [1] 40.4 10.4 16.6 40.1 13.1 19.8 41.1 18.3 25.3
OINet [3] 41.4 11.7 18.2 41.5 14.4 21.4 41.5 19.7 26.7
CaLNet [4] 48.4 10.6 17.4 48.5 13.4 21.0 48.6 18.6 26.9
SRAA [5] 40.7 11.3 17.7 40.5 15.2 22.1 41.0 19.7 26.6
Ours 48.85 25.60 33.59 48.52 28.05 35.54 48.61 32.38 38.86

4.2. Implementation Details458

In this work, we choose ViT-B [23] as the image encoder,459
and pretrained ViT-B of DINOv2 [15] as our query function,460
which can output accurate qg and qc to query appropriate461
prompts. Meanwhile, to make training stable and provide462
meaningful initial keys for region-unique prompts, we take463
text embeddings encoded by CLIP text encoder in a man-464
ner of CoOP [43] as the keys for region-unique prompts,465
which is detailed in Appendix. A.2. Stage by stage, the466
backbone and the query function are frozen, all prompts467
as well as the decoder are trainable. During incremen-468
tal training, we freeze all parameters but expand and up-469
date the stage-specific prompts and region-unique prompts,470
which is described in Appendix. A.5. We add orthogonal-471
ity constraints to parameters of stage-specific prompts to472
avoid interference between existing and new knowledge and473
reduce catastrophic forgetting. During base training, the474
model is trained for 20k iterations on VOC and 80k itera-475
tions on COCO. During incremental training, for both VOC476
and COCO, the model is trained for 400 iterations per step.477

4.3. Compare with State-of-the-art methods478

We mainly conduct comparison between few-shot classifi-479
cation methods (FSC) [30–32], few-shot semantic segmen-480
tation methods (FSS) [33, 34], incremental learning meth-481
ods (IL) [37–39], and incremental few-shot semantic seg-482
mentation methods (IFSS).483

Evaluation on VOC. The results of 1-shot, 2-shot and484
5-shot experiments are presented in Tab. 1. In general,485
our method achieves novel SOTA performance on novel486
classes of 49.08% , 52.19% and 58.13% mIoU for 1-shot,487
2-shot, and 5-shot scenarios respectively. Additionally, our488
method also attains the best overall performance with HM489
scores of 58.71% and 60.93% and 64.86%. Comparing our490
methods with other methods, it is evident that FSC meth-491

ods excel in retaining knowledge of base classes, achiev- 492
ing competitive performance on these classes, since FSC 493
methods, such as WI [30] and DWI [31], expand classi- 494
fiers using class prototypes, thereby preventing the corrup- 495
tion of learned knowledge. In contrast, FSS and IL meth- 496
ods perform poorly on both base and novel classes. While 497
meta-learning helps FSS methods adjust to novel classes, 498
they struggle to retain old knowledge. And IL methods re- 499
quire many novel samples, resulting in low performance on 500
few-shot tasks. Our method remarkably outperforms prior 501
SOTA IFSS method SRAA [5] on novel classes by 30.28%, 502
25.79%, and 29.43% mIoU in 1-shot, 2-shot and 5-shot sce- 503
narios respectively. 504

Evaluation on COCO. The results are presented 505
in Tab. 2. In general, our method achieves a new SOTA per- 506
formance on novel classes of 25.60% , 28.05% and 32.38% 507
mIoU for 1-shot, 2-shot, and 5-shot scenarios respectively. 508
Although methods like PIFS [1], OINet [3], and CaLNet [4] 509
enhance novel class learning with refined prototypes or tex- 510
tual knowledge, they remain limited in representing pixel 511
features for novel classes. In contrast, our method cus- 512
tomizes contextual information per image, effectively im- 513
proving novel class representation. 514

4.4. Ablation Studies 515

Table 3. Ablation on Multi-level
Prompts.

SA TP SP RP
1-shot

Base Novel HM
✓ 65.80 47.32 55.05

✓ ✓ 72.82 48.45 58.18
✓ ✓ 63.26 47.82 54.46

✓ ✓ 71.08 46.70 56.36
✓ ✓ ✓ 73.04 49.08 58.71

Table 4. Ablation on the
Framework.

method
1-shot

Base Novel HM

Ours 73.04 49.08 58.71
- FDD 72.86 44.89 55.55
- Lba 70.53 48.73 57.63
- CMQE 70.50 22.20 33.76
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Ablation on different prompts. We simply add visual516
prompts (SA) of each layer of the proposed framework to517
learn novel classes, which is regarded as our baseline as518
in Eq. (2). We perform ablations on SA and the proposed519
prompts. To ensure fairness, each experiment uses the same520
total number of prompts. Tab. 3 reports results on the 1-shot521
VOC benchmark. The baseline achieves 65.80% mIoU-B522
and 47.32% mIoU-N by expanding with a fixed number of523
prompts, yielding competitive results. Adding TP and SP524
improves performance of both base and novel classes. TP525
conveys universal knowledge across stages, while SP pro-526
vides discriminative representations of the current stage and527
inherits relevant knowledge from previous ones, enhancing528
learning ability. With finer-grained RP, novel class perfor-529
mance increases to 49.08% mIoU-N, highlighting the bene-530
fits of multi-granular contextual information. Additionally,531
using only SP and RP leads to a performance decline, as SP532
may weaken generalizable knowledge from previous stages533
when adapting to new ones. Introducing TP preserves this534
knowledge from the data-rich base stage, improving over-535
all performance. We further prove MSVP shows stronger536
learning capability for novel classes with more training537
samples in Appendix B.1.538

Ablation on the framework. We validate the impor-539
tance of each component of the framework by removing540
them one at a time, as in Tab. 4. It can be observed that541
replacing FDD with a single head markedly reduces perfor-542
mance, particularly on novel classes. That’s because FDD543
decompose semantic segmentation into foreground refine-544
ment and background isolation, making the model focus on545
the former and reducing background interference. Lba out-546
performs Lvan by 2.51% mIoU on base classes, for the rea-547
son that Lvan optimizes the two separators independently548
causing misaligned optimization directions. Besides, as549
CMQE generates queries with high generalization ability, it550
enhances the model’s capacity to expand, with an improve-551
ment of 26.88% mIoU on novel classes.552

Ablation on the number of task-persistent prompts553
Lg . We conduct an experiment on the number of task-554
persistent prompts as shown in Fig. 4 (a). The graph shows555
that the performance for both base and novel classes ini-556
tially increases, peaking at 24 prompts, and then declines as557
the prompt count increases further. This trend occurs be-558
cause few prompts provides insufficient shared knowledge,559
making it harder to prompt the model effectively. Con-560
versely, using too many prompts causes the model to overfit561
on the base classes, which restricts its flexibility and reduces562
its capacity to generalize to novel classes.563

Ablation on the number of vectors of per stage-564
specific prompt Ls. We conduct an experiment on the565
number of vectors of per stage-specific prompt as shown in566
Fig. 4 (b). Our method achieves its best performance when567
Ls is 8. This is because when the number of prompts is in-568
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Figure 4. Ablation studies on hyperparameters.

sufficient, stage-specific knowledge is lacking. Conversely, 569
when the number of prompts is excessive, the model is 570
prone to overfitting a small number of novel class samples. 571

Ablation on the cluster h and the threshold ζ. We con- 572
duct two experiments on the hyper-parameters of region- 573
unique prompts, as shown in Fig. 4 (c) and (d). Fig. 4 (c) 574
indicates that the novel class achieves the highest perfor- 575
mance when h is 2. Both too few and too many clusters 576
result in decreased performance. Specifically, a low h leads 577
to insufficient granularity in region-unique level prompts, 578
while a high h results in overly fine granularity, which can 579
introduce redundant information. Fig. 4 (d) indicates that 580
when ζ is 0.7, performance on novel classes gets best. A 581
low ζ increases the area of the region-unique prompt, aug- 582
menting incorrect pixels, while a high ζ reduces the prompt 583
area, resulting in too few pixels being augmented. 584

More ablation studies and visualizations are shown in 585
Appendix B and C, including ablation on orthogonality 586
constraints, query function and computation efficiency. 587

5. Conclusion 588

In this paper, we propose a novel multi-level prompt-based 589
IFSS method that incorporates a visual prompt pool to 590
store and switch multi-granular knowledge across different 591
stages to enhance the incremental learning. We first design 592
a prompt-based IFSS framework, which leverages textual 593
semantics and visual prompts to encode foreground and 594
background classes separately, enabling incremental se- 595
mantic segmentation using prompts. Further, we introduce 596
multi-level visual prompts with a switching mechanism 597
to provide the model with multi-granularity contextual 598
information tailored to the image content, thus instruct- 599
ing the model to learn novel classes effectively without 600
forgetting old classes. Extensive experiments on vari- 601
ous datasets demonstrate the effectiveness of our method. 602

603
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Incremental Few-Shot Semantic Segmentation via
Multi-Level Switchable Visual Prompts

Supplementary Material

A. Implementation Details812

In this section, we first elaborate on the process of region-813
unique prompt switching using Gumbel Softmax and the814
design of the keys Kl of region-unique prompts. Secondly,815
we outline the settings of the proposed method, including816
the optimizer, learning rate, hyper-parameters, to ensure817
the reproducibility of the method. Thirdly, we describe818
the overall data flow and model structure. Finally, we ex-819
plain the ways to perform incremental learning to expand820
the model. Due to the double-blind principle, we will open821
source the code at our github after the review.822

A.1. Detailed Region-unique Prompt Switching823
Process824

To enable end-to-end training, we employ a825
Gumbel Softmax operation to switch the appropri-826
ate region-unique prompts. We first calculate the similarity827
between qv and the keys of region-unique prompts, as828

dk,j =
exp(qv,kKl,j + ϵk)∑N

m=1 exp(qv,kKl,m + ϵm)
(A1)829

where {ϵk} are i.i.d random samples drawn from the830
Gumbel(0,1) distribution. We compute the region-831
unique prompt to assign a centroid to by taking the one-hot832
operation of it argmax over all the keys. Since the one-833
hot assignment operation via argmax is not differentiable,834
we instead use the straight through trick in to compute the835
assignment matrix as836

d̂ = one-hot(dargmax) + d− sg(d) (A2)837

where sg is the stop gradient operator. With the straight838
through trick, d̂ has the one-hot value of assignment to a839
single region-unique prompt, but its gradient is equal to840
the gradient of d, which makes the whole procedure dif-841
ferentiable and end-to-end trainable. After assigning qv to842
keys of region-unique prompts, we can easily get the region-843
unique prompts response to qv by merging all prompts, as:844

p
(i)
l,k =

∑N
j=1 d̂k,jL

(i)
j∑N

j=1 d̂k,j
. (A3)845

This approach effectively solves the problem of gradient846
backpropagation by transforming the argmax process into a847
discrete variable sampling process.848

Table A1. Ablation on the design of keys of region-unique
prompts.

Method
1-shot

Base Novel HM

Rand 72.14 47.53 57.30

CoOP 73.04 49.08 58.71

A.2. The Design of the Keys of Region-unique 849
prompts 850

As described in Sec. 4.2, to ensure stable training and pro- 851
vide meaningful initial keys for region-unique prompts, we 852
leverage text embeddings generated by the CLIP text en- 853
coder following the CoOP[43] approach. Specifically, each 854
region-unique prompt, which corresponds to a particular 855
class, is assigned a key that aids in aligning the local fea- 856
tures of input images. For each key, we use the CLIP text 857
encoder to produce stable and meaningful embeddings by 858
feeding it a prompt σ = [V ]1[V ]2...[V ]n[CLASS], where 859
[V ]i represents vectors with the same dimension as word 860
embeddings, n is a hyperparameter specifying the number 861
of context tokens, and [CLASS] denotes the class name’s 862
word embedding. By processing the prompt σ through the 863
text encoder, we obtain a key tailored to each region-unique 864
prompt. This method provides an effective initial value for 865
the keys, mitigating the convergence issues often caused 866
by random initialization, especially in few-shot scenarios. 867
Moreover, it incorporates text modality knowledge, reduc- 868
ing the risk of overfitting to the limited samples in few-shot 869
novel classes. 870

We further carry out an experiment to compare the per- 871
formance with and without the keys generated by CoOP 872
on VOC, as shown in Tab. A1. The table shows that with 873
this key generation method, the model’s ability to learn new 874
classes is significantly enhanced. 875

A.3. Settings of the Proposed Method 876

Table A2. Settings of different datasets.

Dataset Lg Ls h ζ

VOC 24 8 2 0.7

COCO 40 16 4 0.7

During base training, the backbone and the query func- 877
tion are frozen, all prompts as well as the decoder are 878
trainable. We use AdamW as optimizer with β1 = 0.9, 879
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β2 = 0.9, weight decay 0.01, and a polynomial learning880
rate policy with a linear learning rate warmup. The model881
is trained for 20k iterations on VOC and 80k iterations on882
COCO with a learning rate of 2 × 10−4 and batch size of883
8. During incremental training, we freeze all parameters884
but update the expanded stage-specific prompts and region-885
unique prompts. For both VOC and COCO, the model is886
trained for 400 iterations per step with a learning rate of887
2×10−4 without the learning rate warmup. We compute the888
results via single-scale full-resolution images without any889
post-processing. The settings of model hyper-parameters890
on different datasets are shown in Tab. A2.891

Additionally, the pre-defined background classes are892
"sky", "wall", "tree", "wood", "grass",893
"road", "sea", "river", "mountain",894
"sands", "desk", "bed", "building",895
"cloud", "lamp", "door", "window",896
"wardrobe", "ceiling", "shelf",897
"curtain", "stair", "floor", "hill",898
"rail", "fence".899

A.4. Detail Data Flow and Model Structure900

(1) Prompts Generation: The images are input into pre-901
trained query function (DINOv2) to get global and local902
query features qg and qc which are used to match optimal903
prompts, formulated by Eq. (8), Eq. (9) and Eq. (13). (2)904
Image and Text Encoding: Image tokens concatenated with905
TP, SP and RP are input into each block of CLIP image en-906
coder (ViT-B), which outputs the class token g and pixel907
features P . The names of each BG and FG classes are input908
into CLIP text encoder to get text embeddings Tbg and Tfg .909
(3) Pixel Decoding: CMQE integrates the image global fea-910
ture g with text embeddings Tfg and Tbg to generate class-911
specific queries Qfg and Qbg as formulated by Eq. (3). FG912
isolation separator and BG refinement separator share the913
same structures, composed of three cross-attention blocks.914
For each block, pixel-wise features P are input as the keys915
and values. Qfg and Qbg are input as the queries of the first916
block and the output of each block is input as the queries917
of the next block. The last block outputs the final masks918
(Eq. (4)).919

A.5. Incremental Learning920

We elaborate on the ways in which the model is extended921
during the incremental stage as follow. During incremen-922
tal training stage, we need to expand three components: 1)923
text embeddings of novel classes, 2) slots of stage-specific924
prompts, 3) slots of region-unique prompts.925

For expanding text embeddings, we just add novel926
classes to foreground text embeddings, which can be de-927

notes as T t
fg ∈ R(Ct−1

fg +Ne)×D, where Ne denotes the num-928

ber of novel classes, Ct−1
fg denotes the number of fore-929

ground classes of stage t− 1.930

For expanding slots of stage-specific prompts, we con- 931

catenate the expanded A
(i)
e ∈ R1×D,K

(i)
e ∈ R1×D,S

(i)
e ∈ 932

R1×Ls×D to matrix of stage t − 1. Thereby, the stage- 933
specific prompts integration of stage t can be formulated 934
as: 935

γ =Softmax(< qg ⊙ [A(i),t−1;A(i)
e ], 936

[K(i),t−1;K(i)
e ] > /τ) 937

p(i),ts =γ[S(i),t−1;S(i)
e ] ∈ RLs×D (A4) 938

where A(i),t−1,K(i),t−1,S(i),t−1 denotes the attention ma- 939
trix, key matrix and stage-specific prompts of stage t−1 for 940

layer i, p(i),ts denotes the integrated stage-specific prompts. 941
For expanding slots of region-unique prompts, we con- 942

catenate the expanded K
(i)
le ∈ RNe×D,L

(i)
e ∈ RNe×D with 943

matrix of stage t − 1. Thereby, the region-unique prompts 944
integration of stage t can be formulated as: 945

p
(i),t
l =Gumbel Softmax(qv[K

(i),t−1
l ;K

(i)
le ]) 946

[L(i),t−1;L(i)
e ], (A5) 947

where Ne denotes the number of novel classes, 948
K

(i),t−1
l ,L(i),t−1 denote the all keys and prompts of 949

stage t − 1, and p
(i),t
l denotes the integrated region-unique 950

prompts. 951
Note that due to the adoption of a switching mechanism, 952

the number of visual prompts input to the model remain 953
consistent at different stages, effectively preventing a sig- 954
nificant increase in computational complexity. 955

B. More Ablation Studies 956

In this section, we first conduct experiments to demonstrate 957
the effectiveness of MSVP compared to the baseline, and 958
prove the effectiveness of orthogonality constraints. Sec- 959
ondly, we perform an ablation study on the scale and types 960
of query functions. Thirdly, we prove the computation ef- 961
ficiency of MSVP. Finally, we carry out ablation experi- 962
ments on the COCO dataset to further validate the proposed 963
method. 964

B.1. Effectiveness of MSVP 965

To further demonstrate the effectiveness of the proposed 966
MSVP, we compare the performance under different novel 967
shots between the baseline and MSVP. As shown in Fig. A1, 968
the performance of the baseline model does not increase 969
as much as the proposed model with the growth of the 970
shot. This demonstrates that MSVP effectively boosts 971
the model’s capacity to learn novel classes by efficiently 972
switching prompts. In contrast, the baseline model suffers 973
from diluted information as more visual prompts are added, 974
leading to inadequate learning of novel classes. Mean- 975
while, the baseline’s performance on base classes signif- 976
icantly outperforms that of the model with MSVP, and 977
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Figure A1. Performance comparison between the baseline and the
proposed method on VOC under different shots.

Table A3. Ablation on Lorth.

Lorth
1-shot

Base Novel HM

wo 67.35 48.62 56.47

w 73.04 49.08 58.71

improves with more novel class samples. The proposed978
MSVP stores knowledge of different stages in independent979
visual prompts and switches them dynamically, thus avoid-980
ing knowledge of old stages corrupted.981

B.2. Effectiveness of Orthogonality Constraints982

We add orthogonality constraints to parameters of stage-983
specific prompts to avoid interference between existing and984
new knowledge and reduce catastrophic forgetting. In this985
section, we conduct an experiment on this loss to prove its986
effectiveness as in Tab. A3. The table shows that adding987
this loss function significantly enhances the performance988
of the base class by 5.69% mIoU, suggesting that it effec-989
tively minimizes interference from new knowledge on ex-990
isting knowledge and helps prevent forgetting of previously991
learned classes.992

B.3. Ablation on Query Function993

We choose pretrained ViT-B of DINOv2 as the query func-994
tion to produce high quality global query features and local995
query features. In this section, we conduct an ablation study996
on the scale of the query function, as shown in Tab. A4.997
The model’s performance improves significantly when the998
query function transitions from ViT-S to ViT-B. However,999
further scaling from ViT-B to ViT-L results in minimal per-1000
formance gains, indicating that the larger model size does1001
not substantially enhance effectiveness in our method.1002

We also perform experiments to evaluate different types1003
of query functions, including MAE[44], BEiT[45], and1004

Table A4. Ablation on the scale of DINOv2.

Model
1-shot

Base Novel HM

ViT-S 71.62 48.57 57.88

ViT-B 73.04 49.08 58.71

ViT-L 72.68 48.76 58.36

Table A5. Ablation on different query functions.

Pre-train method
1-shot

Base Novel HM

MAE 50.44 39.00 43.98

BEiT 42.95 32.69 37.12

DINOv2 73.04 49.08 58.71

DINOv2[15], as summarized in Tab. A5. For these exper- 1005
iments, we use ViT-B with various pre-training methods. 1006
The results show that DINOv2 achieves the best perfor- 1007
mance, likely due to its ability to provide both global and 1008
local features with high generalizability, thereby switch- 1009
ing appropriate prompts accurately. In contrast, MAE and 1010
BEiT yield relatively inferior results, which may stem from 1011
their limitations in effectively capturing image-specific dif- 1012
ferences across different stages. Consequently, they strug- 1013
gle to generate tailored prompts that align with the unique 1014
characteristics of images at various stages. 1015

B.4. Ablation of Different Prompts on COCO. 1016

We also carry out an experiment of different prompts on 1017
COCO to prove the effectiveness of our method, as shown 1018
in Tab. A6. When simply adding prompts as Eq. (2), 1019
the baseline achieves 44.98% mIoU-B and 23.72% mIoU- 1020
N, which has outperformed previous SOTA methods by 1021
a large margin. Replacing the vanilla prompt expand- 1022
ing strategy with the proposed task-persistent prompts and 1023
stage-specific prompts, the performance increases by 3.28% 1024
mIoU-B and 0.93% mIoU-N. That’s because task-persistent 1025
prompts provide transferable knowledge across stages and 1026
stage-specific prompts extract relevant knowledge from 1027
other stages and enhance it with discriminative knowledge 1028
of the current stage, which offers a flexible way to switch 1029
knowledge of different stages, thereby achieving better abil- 1030
ities to keep old knowledge and learn new classes. Fur- 1031
thermore, with finer-grained region-unique prompts, per- 1032
formance on novel classes further rises to 25.60%, for the 1033
reason that region-unique prompts provide the model with 1034
knowledge of local details of specific classes. The table also 1035
shows that excluding task-persistent prompts leads to a per- 1036
formance decrease on both base and novel classes. It proves 1037
that general knowledge can not only help models maintain 1038
old abilities but also assist models in learning new abilities. 1039
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Table A6. Ablation of Different Prompts on COCO.

SA TP SP RP
1-shot

SA Novel HM
✓ 44.98 23.72 31.06

✓ ✓ 48.26 24.65 32.63
✓ ✓ 41.85 24.78 31.13

✓ ✓ 44.24 20.54 28.05
✓ ✓ ✓ 48.85 25.60 33.59

Table A7. Ablation of the Framework on COCO.

Method
1-shot

Base Novel HM
Ours 48.85 25.60 33.59
- FDD 48.18 23.13 31.25
- Lba 45.81 21.92 29.65
- CMQE 44.72 16.57 24.18
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Figure A2. Comparison of MSVP and Base on FPS and Memory.

B.5. Ablation of the Framework on COCO.1040

We also carry out an experiment of the framework on1041
COCO to prove the effectiveness of our method, as shown1042
in Tab. A6. Replacing FDD with a single decoder results1043
in a decrease in performance on novel classes. That’s be-1044
cause FDD enables the model to process the salient fea-1045
tures of novel classes and adapt to background changes sep-1046
arately, alleviating the confusion between novel classes and1047
the background. Additionally, jointly optimizing the two1048
separators with Lba leads to a better performance, which1049
mitigates the misaligned optimization directions caused by1050
Lvan. It can also be concluded from the table that CMQE1051
plays an important role in maintaining base knowledge and1052
learning novel classes by generating generalizable class em-1053
beddings for base classes and novel classes.1054

B.6. Computation Efficiency.1055

We conduct an experiment to compare FPS and memory us-1056
age between MSVP and Baseline as the incremental phase1057
increases, on an NVIDIA A40 GPU. MSVP exhibits signifi-1058

cant advantages in memory efficiency compared to the base- 1059
line. This improvement stems from our prompt-switching 1060
mechanism, which effectively maintains a constant input se- 1061
quence length to the transformer model throughout progres- 1062
sive training stages, thereby avoiding memory accumula- 1063
tion. While the baseline shows marginally higher FPS dur- 1064
ing early incremental stages (<75 stages) due to the intro- 1065
duced query operation of MSVP, our method demonstrates 1066
superior computational sustainability as training progresses. 1067
Notably, the baseline suffers a sharp FPS degradation as 1068
its growing prompt inventory quadratically increases trans- 1069
former’s computational complexity (O(n2)). 1070

1-Shot

Training Samples Test Samples Results on Few-shot Incremental Learning Ground Truth

Step 1 Step 2 Step 3 Step 4 Step 5

Figure A3. Step-by-step segmentation results of our method.
Zoom in for better visualization.

C. Visualization 1071

In Fig. A3, we visualize our step-by-step segmentation re- 1072
sults for novel classes. The figure shows that our method 1073
effectively retains old class knowledge, enabling the model, 1074
even after multiple training rounds, to correctly predict old 1075
class samples. Additionally, our approach demonstrates 1076
strong novel class learning capability, as it can generalize 1077
to other test samples by learning from just one novel class 1078
sample. The visualization results effectively demonstrate 1079
the validity of the proposed prompt-based IFSS method. 1080
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