
ICCV
#15742

ICCV
#15742

ICCV 2025 Submission #15742. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Adaptive Prompt Learning via Gaussian Outlier Synthesis for
Out-of-distribution Detection

Anonymous ICCV submission

Paper ID 15742

Abstract

Out-of-distribution (OOD) detection aims to distinguish001
whether detected objects belong to known categories or not.002
Existing methods extract OOD samples from In-distribution003
(ID) data to regularize the model’s decision boundaries.004
However, the decision boundaries are not adequately regu-005
larized due to the model’s lack of knowledge about the dis-006
tribution of OOD data. To address the above issue, we pro-007
pose an Adaptive Prompt Learning framework via Gaussian008
Outlier Synthesis (APLGOS) for OOD detection. Specifi-009
cally, we leverage the Vision-Language Model (VLM) to ini-010
tialize learnable ID prompts by sampling standardized re-011
sults from pre-defined Q&A pairs. Region-level prompts are012
synthesised in low-likelihood regions of class-conditional013
gaussian distributions. These prompts are then utilized to014
initialize learnable OOD prompts and optimized with adap-015
tive prompt learning. Also, OOD pseudo-samples are syn-016
thesised via gaussian outlier synthesis. Similarity score017
between prompts and images is utilized to calculate con-018
trastive learning loss in high-dimensional hidden space.019
The aforementioned methodology regularizes the model to020
learn more compact decision boundaries for ID and OOD021
categories. Extensive experiments show that our proposed022
method achieves state-of-the-art performance with less ID023
data on four mainstream datasets.024

1. Introduction025

Deep learning has made significant progress in recent years.026
It encompasses a multitude of research domains, including027
object detection [39, 51], autonomous driving [40, 50] and028
image generation [20, 41]. Various existing deep learning029
methods rely on large-scale datasets to regularize the model,030
enabling it to learn sufficient data distribution and supervi-031
sion signals of the training data. In real-world scenarios,032
where the number of unknown categories is significantly033
greater than that in the training dataset, the model lacks034
knowledge about the distribution of unknown data in prac-035
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Figure 1. Quantitative comparisons with state-of-the-art OOD de-
tection methods in terms of FPR95, AUROC and mAP metrics.
Note that larger points denote higher mAP, and the numerical val-
ues are also given next to each point. Our APLGOS provides re-
markable performance boost on all the metrics.

tical applications and struggles to learn compact decision 036
boundaries that effectively distinguish between known and 037
unknown categories. During the testing phase, unknown 038
categories is likely to result in erroneous predictions ac- 039
companied by a high confidence score. This leads to severe 040
safety risks in critical safety domains such as autonomous 041
driving. 042

OOD detection [5, 21, 23, 32] is a research hotspot in 043
recent years, which aims to enable the detectors to accu- 044
rately distinguish not only seen categories, but also unseen 045
categories during training. The detectors need to learn com- 046
pact decision boundaries during training, ensuring low un- 047
certainty for ID categories while maintaining high uncer- 048
tainty away from them. To achieve this, existing OOD de- 049
tection methods [12, 13, 33–35] provide sufficient supervi- 050
sion of OOD data for model training by extracting OOD 051
pseudo-samples from ID data, helping the model better dis- 052
tinguish between known and unknown categories. How- 053
ever, due to the unpredictable quality of OOD pseudo- 054
samples extracted from the ID data and the requirement 055
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for a large volume of ID data, the detector is not ade-056
quately regularized to learn compact decision boundaries057
for both ID and OOD categories. Therefore, synthesis-058
based methods [6, 18] have been proposed to generate OOD059
pseudo-samples. They synthesize out-of-distribution RGB060
images directly or virtual outliers in lower-dimensional hid-061
den space, which to some extent mitigate the limitations of062
extracting pseudo-samples from ID data. In recent years,063
Vision-Language Models (VLMs) [29, 30, 47], owing to064
their powerful pre-trained knowledge and representation ca-065
pabilities, have achieved considerable success and been ap-066
plied across numerous fields.067

In this paper, we propose APLGOS, a synthesis-based068
vision-language method that leverages the powerful learn-069
ing and representation capabilities of VLMs to assist070
in synthesizing virtual outliers using ID data. APL-071
GOS mainly consists of Prompt Learning Module (PLM)072
and Text-Image Alignment Module (TAM). PLM em-073
ploys two distinct strategies to generate ID prompts and074
OOD pseudo-prompts, respectively, to assist in regular-075
izing the model. For ID data, we first provide a pre-076
defined Q&A pair and templates with location and cate-077
gory names, e.g., “Q: What is in the region with coor-078
dinates <loc1>,<loc2>,<loc3>,<loc4>? A: That’s a079
<CLS>.”, guiding the detector to incorporate location coor-080
dinates for more fine-grained observation. We guide Chat-081
GPT through multiple rounds of standardization for the082
aforementioned prompts to generate a set of statements for083
the model to sample during training. The statements sam-084
pled from this set are then directly used to initialize the085
learnable ID prompts. In order to ensure that the gen-086
erated OOD pseudo-samples better fit the distribution of087
OOD data, PLM generates OOD prompts through adaptive088
prompt learning via Gaussian Outlier Synthesis, where it089
samples virtual OOD prompts in the low-likelihood region090
of the class-conditional Gaussian distribution of ID prompts091
in high-dimensional hidden space. TAM calculates sim-092
ilarity scores for images and prompts and combines con-093
trastive learning to align multimodal data, thereby regular-094
izing model’s decision boundaries.095

In summary, the key contributions of this paper are as096
follows:097

• We propose a vision-language OOD detection model098
namely APLGOS. Through adaptive prompt learning,099
APLGOS generates adaptive region-level prompts for ID100
and OOD images. Based on contrastive learning, APL-101
GOS calculates similarity for images and prompts to en-102
sure model learn compact decision boundaries.103

• ID prompts, OOD prompts and OOD images are all vir-104
tual. ChatGPT standardizes pre-defined Q&A pairs with105
templates and instructions. Then we sample them to ini-106
tialize learnable ID prompts. We synthesise virtual OOD107
prompts and OOD images in low-likelihood regions of108

class-conditional gaussian distribution. 109
• Extensive experiments on mainstream datasets show that 110

APLGOS achieves state-of-the-art performance in terms 111
of FPR95, AUROC, AUPR and mAP metrics. Com- 112
pared to the baseline method [6], when using Berkley 113
DeepDrive-100k as ID dataset and OpenImages as OOD 114
dataset, our method reduces FPR95 by 7.76%. 115

2. Related Work 116

2.1. Out-of-distribution Detection 117

OOD detection [14, 25, 35, 38] aims to learn a compact 118
decision boundary on training data that allows model to de- 119
tect not only the categories with low uncertainty, that have 120
been seen in training phase, but also the unseen categories 121
with high uncertainty. Since in physical world, the num- 122
ber of unseen categories for the model is much bigger than 123
seen categories, using large-scale dataset to regularize the 124
model [13, 26] is difficult to fully cover all unseen cate- 125
gories of physical world. Liang et al. [22] use temperature 126
scaling and add small perturbations to the input to separate 127
the softmax score distributions between ID and OOD im- 128
ages. Based on energy theory [17], the work [25] replace 129
traditional softmax score with energy score to distinguish 130
ID and OOD images. Recently, outlier based methods are 131
proposed, which utilize outliers exposure [28, 46] or gen- 132
erate virtual outliers in pixel [9, 18] space or hidden fea- 133
ture space [6] to regularize the model. Nevertheless, they 134
are inefficient and the quality of the synthesised virtual out- 135
liers is worrying. With the emergence of vision-language 136
models,vision-language model-based methods are proposed 137
to address open-vocabulary problems [27, 36, 38]. To the 138
best of our knowledge, no prior work has explored the use 139
of prompt learning in OOD detection task. 140

2.2. Prompt Learning 141

Prompt learning is to view pre-trained language models, 142
such as BERT [4], GPT [1, 2] and BLOOM [16] as knowl- 143
edge bases, and use them to provide text prompts to opti- 144
mize the performance of downstream tasks. In contrast to 145
hand-designed prompts, the goal of prompt learning is to 146
adaptively provide accurate prompts for downstream tasks. 147
Zhou et al. [49] propose CoOp, which models a prompt’s 148
context words with learnable vectors while keeping pre- 149
trained parameters fixed. To prevent CoOp from overfit- 150
ting base classes, Zhou et al. [48] introduce CoCoOp, which 151
uses conditional context optimization to generate an input- 152
conditional token for each image, but this approach intro- 153
duces high computational costs.At the same time, due to the 154
effectiveness of prompt learning, there are various methods 155
incorporating it with computer vision tasks [3, 8, 44, 45]. 156
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Figure 2. The proposed APLGOS network architecture. Prompt learning module is responsible for using ChatGPT to standardize Q&A
pairs with guidance introduction and templates, then it generates a statements set. The module samples prompts from the statements
set to initialize the learnable ID prompts, and synthesises virtual OOD prompts in low-likelihood regions of class-conditional gaussian
distributions. The Text-Image Alignment Module computes similarity scores to align text and image embeddings in the hidden space.

3. Methodology157

We propose an Adaptive Prompt Learning framework via158
Gaussian Outlier Synthesis for OOD Detection. As shown159
in Figure 2, APLGOS mainly consists of two modules, i.e.160
PLM and TAM. PLM leverages ChatGPT to standardize161
pre-defined Q&A pairs using guidance instructions and pre-162
defined templates, generating a set of statements. During163
training, PLM samples statements from this set to initialize164
the learnable prompts. For ID categories, APLGOS directly165
employs the initialized prompts as input to the text encoder,166
whereas for OOD categories, it synthesizes virtual OOD167
prompts and images within the low-likelihood region of the168
class-conditional Gaussian distribution of ID classes in the169
hidden space. Notably, only ID images are sourced from170
the dataset, while ID prompts, OOD prompts, and OOD im-171
ages are all virtual and synthesized. This approach enables172
the model to enhance the quality of pseudo-samples with173
less ID data while better capturing the distribution of OOD174
data. Additionally, through contrastive learning, TAM com-175
putes similarity scores to align images and prompts within176
the high-dimensional hidden space.177

For clarity, we omit the batchsize of data in the follow-178
ing description and consider a single batch as an example.179
The input to APLGOS consists of two modalities: detected180
region images [X1,X2, ...,Xb] extracted from a raw RGB181
image X ∈ RC×H×W , and text prompts T ∈ Rb×l. Here,182
C, H , and W denote the number of channels, height, and183
width of the image, respectively. b represents the number184
of detected region images from a single raw RGB image.185

l indicates the length of the text prompts. The text input 186
is given as T = [T1,T2, ...,Tb], where the <CLS> token 187
in the sampled prompts has been replaced with the corre- 188
sponding labels. 189

3.1. Prompt Learning Module 190

ID Prompts. To enhance the model’s representation abil- 191
ity and more effectively regularize its decision bound- 192
aries, we generate a set of statements for the Prompt 193
Learning Module to sample from, rather than using a 194
single invariant statement to initialize the learnable ID 195
prompts. Specifically, we first predefine a Q&A pair, 196
such as “Q: What is in the region with coordinates 197
<loc1>,<loc2>,<loc3>,<loc4>? A: That’s a <CLS>.”. 198
We then input this Q&A pair into ChatGPT for standardiza- 199
tion. During this process, we provide predefined templates 200
and guiding instructions to ensure that ChatGPT standard- 201
izes the Q&A pair accordingly. The standardization process 202
is illustrated below with an example prompt: 203

Ω0 = g(QA +M+G0), Ωi = g(Ωi−1 +Gi), (1) 204

where Ωi denotes generated prompt result in ith round, QA 205
denotes Q&A pair, M denotes predefined template, Gi de- 206
notes guidance instruction for ith standardizing round and 207
g is ChatGPT’s standardizing operation. We collect the 208
statements from these t rounds to obtain statements set Ωt. 209
These statements are then used for sampling during the ini- 210
tialization of learnable ID prompts. 211
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We introduce no extra character sets and vocabularies,212
and the generated prompts are represented in natural lan-213
guage. The learnable prompts follow the paradigm e.g.214
<loc1><loc2><loc3><loc4><V1><V2>· · · · · ·<Vm>215
<CLS>, which is initialized by sampled prompt.216
<loc1><loc2><loc3><loc4> are learnable location to-217
kens, which implicitly introduce location information into218
the prompts. <V1><V2>· · ·<Vm> are learnable descrip-219
tion tokens, and m is its length. <CLS>is class token.220

T̂ = fθ(h(r(g(Ωt−1 +Gt)))), (2)221

where T̂ = [T̂1, T̂2, ..., T̂b], T̂i ∈ Rl
′

, t is rounds of stan-222
dardizing operations, l

′
is length of prompt embedding.223

Here, for ease of understanding, we use one T̂i as an exam-224
ple to describe the subsequent operations, and standardize225

T̂i as T̂, T̂ ∈ Rl
′

. fθ is transformer-based text encoder, h226
is tokenizer, r is replacement function for <CLS> token.227
We replace <CLS> directly with the category label of the228
object in the current region (i.e., the corresponding ID class229
label).230

OOD Prompts. In the hidden space, distinct decision231
boundaries should be established between ID and OOD232
prompts. In the OOD detection task, we refine the de-233
cision boundaries as much as possible. By incorporating234
prompt learning, we synthesize region-level OOD pseudo-235
prompts using Gaussian outlier synthesis. Specifically, the236
Prompt Learning Module synthesizes virtual OOD prompts237
in the low-likelihood regions of class-conditional Gaussian238
distributions in hidden space. This allows the Text-Image239
Alignment Module to perceive the distribution difference240
between ID and OOD categories in hidden space and align241
images and prompts through contrastive learning. Provided242
that the quantity of data is large enough, we assume the243
ID prompts embedding from text encoder form a class-244
conditional multivariate Gaussian distribution:245

pθ(T̂|y = i) = N (µ̂i, σ̂), (3)246

where θ is the parameter of text encoder fθ, y is ground truth247
label, µ̂i is empirical gaussian mean of ith in-distribution248
category prompts embedding, and i ∈ {1, 2, ...,K}, K rep-249
resents the number of in-distribution classes, N (µ̂i, σ̂) =250

1√
2πσ̂

e−
(T̂−µ̂i)

2

2σ̂2 , σ̂ denotes the tied covariance matrix.251

First, we calculate the empirical gaussian mean of ith ID252
category prompts embedding as follows:253

µ̂i =
1

|QT |

|QT |∑
j=1

T̂i,j , (4)254

where |QT | denotes the length of the prompts queue QT255
used to buffer ID prompts, and QT ∈ RK×|QT |.256

Then we calculate the tied covariance matrix of ID 257
prompts embedding as follows: 258

σ̂ =
1

K|QT |

K∑
i=1

|QT |∑
j=1

(T̂i,j+αε−µ̂i)(T̂i,j+αε−µ̂i)
T+βE,

(5) 259
where ε is learnable matrix initialized by randomly gaussian 260
noise, E is unit matrix, α, β are hyper-parameters, σ̂ is tied 261
covariance matrix, and σ̂ = [σ̂1, σ̂2, ..., σ̂K ]T . 262

After computing the empirical Gaussian mean µ̂ and 263
the tied covariance matrix σ̂, the Prompt Learning Module 264
samples virtual OOD prompts from the low-likelihood re- 265
gions of the class-conditional Gaussian distributions in hid- 266
den space, based on the estimated multivariate distributions. 267
Then, it selects the top-k prompts with the lowest probabil- 268
ity from this ϵ-likelihood region: 269

Vi = Ψ(T̂, µ̂i, σ̂), (6) 270

where Ψ is class-conditional gaussian distribution prob- 271
ability density and satisfies the following relation: 272

Ψ(T̂, µ̂1, µ̂2,..., µ̂K , σ̂) =

Ψ(T̂, µ̂1, σ̂)Ψ(T̂, µ̂2, σ̂) · · ·Ψ(T̂, µ̂K , σ̂),
(7) 273

For each Ψ(T̂, µ̂i, σ̂), its expansion can be formulated 274
as: 275

Ψ(T̂, µ̂i, σ̂) = {vi|
1

√
2π

l
′
2 |σ̂| 12

e−
1
2 (vi−µ̂i)

T σ̂−(vi−µ̂i)<ϵ},

(8) 276
where vi ∼ N (µ̂i, σ̂) denotes sampled virtual prompt 277

using ith ID category prompts, i = {1, 2, ...,K}, and “−” 278
denotes matrix inverse operation. The final synthesised 279

OOD prompts are denoted as T̂
†
. 280

3.2. OOD Virtual Images Synthesis 281

Existing methods [12, 13, 33–35] directly extract OOD 282
pseudo-samples from ID data. However, the extracted 283
pseudo-samples are unable to fit the distribution of OOD 284
data adequately. In this paper, we also use synthesis method 285
to get OOD data. The principle of synthesizing OOD im- 286
age is similar to Eq. 3 to Eq. 8. Compared with synthesiz- 287
ing OOD prompts, the input for calculating the empirical 288
Gaussian mean and tied covariance is ID image embedding 289
instead of ID prompts embedding. We define the final syn- 290
thesised virtual images using current ID image embedding 291

queue QI as X̂
†
. 292

3.3. Text-Image Alignment Module 293

We first encode ID and OOD images and prompts to gen- 294
erate their embeddings. Then, the similarity score between 295
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prompts embedding and image embeddings is computed as296
follows:297

S =
||X̂||p(||T̂||p)T

eω
, (9)298

where X̂ is embedding of detected region images in the sec-299
ond training phase, and X̂ = [X̂1, X̂2, ..., X̂b], X̂i is one300

detected region image embedding, X̂i ∈ Rl
′

. In the third301
training phase, the input is embedding of synthesised vir-302

tual image X̂
†

instead of X̂, ω is hyper-parameters for scal-303
ing. S is similarity score. The prompts embedding in Eq. 9304
is ID prompts embedding T̂ in the second phase and synthe-305

sised OOD prompts embedding T̂
†

in the third phase, || · ||p306

is normalization, in addition, ||X̂i||p = X̂i/

√∑l′

j=1 |X̂i,j |2307

and ||T̂
†
i ||p = T̂

†
i/

√∑l′

j=1 |T̂
†
i,j |2.308

3.4. Loss Function309

Alignment loss Lalign constrains the contrastive learning310
process during alignment, receiving ID or OOD data at311
different training phases. The similarity score between312
prompts embedding and image embeddings is used to cal-313
culate the alignment loss:314

Lalign(S, y) = −
K

′∑
i=1

tilog(Ri(S)), (10)315

where ti represents category label of the object contained316
in currently detected region. Ri represents the standardized317
prediction score. We treat all OOD categories as a single318
category, i.e., “background”. During the training phase, if319
the ID dataset contains a total of K classes, each detected320
region image is required to calculate similarity scores with321
(K + 1) text prompts, i.e., K ′ = K + 1.322

Previous methods typically generate simple prompts323
that lack location information, such as “a photo of a324
<CLS>” [48, 49], or provide brief prompts with relative lo-325
cation information for the entire image [42]. We argue that326
these prompts lack the fine granularity needed for the model327
to learn essential location information in vision-language-328
based detection tasks. Lloc is designed to implicitly incor-329
porate location information, enabling the generation of fine-330
grained prompts for detected image regions.331

Lloc =
λ

Φ(Bg)
[

z∑
i=1

(
√

Bgi
−
√
u(Br)i)

2]
1
2 , (11)332

where Bg represents ground truth coordinates of detected333
image region, Br represents regression results of coordi-334
nates, and Bg ∈ Rb×4, Br ∈ Rb×4, z = 4, u represents335
calculating absolute values, Φ represents calculating the di-336
mension of vector, λ is hyper-parameter.337

After incorporating the classification loss Lcls and the 338
location loss Lloc, the total loss can be expressed as: 339

L =ξ1[γ1τLid
align + γ2(1− τ)Lood

align]

+ γ3ξ2[κLid
loc + (1− κ)Lood

loc ]

+ γ4ξ3Lcls + γ5ξ4Lreg +W.

(12) 340

Note that γ1,γ2,γ3,γ4,γ5 are the hyper-parameters, ξ,τ ,κ 341
determine the loss functions used in the current training 342
phase and ξi = {0, 1}, τ = {0, 1}. In order to bet- 343
ter regularize the model, in the actual implementation of 344
L, we also add the regularization term W , and Wi = 345
[∆2

(F(O1),B1)i
+∆2

(G(O2),B2)i
], W = 1/N

∑N
i=1 Wi, ∆2

(a,b) 346

represents (a − b)2, F ,G represent regression blocks, Oi 347
represents regularization matrix, Bi represents bias matrix 348
of regression block, i = {1, 2}. 349

4. Experiments 350

4.1. Datasets 351

We verify our proposed APLGOS on four commonly used 352
datasets: PASCAL VOC, Berkley DeepDrive-100k, MS- 353
COCO2017 and OpenImages. The PASCAL VOC [7] 354
dataset contains 9963 images in 20 categories, split into 355
5011 training and 4952 test images, with a resolution of 356
500 × 375 (375 × 500). The BDD-100k [43] dataset con- 357
sists of 100,000 high-resolution driving scenarios with de- 358
tailed road object annotations. The MS-COCO2017 [24] 359
dataset includes 328,000 images across 91 categories and 360
2.5 million instance tags, with 82 categories having more 361
than 5000 tags. OpenImages V4 [15] contains 9.2 million 362
images across 500 categories, commonly used for classifi- 363
cation, object detection, and visual relationship detection. 364
The above four datasets comprehensively evaluate our pro- 365
posed method from different aspects and perspectives. 366

4.2. Implementation Details 367

We employ transformer as the backbone for the text en- 368
coder in the Prompt Learning Module. For the image en- 369
coder, we employ ResNet50 [10] and RegNetX4.0 [31] as 370
backbones, respectively. We use ChatGPT-3.5 to standard- 371
ize Q&A pairs. The ratio of ID data used for training to 372
synthesised OOD data is approximately 1:1. We use PAS- 373
CAL VOC and Berkeley DeepDrive-100K as ID datasets, 374
and evaluate on two OOD datasets containing subsets ran- 375
domly sampled from MS-COCO2017 and OpenImages, re- 376
spectively. To ensure the fairness of the test, we manu- 377
ally exclude the categories in the OOD dataset that overlap 378
with those in the ID dataset before evaluating on the OOD 379
dataset. We set B = 16 and train APLGOS on PASCAL 380
VOC for 18,000 iterations, and set B = 8 to train on Berke- 381
ley DeepDrive-100k for 90,000 iterations. We set the learn- 382
ing rate lr = 0.01. The length of prompt embedding and 383
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ID Dataset Method FPR95 ↓ AUROC ↑ AUPR ↑ mAP (ID) ↑
OOD: MS-COCO2017 / OpenImages

PASCAL VOC

MSP [11] 70.99 / 73.13 83.45 / 81.91 - 48.7
ODIN [22] 59.82 / 63.14 82.20 / 82.59 - 48.7

Mahalanobis [19] 96.46 / 96.27 59.25 / 57.42 - 48.7
Energy score [25] 56.89 / 58.69 83.69 / 82.98 - 48.7

Gram matrices [32] 62.75 / 67.42 79.88 / 77.62 - 48.7
Generalized ODIN [14] 59.57 / 70.28 83.12 / 79.23 - 48.1

CSI [35] 59.91 / 57.41 81.83 / 82.95 - 48.1
GAN-synthesis [18] 60.93 / 59.97 83.67 / 82.67 - 48.5
VOS-ResNet50* [6] 48.28 / 52.14 87.65 / 85.3 98.76 / 96.98 47.8
VOS-RegX4.0* [6] 50.53 / 50.27 88.10 / 87.08 98.92 / 97.80 49.1

APLGOS (ResNet50) 47.16 / 49.66 87.89 / 85.91 98.80 / 97.54 48.8
APLGOS (RegNetX4.0) 45.96 / 47.10 89.19 / 88.49 99.00 / 98.30 49.4

Berkeley DeepDrive-100k

MSP [11] 80.94 / 79.04 75.87 / 77.38 - 31.2
ODIN [22] 62.85 / 58.92 74.44 / 76.61 - 31.2

Mahalanobis [19] 57.66 / 60.16 84.92 / 86.88 - 31.2
Energy score [25] 60.06 / 54.97 77.48 / 79.60 - 31.2

Gram matrices [32] 60.93 / 77.55 74.93 / 59.38 - 31.2
Generalized ODIN [14] 57.27 / 50.17 85.22 / 87.18 - 31.8

CSI [35] 47.10 / 37.06 84.09 / 87.99 - 30.6
GAN-synthesis [18] 57.03 / 50.61 78.82 / 81.25 - 31.4
VOS-ResNet50* [6] 46.97 / 31.25 84.97 / 89.82 99.67 / 99.86 35.7
VOS-RegX4.0* [6] 42.82 / 27.55 86.36 / 92.11 99.76 / 99.93 37.0

Dynamic Prototypes [37] 45.72 / 35.05 85.14 / 88.92 - 31.5
APLGOS (ResNet50) 41.10 / 23.30 87.36 / 92.87 99.73 / 99.89 35.8

APLGOS (RegNetX4.0) 39.48 / 19.79 87.47 / 93.59 99.79 / 99.94 37.6

Table 1. Comparison with the state-of-the-art methods on mainstream datasets. Here we use PASCAL VOC and Berkeley DeepDrive-100k
as ID datasets, MS-COCO2017 and OpenImages as OOD datasets, respectively. “-” denotes that the data is not available.

Strategy FPR95 ↓ AUROC ↑ AUPR ↑ mAP (ID) ↑
OOD: MS-COCO2017 / OpenImages

(a) VOS-RegNetX4.0* [6] 50.53 / 50.27 88.10 / 87.08 98.82 / 97.80 49.1
(b) [6] + <CLS> 50.12 / 49.50 88.56 / 86.83 98.91 / 97.79 48.2
(c) [6] + “a region of a” + <CLS> 51.31 / 50.96 88.20 / 86.73 98.98 / 97.85 48.7
(d) [6] + RP + <CLS> 49.50 / 49.40 88.49 / 86.73 98.82 / 97.77 48.9
(e) [6] + <LOC>+ “a region of a” + <CLS> 49.56 / 47.60 88.23 / 87.07 98.89 / 97.87 49.1
(f) [6] + <LOC>+ RP + <CLS> (Ours) 45.96 / 47.10 89.19 / 88.49 99.00 / 98.30 49.4

Table 2. Ablation studies for prompt strategies. “+” denotes the combination of strategies. “RP” represents sampled prompts from
statements set, which is standardized by ChatGPT using Q&A pair and guidance instructions. (b) denotes the simplest prompt strategy,
i.e., only providing the ground-truth label for the ID data, (for synthesised OOD image, we define its label as “background”). (c) denotes the
original prompt strategy of CLIP [30]. (d) denotes that we replace the prompts in CLIP [30] with the statements by ChatGPT standardizing
the Q&A pairs. (e) denotes adding location tokens <LOC> to (c). (f) represents the prompts of our proposed APLGOS.

length of image embedding l
′
= 1024. We use 1000 sam-384

ples to estimate the class-conditional Gaussian distribution385
of ID image embeddings and 10000 samples for ID prompts386
embedding (i.e., |QI | = 1000, |QT | = 10000). The total387
length l of the standardized Q&A pair does not exceed 77.388
In the experimental tables, “*” denotes results from local389
replication based on open-source code. “↓” indicates that390
a smaller value is better, while “↑” indicates that a greater391
value is better.392

4.3. Comparison with The State-of-the-Art393

We report the results of our proposed framework with394
different image encoder backbones (ResNet50 and Reg-395

NetX4.0) on PASCAL VOC, Berkeley DeepDrive-100k, 396
MS-COCO2017, and OpenImages datasets, as shown in 397
Table 1. The best results for the same dataset and the 398
same backbone settings are shown in bold. For the same 399
evaluation metric on the same dataset, the best results are 400
underlined. When using Transformer-based text encoder 401
and ResNet50-based image encoder, APLGOS achieves an 402
FPR95 of 47.16% and an mAP of 48.8% on PASCAL 403
VOC (ID) with MS-COCO2017 as the OOD dataset. When 404
OpenImages is used as the OOD dataset, FPR95 increases 405
to 49.66%. Compared to the state-of-the-art OOD detec- 406
tion model [6], APLGOS reduces FPR95 by 1.12% and 407
2.48% on MS-COCO2017 and OpenImages, respectively. 408
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Figure 3. Ablation on number of sampled OOD prompts K. The horizontal coordinate is the number of sampled ood prompts K (×103),
while the vertical coordinates are, from left to right, FPR95, AUROC, AUPR, and mAP, respectively. Red line and Blue line represent
using MS-COCO2017 and OpenImages as OOD datasets, respectively. Pink line represents using PASCAL VOC as ID dataset.

α
FPR95 ↓ AUROC ↑

mAP (ID) ↑
OOD: MS-COCO2017 / OpenImages

0 51.63 / 50.88 87.86 / 87.24 49.2
0.5 51.90 / 51.48 87.55 / 87.02 48.9
1.0 45.96 / 47.10 89.19 / 88.49 49.4
1.5 55.88 / 53.33 86.29 / 86.75 48.9
2.0 55.92 / 49.54 86.75 / 88.00 48.9

Table 3. The Ablation Experiments on The Strength of Random
Gaussian Noise ε. α represents the strength of added gaussian
noise. The value of α increases gradually from 0 to 2.0, and we
take the value at 0.5 intervals.

With Transformer-based text encoder and RegNetX4.0-409
based image encoder, FPR95 decreases to 45.96% on MS-410
COCO2017 and 47.1% on OpenImages, while the mAP411
on PASCAL VOC improves to 49.4%. This setup further412
reduces FPR95 by 4.57% and 3.17% on MS-COCO2017413
and OpenImages, respectively, compared to [6]. For414
Berkley DeepDrive-100k (ID), using ResNet50-based im-415
age encoder and Transformer-based text encoder, APL-416
GOS achieves an FPR95 of 41.10% on MS-COCO2017 and417
23.30% on OpenImages, with an mAP of 35.8%. When us-418
ing RegNetX4.0-based image encoder instead, FPR95 fur-419
ther decreases to 39.48% on MS-COCO2017 and 19.79%420
on OpenImages, while mAP improves to 37.6%.421

4.4. Ablation Studies422

Prompt strategies. To further validate the effectiveness of423
our prompt strategies, we conduct extensive ablation exper-424
iments on APLGOS’s prompt strategies, and the results are425
shown in Table 2. Sampling from the statements set brings426
greater performance gains than simply initializing learnable427
prompts with ”a region of a” ((c) vs (d)). Moreover, adding428
location tokens to prompts significantly improves perfor-429
mance, as it refines the scope of the prompts ((c) vs (e)).430
Compared to other prompt strategies, our APLGOS prompt431
strategy (f) integrates the advantages of the aforementioned432

Γ1
FPR95 ↓ AUROC ↑

mAP (ID) ↑
OOD: MS-COCO2017 / OpenImages

1:4 50.11 / 58.38 87.71 / 85.67 49.1
1:3 49.40 / 55.12 87.91 / 86.38 49.2
1:2 47.98 / 54.49 88.40 / 85.94 49.2
1:1 45.96 / 47.10 89.19 / 88.49 49.4
2:1 48.25 / 50.20 88.30 / 87.76 49.2
3:1 50.95 / 53.94 86.81 / 84.70 47.5
4:1 50.20 / 51.56 86.70 / 84.89 47.3

Table 4. The ablation experiments on the ratio Γ1 of ID and OOD
data used during training. Our default parameters and results are
shown in bold. Parameters and results of baseline [6] are shown
with a dark base color.

strategies and achieves the best performance. 433

Number of Sampled OOD Prompts. APLGOS synthe- 434
sises virtual prompts for OOD categories and for each ID 435
category, APLGOS samples K virtual OOD prompts in low- 436
likelihood regions of ID class-conditional gaussian distribu- 437
tions in high-dimensional hidden space. We conduct abla- 438
tion experiments on K, the results of its effect on perfor- 439
mance are shown in Figure 3. When K is too small, it may 440
fail to adequately cover the region outside the ID categories’ 441
decision boundaries in the hidden space. On the other hand, 442
when K is too large, the excessive randomness in the sam- 443
pled OOD prompts makes it difficult to effectively regular- 444
ize the decision boundaries with the limited model parame- 445
ters. Therefore, we set K = 10000 as the default value. 446

Strength of Random Gaussian Noise ε. To enhance the 447
size and diversity of the OOD prompts embedding sampling 448
space and prevent the model from overly relying on the 449
ID category distribution, we introduce a learnable matrix 450
initialized with random Gaussian noise ε during the OOD 451
prompt sampling stage (Eq. 5). We conduct ablation ex- 452
periments on its strength α, and the results are shown in 453
Table 3. A small value of α makes the sampling space of 454
OOD prompts embedding too narrow, while a large value 455
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Figure 4. Detection results on ID dataset. Here we use Berkley DeepDrive-100k dataset as ID dataset. We use RegNetX4.0 and Transformer
as backbone. The first row is the detection results of baseline [6]. The second row is the detection result of our APLGOS. Our APLGOS
rarely misclassifies the ID class as OOD class, and there is almost no missed detection.

ID dataset: BDD-100k  OOD dataset: MS COCO2017 + OpenImages
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Figure 5. Detection results on OOD datasets. Here we use Berkley DeepDrive-100k dataset as ID dataset, MS-COCO2017 and OpenImages
as OOD datasets. The first row is the detection results of baseline [6]. The second row is the detection results of our APLGOS. Compared
to the baseline, APLGOS rarely misses detections and hardly produces overlapping boxes for the same object.

Figure 6. Detection results in Real World. Here we use Berkley
DeepDrive-100k dataset as in-distribution dataset. Pictures we
take ourselves with our phone as out-of-distribution dataset.

of α results in an overly large sampling space. Only by ap-456
propriately expanding the sampling space of OOD prompts457
embedding can the model’s ability to fit the OOD distribu-458
tion be effectively enhanced.459
Ratio of ID and OOD Data Used During Training.460
To verify that APLGOS can achieve better performance461
with less ID data, we conduct ablation experiments on the462
amount of ID data used during training, and the results are463
shown in Table 4. By default, APLGOS adopts a ratio Γ1464
of 1:1 for ID and OOD data during training, whereas the465
baseline [6] uses a ratio of 2:1. However, in this case, the466
performance of APLGOS decreases instead.467
Visualization of Detection Results. To better evaluate the468
performance of APLGOS, we visualize its detection results469
on ID datasets, OOD datasets, and real-world scenarios.470

The results are presented in Figures 4, 5 and 6. The images 471
in real-world scenarios are captured using an iPhone 14 Pro 472
Max. The visualization results demonstrate that APLGOS 473
outperforms the baseline method in detecting ID and OOD 474
categories. Moreover, the visualization of detection results 475
in real-world scenarios further confirms its superior gener- 476
alization ability. 477

5. Conclusion 478

In this paper, we propose a vision-language method, Adap- 479
tive Prompt Learning via Gaussian Outlier Synthesis (APL- 480
GOS) for Out-of-distribution Detection. Through prompt 481
learning approach, APLGOS provides adaptive region-level 482
prompts with location information for ID / OOD images. 483
We use ChatGPT to standardize pre-defined Q&A pairs and 484
generate a statements set. During training, only ID im- 485
ages are from the dataset, while ID prompts, OOD prompts 486
and OOD images are all virtual. We sample statements 487
from the statements set to initialize learnable ID prompts. 488
We samples virtual OOD prompts and OOD images in 489
the low-likelihood region of the class-conditional gaussian 490
distribution in high-dimensional hidden space. Similarity 491
score between prompts and images is utilized to calculate 492
contrastive learning loss in high-dimensional hidden space, 493
which guarantees the quality of virtual outliers as well as 494
better regularization of the model. Through comprehen- 495
sive experimental evaluations, we demonstrated the effec- 496
tiveness of the proposed APLGOS. 497
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