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Abstract
Pan-tilt-zoom (PTZ) cameras, which dynamically adjust their field of view (FOV), are pervasive in large-scale
scenes, such as train stations, squares, and airports. In real scenarios, PTZ cameras are required to quickly
judge their directions using contextual clues from the surrounding environment. To achieve this goal, some
research projects camera videos into three-dimensional (3D) models or panoramas, and allows operators to
establish spatial relationships. However, these works face several challenges in terms of real-time processing,
localization accuracy, and realistic reference. To address this problem, a visual expansion and real-time
calibration for PTZ cameras assisted by panoramic models is proposed. The calibration method consists of
three parts: providing a real environment background by building a panoramic model, meeting the needs of
real-time processing by establishing a PTZ camera motion estimation model, and achieving high-precision
alignment between PTZ images and panoramic models using only two feature point pairs. Our methods
were validated using both public and our Scene dataset. The experimental results indicate that our method
outperforms other state-of-the-art methods in terms of real-time processing, accuracy, and robustness.
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1 INTRODUCTION

Pan-tilt-zoom (PTZ) cameras provide extensive surveillance capabilities through flexible control, and have been widely
implemented in a variety of settings, such as schools, universities, companies, and stadiums. The broad array of emergencies in
real-world scenarios necessitates rapid response from PTZ cameras to locate them accurately. To enhance the rapid response
ability, numerous studies1,2,3,4 in the field of augmented virtual environments (AVE) have introduced background models
as environmental cues, including three-dimensional (3D) models and panoramas, to assist in the operation of PTZ cameras.
These approaches involve real-time image projection technologies within a virtual environment to render realistic textures onto
reference models. However, the majority of studies suffer from misalignments between images and backgrounds, and lack
realistic reference models, as depicted in Fig. 1.

To address these challenges, many researchers employ tilt photography models and enhance camera calibration algorithms.
The camera calibration is the process of estimating the internal and external parameters of the camera, as well as determining its
orientation and position relative to a reference model5,6,7. Camera calibration methods are classified into pattern-based8,9,10,
infrastructure-based11,12,13, and self-calibration methods14,15,16,17,18,19. Pattern-based methods exploit the regularity and symmetry
of the patterns to enable precise measurements of camera parameters. Due to the necessity of specific calibration patterns,
these methods are challenging to implement in outdoor settings. Infrastructure-based approaches typically entail constructing a
controlled environment with known reference points or structures for camera calibration. Nevertheless, the construction and
deployment of this infrastructure often incur significant labor costs. Self-calibration methods estimate both intrinsic and extrinsic
camera parameters by establishing numerous point correspondences between adjacent images. The accuracy of these methods
can be influenced by factors such as illumination conditions, moving objects, and feature density.
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F I G U R E 1 Misalignments and unrealistic reference models were observed in camera calibration processes. The red-
encircled regions highlight misalignment of embedded images with the background. The panoramic images and 3D models
illustrated in the figure are typical environmental models. Nonetheless, distortions in the panorama and the unnatural textures of
the 3D model result in significant discrepancies between these background models and real-world scenes.

In this paper, we present a novel approach for visual expansion and real-time calibration of PTZ cameras using panoramic
models. This integration harnesses the benefits of both infrastructure-based methods and self-calibration techniques. The method
also takes into account the geometric properties of the PTZ camera, as illustrated in Fig. 2. We first introduce a two-ray
method that requires only two feature point pairs to estimate parameters based on the geometric properties of the PTZ camera.
Subsequently, we propose a novel method for constructing panoramic models based on a PTZ camera model. Initially, we collect
scene images from the PTZ camera and erase the moving objects to obtain pure background images. Subsequently, we stitch
these images utilizing the image stitching method, thereby generating a panorama of the current scene. To enhance the quality of
image stitching, we optimize two phases using the two-ray method: feature matching and parameter estimation. Ultimately,
we map the panorama onto a half-sphere model to construct the panoramic model. Also, we present a real-time PTZ camera
calibration algorithm. The algorithm principally consists of a motion estimation model and a camera calibration algorithm
based on key-ray collection. The motion estimation model, derived from the parameter variations during camera movement,
enables rapid camera pose estimation during motion. The camera calibration algorithm based on key-ray collection performs
feature extraction on the set of background image, and constructs a key-ray collection for the background model. Thereafter, the
algorithm employs the two-ray method for PTZ camera calibration, yielding a series of candidate parameters for the current
image, and selects the optimal camera parameters as the camera pose corresponding to the current image. The algorithm realizes
high calibration accuracy for the PTZ camera by using panoramic models. The two-ray method requires only two pairs of
matched points between adjacent images to estimate the pose of the PTZ camera. The reduced number of feature points utilized
for parameter estimation minimizes the impact of illumination and appearance variations, which is particularly crucial in extreme
weather conditions. This presents a significant advancement over previous methods.

In contrast to traditional PTZ camera calibrations and augmented virtual environment, we introduce a panoramic model,
which offers a realistic environmental context with a lower labor cost. The panoramic model assists operators in determining the
direction and zoom level of the camera. Additionally, our study focuses on a PTZ camera calibration algorithm that employs
merely two feature pairs. Our method employs fewer feature pairs yet achieves superior calibration accuracy compared to
alternative methods. Besides, the motion estimation model for the PTZ camera satisfies the requirement for real-time processing
while minimizing resource usage. Our contribution can be summarized as follows:

• A two-ray method for PTZ camera calibration is developed from 2D-3D correspondences to 2D-2D correspondences. The
method can enhances the pose accuracy of a PTZ camera using solely two pair of feature points.

• A comprehensive framework of a visual expansion and real-time calibration for PTZ cameras assisted by panoramic models is
designed to alleviate the burden of understanding the spatial relation and to simplify PTZ camera manipulation for operators.

• Extensive experiments demonstrate that our methods outperform other state-of-the-art methods in terms of real-time
processing, accuracy, and robustness.
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F I G U R E 2 Algorithm framework of the visual expansion and real-time calibration for PTZ cameras assisted by panoramic
models. PTZ cameras capture background images that are used for panorama stitching. Subsequently, a panorama model is
constructed using the generated panoramic image. Finally we register PTZ camera frames onto panorama models through
real-time PTZ camera calibration. Grey boxes indicate the corresponding algorithms have been improved to enhance their
performance. t1 < t2 < t3.

The remainder of this paper is organized as follows. Section 2 reviews some related works and Section 3 presents the two-ray
method for PTZ camera calibration. Section 4 introduces the panoramic model construction. Section 5 presents the real-time
PTZ camera calibration algorithm. Section 6 shows experimental results and Section 7 concludes the paper.

2 RELATED WORK

2.1 Camera Calibration

The three primary categories of fixed/portable camera calibration methods are pattern-based calibration, infrastructure-based
calibration, and self-calibration. Pattern-based calibration estimates camera parameters by utilizing unique calibration patterns,
such as checkerboards8,9,10. This method is typically employed to estimate the internal parameters of cameras. However, it relies
on calibration patterns that are challenging to install in outdoor environments. Chen et al.7 formulated constraint equations
by correlating matching points in images before and after specified camera motions. These motions can also be regarded as
a specific pattern. Infrastructure-based calibration employs pointcloud or tilt photography models, establishing correlations
between images and these infrastructures to estimate camera parameters. Campbell et al.11 proposed a robust and globally
optimal approach for inlier set maximization, which jointly estimates camera pose while accounting for the identification of
cross-modality correspondences between 2D image points and 3D points. Zhu et al.20 proposed an incidence field, which
represented the rays between points in 3D space and pixels in the 2D imaging plane, to calibrate camera parameter with low-bias
and low-variance depth estimation. Xiong et al.21 enhanced the calibration performance of the camera using virtual images
from 3D scene models. The infrastructure-based method can accurately estimate both intrinsic and extrinsic parameters of
cameras, but the construction of infrastructures requires high labor costs. In certain scenarios, such as soccer fields, basketball
courts, or hockey arenas, researchers often replace simplified sports field models with point clouds or tilt photography models
to reduce labor costs22,23,24,25,26,27. The self-calibration method generates a large number of point correspondences between
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adjacent images to estimate external camera parameters. The theory of camera self-calibration, requiring only point matches
from image sequences, was first proposed by Faugeras28. Ma14 performed camera calibration trough a sequence of specifically
designed motion generated by the active vision system. Luong and Faugeras15 determined the orientation of an uncalibrated
moving camera by using point correspondences among three images and the fundamental matrices derived from these point
correspondences. Vasconcelos et al.16 proposed an automatic camera calibration based on a network of calibrated cameras
and only used pairwise points to estimate parameters. Liu et al.17 presented a novel algorithm for homography computation
that enhances precision and reduces processing time. Considering the effect of radial distortion, An et al.18 proposed a novel
two-point calibration method (TPCM) to estimate the focal length and 3-DoF rotation matrix with only two control points from a
single image. Since these self-calibration methods only require adjacent images for the calibration process, they offer significant
advantages over the other two methods. However, most of these methods require at least four feature pairs in adjacent images
to calibrate camera effectively, which increases the probability that calibrated results fall under the influence of illumination,
occlusion, and texture scarcity.

Unlike the calibration methods employed for fixed/handheld cameras, the calibration of PTZ cameras presents unique
characteristics. Since the optical and geometric centers of a PTZ camera are presumed to be known, image localization primarily
depends on pan, tilt, and zoom values. This inherent characteristic of PTZ cameras achieves a more effective calibration pipeline
by simplifying the relationship between camera movements and image positions. Wu et al.29 present a dynamic calibration
algorithm that aligns the current image with a collection of offline-stored features. This approach facilitates the intrinsic and
extrinsic parameter estimation of a PTZ camera. However, this technique is suitable only for small angle and focal length
variations. Chen et al.30 introduced a two-point calibration method that requires merely two point correspondences to calibrate a
PTZ camera, along with a rapid random forest method for predicting pan-tilt angles without the necessity of feature matching.
Furthermore, they introduced an online SLAM system based on the two-point method and PT random forest, which can track
PTZ cameras in highly dynamic sporting environments31. Chen et al.32 employed a Siamese network to excavate compact deep
features and incorporated a novel two-GAN model to identify field markings in real images. The sports venues where these
technologies are applied exhibit distinct scene characteristics, including clear field boundary lines and minimal variations in
lighting. Due to inherent complexity of outdoor environments, such as significant fluctuations in illumination conditions, the
application of these technologies is significantly challenging.

The proposed method combines the advantages of infrastructure-based calibration, self-calibration and PTZ calibration
methods, introducing an innovative self-calibration approach that employs only two pairs of image points. This method minimizes
labor costs, enhances robustness to illumination variations through the simplified input of image point pairs, and enlarges the
FOV of the operator.

2.2 Image Stitching

Extensive research has been conducted on image stitching that stitch multiple images together to provide a broader visual
perception of large-scale scenes. Brown and Lowe33 first proposed a comprehensive framework for image stitching using
invariant local features, such as SIFT (scale-invariant feature transform)34, to extract features between images. Meanwhile, bundle
adjustment, a photogrammetric technique to combine multiple images of the same scene into an accurate 3D reconstruction, has
also been applied to stitch images. The essence of multi-band blending involves merging low-frequency bands across extensive
spatial ranges and high-frequency bands within restricted ranges to mitigate exposure discrepancies and misalignments. Gao et
al.35 proposed a method for constructing a seamless panoramic image with two predominant planes: a distant background plane
and a ground. Zaragoza et al.36 seamlessly bridged inconsistent image regions through the application of Moving Direct Linear
Transformation (Moving DLT). The method was designed to support global projection transformation while allowing for local
deformation to accommodate potential violations between global and local regions. Li et al.37 introduced a parallax-tolerant
method for image stitching, which utilized robust elastic warping to achieve both precise alignment and efficient processing. Li
et al.38 developed a local-adaptive image alignment method based on triangular facet approximation, which directly manipulated
the corresponding data in the camera coordinates, thereby enhancing performance of imaging models of cameras. Yong et al.39

proposed a rapid multi-band blending method to improve the efficiency in panoramic image fusion and stitching. Zhang and
Xiu40 established an attribute relationship model combining SIFT features and the human visual system (HVS), and used a
dynamic process to find the optimal seamlines. Prokop and Polap41 proposed a hybridization of the classic RANSAC approach
with a selected heuristic algorithm like Grey Wolf Optimizer, allowing for image adjustment. Guo et al.42 designed a spatial
arrangement preservation-based stitching method to stitch farmland remote sensing images, and optimized the image parameters
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using bundle adjustment method. Wang et al.43 improved the bundle adjustment method using an exploitable block-diagonal
sparsity structure, which sped up the optimization in the context of event-based cameras.

The most of above research addresses the seamline problem resulting from image misalignment, but the core reason lies in
the imprecise estimation of image parameters. To address the seamline problem, enhancing the estimation accuracy of image
parameters is crucial. We improved the feature matching and parameter estimation stages during panoramic model construction,
thereby increasing the accuracy of image parameter estimation and significantly reducing the presence of image seamlines.

2.3 Augmented Virtual Environment

The augmented virtual environment (AVE) technology represented a real-time image projection technology, rendering realistic-
looking textures onto 3D models. Sawhney et al.1 first introduced a video flashlight system that utilized live video textures
captured by a combination of stationary and moving cameras to illuminate a static 3D graphics model. Chen et al.44 proposed a
visualization framework for surveillance systems that utilized a fixed low-resolution camera for the large-scale display area, while
employing a high-resolution camera for the fovea region. Pece et al.45 demonstrated the PanoInserts system, which integrated
video content into the panorama through a combination of marker-based and image-based tracking techniques. Tompkin et al.2

developed a video-collections+context interface by embedding videos into a panorama. They also created a spatio-temporal
index tools for the rapid exploration of video collections in both space and time. Zhou et al.46 proposed a novel model-guided
3D stitching system based on video models, leveraging single-image modeling technology. Young et al.4 introduced a system
that facilitated immersive telepresence and remote collaboration on mobile and wearable devices. A live spherical panoramic
representation of the real environment was constructed, allowing a remote user to independently select the viewing direction.
While these methods enhance the virtual environment using images, it becomes evident that these images also gain richer context
within the virtual environment. We try to enlarge spatial contexts of images by virtual environments.

In summary, the augmented virtual environment technology, through the use of 3D models, panoramic images, or video
models, effectively expands the field of view of user. This technology can also integrate multi video streams into a unified space.
Nevertheless, these methods still encounter challenges in precisely aligning video content with the virtual environment. Moreover,
the presence of motion blur complicates the achievement of real-time calibration of videos. To address these challenges, we
propose a motion estimation model capable of real-time video alignment with the panoramic model.

3 TWO-RAY METHOD FOR PTZ CAMERA CALIBRATION

Inspired by Chen’s work30, we extend the two-point method from 2D-3D correspondences to 2D-2D correspondences. This
modified method is called as the two-ray method. Chen’s work primarily focuses on estimating camera pose through 2D-
3D correspondences, which relies on known 3D points and their projections in the image. Chen et al. initially obtain the
correspondence between image points and 3D points through manual annotation, and then calculate the pan angle, tilt angle, and
focal length of the image using the geometric relationships between two pair of image points and 3D points, as shown in Fig.
3(a). However, Chen’s work is mainly applied to stadium scenarios, where only the boundary points of the sports field need to be
manually marked. In our application scenario, there are numerous objects and complex illumination conditions, very difficult to
establish stable 2D and 3D correspondences by manual annotation. Therefore, directly applying Chen’s method is not feasible.
To overcome this limitation, we propose a new method that requires only two pairs of image points.

We first establish the transformation between the rays and the image pixels, converting the pixels in the image into rays.
According to connection between the rays in the overlapping region of adjacent images, we calculate the pose of the PTZ camera.

The PTZ images conform to the geometric properties depicted in Fig. 4. The point O represents the optical center of the PTZ
camera, and (θ,φ, f ) denotes the orientation and focal length of the camera. The coordinate OR(xOR, yOR) defines the center of
the PTZ image within the image coordinate system. The PTZ image is tangent to a sphere with a radius of f . For any point
p(xp, yp) within the image coordinate system, the orientation of the corresponding ray rp is given by (θp,φp). According to the
main view and the top view of Fig. 4, we can obtain:

θp = arctan(
xp – xOR

fcos(φ)
) + θ (1)
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F I G U R E 3 Method comparison between the two-point method and the two-ray method. Figure (a) indicates the two-point
method for PTZ camera calibration from Chen’s work30, and figure (b) represents two-ray method proposed in this paper.

F I G U R E 4 The geometric relationship between the PTZ image and the PTZ camera. The main view is obtained from the
direction along the negative half axis of the X-axis. And the top view is obtained from the direction along the negative half-axis
of the Z-axis.

φp = arctan(
yp – yOR

f
) + φ (2)

We further analyze the spatial property between adjacent PTZ images, as shown in Fig. 3(b). Both the reference image and
the target image are adjacent and have overlapping regions. We assume that the parameters (θr,φr, fr) of the reference image
are known, and the parameters (θt,φt, ft) of the target image are unknown. We select two points p1 and p2 randomly within the
overlapping region. This means p1 and p2 are both the reference image and the target image. The ray rp1 represents the ray from
the PTZ camera center to the point p1, and similarly for r2. The angle between ray rp1(θp1,φp1) and ray rp2(θp2,φp2) is denoted
as α. The cosine formula for the angle α between two rays is:

cos(α) = cos(θp1)cos(φp1)cos(θp2)cos(φp2) + sin(θp1)cos(φp1)sin(θp2)cos(φp2) + sin(φp1)sin(φp2)

=
(K–1p1)T (K–1p2)√

(K–1p1)T (K–1p1)
√

(K–1p2)T (K–1p2)

(3)

where the K denotes the internal matrix of the PTZ camera. We calculate rp1 and rp2 in the reference image employing the
formula 1 and 2. We assume that PTZ images are free from distortion and that their sizes are known. Consequently, the focal
length ft represents the sole unknown element in Kt of the target image. The focal length ft can be determined by:

f 2
t =

2(d2ab – c2)

2c – d2(a + b) +
√

(d2(a + b) – 2c)2 – 4(d2ab – c2)(d2 – 1)
(4)



Visual Expansion and Real-time Calibration for Pan-tilt-zoom Cameras Assisted by Panoramic Models 7

where

a = pT
1 p1 b = pT

2 p2 c = pT
1 p2

d = cos(θp1)cos(φp1)cos(θp2)cos(φp2) + sin(θp1)cos(φp1)sin(θp2)cos(φp2) + sin(φp1)sin(φp2)

the parameter ft is caculated by Eq. 4. The remaining parameters (θt,φt) of the target image satisfies:

K–1p =

 U
V
1

 = RφtRθ t

 X
Y
Z

 =

 1 0 0
0 cosφt – sinφt

0 sinφt cosφt

 cos θt 0 – sin θt

0 1 0
sin θt 0 cos θt

 X
Y
Z

 (5)

where [XYZ]T denotes the coordinates of 3D point corresponding to p, and [UV]T represents the 2D coordinates of p. The ray
rp(θp,φp) is the ray from the PTZ camera center to the point p. We have:

X√
X2 + Y2 + Z2

= sin θp cosφp (6)

Y√
X2 + Y2 + Z2

= sinφp (7)

Z√
X2 + Y2 + Z2

= cos θp cosφp (8)

We separate sin θt and cos θt from the formula 5, which causes:

[
Aφt Bφt

]  cos θt

sin θt

1

 =
[

0
0

]
(9)

where

Aφt =
[

–XU cosφt – Z X – ZU cosφt

X sinφt – XV cosφt Z sinφt – ZV cosφt

]
Bφt =

[
YU sinφt

Y cosφt + YV sinφt

]
.

From the formula 9, we have:

cos θt =
–YZU + XY(cosφt + V sinφt)

det Aφt
(10)

sin θt =
XYU + YZ(cosφt + V sinφt)

det Aφt
(11)

where det Aφt = (X2 + Z2)(V cosφt – sinφt). Because sin2 θt + cos2 θt = 1, we have a quadratic equation of tan θt by

a tan2 φt + b tan2 φt + c = 0 (12)

where

a = sin2 φp(U2 + V2) – cos2 φp

b = 2V

c = sin2 φp(1 + U2) – cos2 φpV2

From Equation 12, The parameter φt is calculated up to two possible solutions. One solution is discarded by restricting the
valid range to (0◦, 90◦). The value of θt can then be calculated from Equations 10 and 11. Consequently, the parameters (θt,φt, ft)
of the target image can be estimated using only two rays.
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4 PANORAMIC MODEL CONSTRUCTION BASED ON PTZ CAMERA MODEL

The principle of constructing a panoramic model involves stitching multiple images into a cohesive panorama. The primary
processes of image stitching include feature extraction and matching, parameter estimation, spherical projection, optimal seam
finding, and multi-band blending. Image stitching often results in the emergence of artifacts, commonly referred to as ghosts.
Our analysis indicates that imprecise parameter estimation is a significant contributor to the occurrence of both ghosts and
discontinuities. Therefore, we initially optimize the feature matching and parameter estimation processes to enhance the accuracy
of parameter estimation. Subsequently, we apply the estimated parameters to stitch the images and generate the panoramic model.

F I G U R E 5 The proposed feature matching method. (θi,φi, fi) and (θj,φj, fj) are image parameters obtained directly from
the camera. According to the projection transformation between adjacent images, we can directly calculate the homography
matrix Hij to help image j project into image i. We calculate the distance between the feature point and the projection point, and
select the closest projection point as the matching point of the feature point.

Feature matching: Feature points are primarily determined by keypoints and their corresponding descriptors. Descriptors
are typically derived from the neighboring pixels around keypoints. For instance, a descriptor of an ORB (Oriented FAST and
Rotated BRIEF) feature point47 is constructed by selecting a certain pattern of N point pairs around the keypoint, and combining
the comparison results of these N point pairs to form the descriptor. In contrast, a descriptor of a SIFT feature point is calculated
based on positional, scale, and orientation information. The length of descriptors is typically 128 or 256 dimensions. Traditional
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feature matching approaches involve calculating the similarity between the descriptors of feature points in two images and
establishing matches based on similarity scores. However, because feature descriptors only capture information from the local
region around the keypoint, false matches often arise in regions with similar appearance. Some studies such as the Ma’s work48

utilize the local neighborhood structures of those potential true matches to heighten the accuracy of feature matching. They
group multiple keypoints based on their spatial relationships and compute the matching loss at the group level. This approach
increases the receptive field of the descriptors, but there can still exist incorrect matches using Ma’s work. This is because
regions with similar textures often extend beyond the enlarged receptive field of the group, leading to erroneous matches.

For PTZ (Pan-Tilt-Zoom) images, the image preset parameters, such as the pan angle θ, the tilt angle φ and the focal length f ,
can be obtained directly from the camera during the capture process. While these parameters may be affected by mechanical
drifts, the discrepancies are typically small and do not significantly differ from the true image parameters. As a result, we can
project adjacent images onto a common plane to find the optimal matching points. Since these images are captured by the same
camera, their projection transformations can be considered as unique homography matrixs. The homography matrix between the
image Ii and the image Ij is

Hij = KiRiRT
j K–1

j (13)

where Ki =

 fi 0 0
0 fi 0
0 0 1

, Ri = RφiRθi. The value of Ri is equal to the formula 5. The camera preset parameters and the unique

homography matrixs are both the preset information. We leverage preset information to improve the accuracy of feature matching,
as illustrated in Figure 5. The proposed feature matching method does not rely on descriptors and will not cause mismatching
due to apparent similarity. Using this preset information, we first compute the homography matrix Ĥij. Then, the feature points
of image j are projected onto image i. For each feature point in image i, we define a search radius R and look for the closest
projected point within this radius. The detailed computation process is:

(pjk, pjm) = arg min
Ĥijpjm∈N(pik)

∥∥Ĥijpjm – pik
∥∥

2 (14)

where pik denotes the k-th feature point in the image Ii, and pjm denotes the m-th feature point in the image Ij. N(pik) is the set of
feature points in the neighborhood of pik in the image Ii. Ĥijpjm represented the projection of pjm. The radius R is set to 60 pixels.
∥ ∗ ∥2 is Euclidean distance. The feature matching method is illuminated in Algorithm 1.

Algorithm 1 Feature matching
1: Calculate the feature points of adjacent image i and image j, and save the

feature points to Fi and Fj, respectively.
2: Get image parameters (θi,φi, fi) and (θj,φj, fj) from the PTZ camera.
3: Calculate the homography matrix Hij from image j to image i according to Eq. 13.
4: Convert the feature points Fj of image j into the projection point set Fij through

Hij

5: Initialize dmin to 1000, and record the matching point pair set of Fi as Mi.
6: for Select fm from Fi do
7: for Select fn from neighborhood with a radius of R of fm do
8: if fn in Fij. then
9: Calculate the distance dmn between fm and fn.
10: if dmin > dmn then
11: dmin = dmn.
12: Set m = (fm, fn)
13: end if
14: end if
15: end for
16: Set m into Mi

17: end for
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Parameter estimation: Currently, several methods of parameter estimation first roughly estimate parameters and then
optimize these parameters using the bundle adjustment (BA) method33,39,43,42. Bundle adjustment is a mathematical optimization
technique used in photogrammetry to refine 3D reconstructions and camera parameters. It simultaneously minimizes the re-
projection error by adjusting both the 3D coordinates of the observed points and the parameters of the cameras. It is also used to
solve the camera parameters for single view image coordinate simultaneously by minimizing the sum over all key frames of the
residual errors. The residual errors can be represented as:

L({(θi,φi, fi)}n
i=1) =

n∑
i=1

∑
k∈M(i)

||pik – Hij(θi,φi, fi)pjk ||2 (15)

where n denotes the image number, M = {(pik, pjk)}N
k=1 represents the matched-point pair set. Due to the uncertainty of the

parameters for all images, the BA algorithm often finds it difficult to converge during optimization. The optimization result
mostly causes an immense drift between the estimation and the ground truth. Moreover, the BA method ignores the geometric
property among the PTZ images. To address these limitations, we propose a novel and highly accurate approach for the parameter
estimation of PTZ images. A single image is designated as the reference image from the calibration set. Additionally, we
incorporate the two-ray method, which we explored in Sec. 3, for parameter estimation.

We select an image from the background image set S = {I1, I2, ..., In} as the reference image and assume that the preset
parameters of the reference image are authentic. Then we divide S into the calibrated set Sc and the uncalibrated set Su = S – Sc.
In the initial state, only the reference image is in the Sc. We select an image Ii from the Sc. Su(Ii) denotes the adjacent image
set of Ii in the Su. We choose an image Ij from Su(Ii), extract SIFT from image Ii and Ij, and perform the feature matching
using the formula 14. According to Sec. 3, pik can be converted to rik by the formula 1 and 2. We get the set of rays and point
Mr = {(rik, pjk)}N

k=1. We can estimate the fj of image Ij by

fj =

N∑
k1=1

N∑
k2=k1+1

f (rik1 , rik2 , pjk1 , pjk2 )

C2
N

(16)

where f (∗) is the focal length estimated by the formula 4, C2
N denotes the combination of two pairs. We can convert Mr to

ϕ = {(θjk,φjk)}N
k=1 by the formula 10 and 12. We can estimate the θj and φj of image Ij by

(θj,φj) = arg min
(θjk ,φjk)∈Φ

M∑
m=1

∥Hij(θjk,φjk, fj)pim – pjm∥2 (17)

We estimate the (θj,φj, fj) of image Ij by the formula 16 and 17. Then we add Ij into Sc, and iterate the above steps util Su is
empty. The Parameter estimation method is presented in Algorithm 2.

Algorithm 2 Parameter estimation

1: Divide the background image set S into the calibrated set Sc and the uncalibrated
set Su = S – Sc. Put the first background image into the set Sc.

2: for Take an image Ii from the set Sc do
3: if Su is empty set then
4: break.
5: end if
6: Find an image Ij from the set Su that overlaps with Ii.
7: Extract feature points from Ii and Ij.
8: Use the Alg. 1 to perform feature matching.
9: Estimate the parameters of the image Ij using Eq. 16 and 17.
10: Add image Ij to Sc

11: end for
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panoramic model construction: The initial orientation of the PTZ camera is θ = 0◦ and φ = 10◦. We set φ to 10◦, 30◦,
50◦, and 70◦ , respectively. We collect 36 images as the background image set with a horizontal interval of 40◦. We stitch these
background images into the panorama through six stage of feature extraction, feature matching, parameter estimation, spherical
projection, optimal seam finding, and multi-band blending. Our approach is used for the feature matching and the parameter
estimation stage. subsequently, we project the panorama into the inner surface of the hemispherical model, which generates the
panoramic model.

5 REAL-TIME PTZ CAMERA CALIBRATION ALGORITHM

Real-time calibration requires the dynamic adjustment of PTZ camera poses at regular time intervals. Due to the image blur
and illumination changes caused by camera motion, the feature-based method may fail. We determine that the camera motion
is traceable and propose a novel real-time calibration algorithm that combines a motion estimation model with a ray-based
method. Firstly, We collect motion trajectories for horizontal, vertical, and zoom movements. Secondly, we formulate the motion
estimation model over time. The model can estimate the camera poses in real time during PTZ camera motion. Finally, we
compute the precise camera pose by utilizing PTZ camera calibration based on key-ray collection when the camera is stationary.
More details show as below.

5.1 A Motion Estimation Model for PTZ Camera

Most PTZ camera models in existing research typically use the standard pinhole camera model with rotation matrices, which
represents the static state of the camera. These models are unable to account for variations in PTZ camera parameters during
motion. We propose a novel motion estimation model that is continuously updated as a function over time. The model can be
quickly formulated through a series of straightforward initialization steps. This section provides a detailed description of the
motion estimation model we proposed.

F I G U R E 6 The average relationships of the pan angle θ, the tilt angl φ, and the focal length f over time. (A): pan/tilt angle
as a function over time; (B): pan/tilt angle velocity as a function over time; (C) focal length as a function over time; (D) focal
length velocity as a function over time.
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To establish the motion estimation model, we conducted a simple experiment. The PTZ camera was controlled to pan (or tilt)
for one second, then stopped and held for one second before returning to its original position. The results of the pan (or tilt)
angle variation are shown in fig. 6(A)(or (B)). For the zoom function, the camera was directed to zoom for durations of 0.5, 1,
and 1.5 seconds, followed by a return to the original position after a corresponding waiting period. The result of the focal length
variation is portrayed in fig. 6(C). To get the accurate value of each frame, a series of images are collected before and after each
motion. The parameters of these images were calibrated using the parameter estimation method described in Section 4. The
average trends of the pan angle θ, the tilt angle φ, and the focal length f over time are illustrated in Fig. 6.

As evident from the graph of the first row, the rotation of the PTZ camera is through three phases of acceleration, linear
motion, and deceleration. In the second row, an one-to-one correspondence is observed between focal length and time during
zooming motion of the camera. Consequently, we propose a novel PTZ motion estimation model:

{θ,φ, f } = h
(
t | vp, vt, vf , tp1, tt1

)
=


h1

(
t | vp, tp1

)
h2 (t | vt, tt1)
h3

(
t | vf

) (18)

Where

h1(t|vp, tp1) =


1
2 vpt2, (t < tp1)

vpt – 1
2 vptp1, (tp1 < t < tp2)

1
2 vp(t + tp2 – tp1)

+ 1
2 vp(1 – t)(t – tp1), (t > tp2)

(19)

h2(t|vt, tt1) =


1
2 vtt2, (t < tt1)

vtt – 1
2 vttt1, (tt1 < t < tt2)

1
2 vt(t + tt2 – tt1)

+ 1
2 vt(1 – t)(t – tt1), (t > tt2)

(20)

h3(t|vf ) =
1
2

vf tk + k
√

2vf (f1 – f0)t + f1 (21)

The parameters vp, vt, and vf are constants in the motion estimation model, but they vary for each PTZ camera. tp1 and tt1

represent the acceleration time, and tp2 and tt2 denote the constant-speed time, which is determined by the user. f0 and f1 represent
the focal lengths at Zoom = 1 and before zooming, respectively.

F I G U R E 7 Pipeline of the key-ray collection construction. The feature points and image parameters (θi,φi, fi) are derived
from the image stitching process. The feature points are then converted into key rays, which are stored in the key-ray collection.
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5.2 PTZ Calibration Based on Key-ray Collection

The motion estimation model can predict the motion of the PTZ camera in real time. However, it is unrealistic to expect the
results of the model in high precision. We propose a PTZ calibration method to ensure accurate camera calibration. Our approach
involves constructing a key-ray collection of the current scene and calibrating online images using the two-ray method and the
RANSAC strategy49.

The process for constructing the key-ray collection is illustrated in Fig. 7. During the construction of the panoramic image, we
extract the SIFT feature sequence and obtain the estimated parameters (θi,φi, fi) for each image. The extracted SIFT features are
converted into key rays using Formulas 1 and 2. Key rays are rays emitted from the PTZ camera toward the feature points. The
feature points and their corresponding key rays are combined as pairs. Feature pairs from different images that highly overlap in
both descriptors are merged, ensuring that each feature pair appears only once in the collection. All feature pairs are stored in a
collection, forming the key-ray collection of the scene.

A current image is captured from the PTZ camera, and the parameters (θ̂, φ̂) of the current image are estimated using the
motion estimation model. Key rays around the pose (θ̂, φ̂) are extracted from the key-ray collection to form a sub-collection,
denoted as M′

r. The set of SIFT features, denoted as M′, is extracted from the current image. Each feature in M′ is then matched
to the corresponding features in M′

r, resulting in a set of putative matches, denoted as Mr = (pk, rk)N
k=1, where pk belongs to M′

and rk belongs to M′
r. The feature matches are computed using Brute-force matching between SIFT descriptors.

The parameters (θ,φ, f ) of the current image can be estimated using the idea of RANSAC49. Firstly, two feature pairs are
selected from Mr, and the two-ray method is applied to calculate the candidate parameters (θ̂, φ̂, f̂ ), which serves as a set of
candidate parameters of (θ,φ, f ). The inlier set P of the candidate parameters is

Pinlier = {pk |(θ̂ + arctan
xk – u

f̂ cos θ̂
– θk)2 + (φ̂ + arctan

yk – v

f̂
– φk)2 ≤ ε}N

k=1 (22)

where (xk, yk)T represents the coordinates of pk, (θk,φk)T represents the coordinates of rk, and (u, v) denotes the image center of
the current image. The accuracy of the candidate parameters is directly proportional to the number of inliers it corresponds to.
The above steps are repeated Ns times (Ns = 1000), and the candidate parameters with the largest number of inliers are selected
as the best estimation for the image parameters. We present PTZ calibration based on key-ray collection in Algorithm 3.

Algorithm 3 PTZ calibration based on key-ray collection
1: Collect current frame I from PTZ camera
2: Extract feature points M′ from the current frame I
3: Match the feature points between the M′ and the key-ray collection M′

r using
Brute-force matching, and obtain a matching pair set Mr.

4: Set the maximum number of internal points Nmax = 0.
5: for i in 1:1000 do
6: Select two feature pairs from the Mr.
7: Estimate parameter (θ̂, φ̂, f̂ ) using the two-ray method.
8: Calculate the number Ninlier of interior points using Eq. 22.
9: if Ninlier > Nmax then
10: Set Nmax = Ninlier, Pbest = (θ̂, φ̂, f̂ )
11: end if
12: end for
13: The best parameter estimation of the current frame are Pbest.
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6 EXPERIMENTS

Experiments were conducted to evaluate the proposed model and algorithm using both a public dataset and our dataset. Our
dataset was called as Scene dataset. In scene dataset, all cameras used were Hikvision PTZ cameras. on a computer equipped
with an Intel i7-9750H CPU, an NVIDIA GeForce GTX 2070M graphics card, and a 16 GB memory.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

F I G U R E 8 Visualization of weather augmentation: (a) brightness; (b) darkness; (c) mist; (d) fog; (e) light rain; (f) moderate
rain; (g) heavy rain; (h) light snow; (i) moderate snow; (j) heavy snow.

dataset: There are very few PTZ camera image datasets publicly available. Yong et al.39 built a PTZ image dataset, which
makes the in-depth investigation of PTZ panorama generation possible. Besides, we preform the data augmentation with weather
conditions on this dataset. We also constructed Scene dataset including four real scenes for the experiments.

PTZ image dataset: This dataset contains four image groups from various natural traffic scenes, such as intersections and
overpasses. The image groups are labeled as 803, 878, 8425, and 8505, respectively. Each image group consists of 52 images.
Each group contains 52 images. For detailed information about the dataset, please refer to the original source39.

Data augmentation with weather conditions: We develop a weather augmentation algorithm inspired by the work of Kang
et al50. To simulate extreme weather conditions, the RGB (red, green, blue) image is converted to the HLS (hue, saturation,
lightness) color space, and the lightness value is adjusted to reflect different weather conditions, as illustrated in Fig. 8.

Brightness and Darkness. By adjusting the lightness values of the images, we can simulate various lighting conditions, such as
sunny days and early evenings.

Rainy. We simulate raindrops using randomly generated gray lines (with RGB values of 160, 166, 166), where the size and
density of the lines correspond to the intensity and quantity of rainfall. The fisheye effect is applied to distort local regions of the
image, simulating the appearance of raindrops on the camera lens. Three types of rainfall are simulated: light rain, moderate rain,
and heavy rain.

Snowy. Snowflakes are represented by randomly generated white dots, with the size and density of the dots corresponding to
the size and quantity of the snowflakes. Snow on the ground is simulated by extracting pixels with a specific lightness value
from the image. Three levels of snowfall are simulated: light snow, moderate snow, and heavy snow.

Foggy. Fog can alter the brightness and sharpness of an image, resulting in a blurred appearance. Fog is simulated as mist and
haze using Gaussian blur and adjustments for lightness, which enhance the realism of the images.

Scene Dataset: The scene dataset includes four scenes, as shown in Fig. 9. The first scene "Office" is an 8m × 6m × 3m
laboratory equipped with a Hikvision DS-2DC4223IW-D PTZ camera and furnished with chairs and tables. The second scene
"Meeting room" is a 12m × 8m × 3m meeting room equipped with a Hikvision DS-2DE7172-A PTZ camera and containing
conference tables and chairs with minimal features. The "Community" and "Industrial Zone" scenes are 50m × 50m × 50m
outdoor environments, each containing pedestrians and vehicles, and equipped with Hikvision DS-2DC4223IW-D PTZ cameras.
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F I G U R E 9 Description of our Scene dataset. Our dataset contains four groups of images, which are obtained from four
scenes, and each group consists of 36 views.

Baselines: In the remainder of this section, we compare our method with existing state-of-the-art approaches for image
stitching and camera calibration tasks. For the image stitching task, we use the parameter estimation method from the work
of Wang43, known as the BAY method, as a benchmark. This method has also been applied in many studies39,42. This method
optimizes only the three parameters: pan angle, tilt angle, and focal length. The BAY method aims to minimize the residual
error. This approach may produce abnormal results. Therefore, we modify the BAY method so that the first input image does not
participate in the optimization process. We refer to the modified BAY method as the BAYs method. The core idea of the BAYs
method is to optimize the other images using the first image as a reference. We use the BAYs method as the other benchmark.
For the calibration task, we compare our approach with several PTZ camera calibration methods that directly compute the
camera parameters using feature point pairs: dynamic calibration29, the two-point method30, and the TPCM method18, the LAC
method51.

Metrics: In the absence of ground truth, we report parameter errors as the Euclidean distance between the results of parameter
estimation and the preset parameters. Since there are only minor perturbations in image collection stage, correct parameters
should be very close to preset values. Therefore, large offsets indicate that the method produces incorrect parameter estimations.
In addition, we use the results of parameter estimation to construct a homography matrix and compute the reprojection error for
each feature pair between adjacent images. The score of the reprojection error reflects the precision of parameter estimation.

6.1 Experiment Results

Accuracy analysis: We first validate our parameters estimation algorithm on the PTZ image dataset. The experimental results
are presented in Table 1. The first input image is taken as the reference image. Assuming the (θ,φ) parameters are known, we
estimate only the focal length of the reference image using the bundle adjustment method. The estimated focal length is used as
the focal length of the reference image. In each scene, we then select three consecutive images with different tilt angles and
perform parameter estimation using our method, the BAY method, and the BAYs method. Table 1 shows that, although the
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T A B L E 1 Experiment comparison of different parameter estimation methods on the PTZ image dataset. BOLD/BLUE
indicates the best/second-best performance.

Image number Parameter estimation offset
The mean reprojection error

of single matching pairScene
label Img 1 Img 2 Img 3

Method
Img 1 Img 2 Img 3 Img 1 and 2 Img 2 and 3

BAY 43 267.83 267.78 267.83 3.53 2.58
BAYs 12.24 12.25 12.26 9.63 6.101 2 3
Ours 8.72 8.76 8.75 7.82 6.06

BAY 43 293.72 293.70 293.73 7.28 6.76
BAYs 13.01 13.01 13.05 10.64 7.6627 28 29
Ours 10.41 10.43 10.46 10.43 5.52

BAY 43 1572.43 1572.41 1572.44 29.17 17.13
BAYs 0.00 1.60 2.70 35.74 14.98

803

41 42 43
Ours 7.56 7.87 7.87 9.45 7.01

BAY 43 293.15 293.09 293.13 4.74 2.07
BAYs 1.46 1.60 1.67 6.14 5.031 2 3
Ours 4.65 4.71 4.72 5.65 4.85

BAY 43 221.88 221.86 221.87 9.85 4.54
BAYs 0.76 1.29 1.56 17.79 7.0027 28 29
Ours 3.59 3.94 4.08 6.65 4.54

BAY 43 881.46 881.58 881.77 5.87 11.46
BAYs 37.58 37.58 37.58 21.86 8.12

878

41 42 43
Ours 8.92 9.31 9.46 6.59 6.93

BAY 43 242.38 242.34 242.40 1.27 1.45
BAYs 9.47 9.47 9.48 6.29 4.581 2 3
Ours 8.17 8.19 8.18 4.54 4.12

BAY 43 385.76 385.73 385.76 13.70 2.77
BAYs 1.52 1.70 1.67 10.25 8.4227 28 29
Ours 1.42 2.04 1.81 10.19 5.80

BAY 43 163.46 163.53 163.69 3.14 9.28
BAYs 22.95 23.01 22.97 4.59 8.57

8425

41 42 43
Ours 9.61 9.62 9.71 16.37 22.32

BAY 43 230.45 230.41 230.46 2.79 2.68
BAYs 1.54 1.55 1.57 4.85 5.161 2 3
Ours 5.79 5.81 5.80 4.72 4.65

BAY 43 357.70 357.66 357.69 8.23 5.98
BAYs 1.12 1.30 1.56 11.12 6.1727 28 29
Ours 4.16 4.21 4.24 5.74 4.71

BAY 43 1559.39 1559.34 1559.35 16.50 11.65
BAYs 33.92 33.94 33.93 25.66 11.48

8505

41 42 43
Ours 8.91 9.21 9.22 10.82 8.63

BAY 43 539.13 539.11 539.17 8.83 6.57
BAYs 11.29 11.52 11.66 13.71 7.77All scenes \ \ \
Ours 6.82 7.00 7.02 8.24 6.26

T A B L E 2 Reprojection errors of different parameter estimation methods in Scene dataset. BOLD indicates the best performance.

Image number
Method

Scene
Img 1 Img 2 Office Meeting room Community Industrial Zone

1 2
Ours 4.29 6.25 4.90 5.19

BAY 43 6.19 8.33 6.78 8.84
BAYs 10.17 8.20 12.10 10.24

1 5
Ours 2.72 2.28 2.91 3.80

BAY 43 4.31 4.06 4.36 4.64
BAYs 9.14 7.96 8.40 7.33

BAY method achieves the smallest reprojection errors in many conditions, its offset is significantly larger than that of the other
two methods. One reason for this phenomenon is the lack of a reference image during the optimization stage, while another
is the focus on minimizing the reprojection error. The BAYs method overcomes this limitation, but its accuracy is inferior to
that of our method. Our method demonstrates excellent performance in both parameter estimation offset and reprojection error,
indicating that it outperforms the other two methods in parameter estimation. Additionally, we computed the average error
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T A B L E 3 Experiment results of several PTZ calibration methods on four scenes. BOLD indicates the best performance. ’-’ indicates estimation failure.

Scene Parameter Error
Method

Dynamic
calibration 29

Two-point
method 30 TPCM 18 LAC 51 Our motion

estimation model
Our PTZ

calibration method

Office

Pan angle 3.45 10.39 6.54 - 0.35 0.12
Tilt angle 5.61 12.56 1.23 - 0.14 0.09

Focal length 198.73 876.55 56.23 318.45 167.33 23.65
FPS 0.3 0.6 1.5 1.9 60 2.3

Meeting room

Pan angle 2.67 8.56 4.33 - 0.47 0.23
Tilt angle 3.21 10.68 1.43 - 0.33 0.18

Focal length 166.78 1009.56 86.52 456.12 67.45 33.56
FPS 0.4 0.5 1.3 2.1 60 2.4

Community

Pan angle 3.56 7.63 5.63 - 0.35 0.28
Tilt angle 2.35 12.79 3.82 - 0.22 0.16

Focal length 265.89 1256.33 197.68 556.33 162.455 56.45
FPS 0.3 0.4 1.4 1.3 60 1.7

Industrial zone

Pan angle 6.18 6.23 6.77 - 0.27 0.13
Tilt angle 4.58 8.33 4.12 - 0.18 0.11

Focal length 312.77 1123.05 332.54 443.23 183.53 48.12
FPS 0.2 0.4 1.2 1.1 60 1.3

F I G U R E 10 Parameter error visualization of several PTZ calibration methods on the office scene. (A) The error in the pan
angle θ. (B) The error in The Tilt angle φ. (C) The error in the focal length f .

across all scenarios. Across all scenarios, our method consistently achieves the smallest reprojection error and parameter offset,
demonstrating its superiority.

We also evaluate the performance of our parameter estimation methods using Scene dataset. We select the first and second
images, as well as the first and fifth images, from each scene for parameter estimation. The first and second images have
a horizontal overlapping region. The first and fifth images have a vertical overlapping region. These images are typical
representatives for image stitching tasks. In this experiment, we focus solely on testing the reprojection error. The experimental
results are shown in Table 2. The experimental results show that our method significantly outperforms the other two methods.
Compared to the PTZ image dataset, our scenes includes more texture-less regions and more pronounced illumination variations.
These regions are are where traditional feature matching methods often fail, leading to poorer performance of the BAY and
BAYs methods.
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We evaluated the Dynamic Calibration, Two-Point Method, TPCM, LAC, our motion estimation model, and our PTZ
calibration method across four scenes: Office, Meeting room, Community, and Industrial zone. The camera was controlled
to move horizontally and vertically for one second in each scene, repeated 20 times. We manually aligned the camera video
frames with background images to obtain the parameters of each image as ground truth. The experimental results are presented
in Table 3. The experimental results indicate that our PTZ calibration method achieved the best performance. As the scene
transitions from indoor to outdoor, the parameter errors of the other methods increase significantly, while our PTZ calibration
method remains stable. This stability can be attributed to the use of fewer feature points to estimate the pose, which reduces the
influence of environmental factors, such as illumination. The LAC method solves the focal length of the PTZ camera through the
homography of multiple images, but cannot estimate the orientation of the camera. Since the LAC method relies on the offset
between the camera center and the rotation center, the focal length calculated by the LAC method has a large error when the
offset is too small. Given these limitations, we will exclude the LAC method from further discussion.

We collected 50 images at the "Office" scene, capturing different pan, tilt, and zoom values, and visualize the parameter
estimation errors using these images. Since these three methods rely on accurate feature correspondence, we first eliminate
obviously mismatched pairs using RANSAC. Figure 10 illustrates the biases between these methods and the ground truth. The
reported bias for each parameter is computed by ∥paramest – paramground–truth∥2. From the results, we analyze that the two-point
method exhibits a large bias because it relies on a random forest that depends on trained images. The more images the random
forest is trained on, the better the predicted results become. Since we only used the background dataset to train the random forest,
the predicted results exhibit significant errors. The TPCM method amplifies errors through multiple additions and multiplications,
leading to significant fluctuations in the results.

Robustness analysis: We further assess the robustness of our approach under extreme weather conditions. We selected two
images, numbered 18 and 19, from different weather conditions and scenes, and applied our method, the BAY method, and the
BAYs method to estimate their parameters. The reprojection error between the images was then calculated. The experimental
results are presented in Table 4.

T A B L E 4 Reprojection errors of parameter estimation in extreme weather. BOLD indicates the best performance, RED
indicates the enormous error, and ’-’ indicates estimation failure.

Scene Method
Origina
tion

Bright
ness

Dark
ness

Light
Rain

Mod.
Rain

Heavy
Rain

Light
Snow

Mod.
Snow

Heavy
Snow

Mist Fog

BAY 43 4.59 7.78 4.48 6.84 5.50 36.63 5.48 132.23 76.24 6.30 8.19
803 BAYs 12.11 9.20 14.95 11.00 6.25 36.34 9.97 147.40 123.95 8.80 8.28

Ours 7.29 8.25 10.90 7.19 24.46 5.63 8.01 6.52 12.17 9.52 5.53
BAY 43 2.39 3.05 2.35 2.64 92.06 - 18.06 99.17 0.07 284.42 264.43

878 BAYs 10.14 10.69 11.04 9.95 107.59 - 28.54 97.56 0.07 284.49 231.46
Ours 14.72 8.28 14.91 13.80 15.95 15.76 13.50 21.64 16.99 19.39 31.80

BAY 43 2.79 3.43 2.93 5.45 4.45 2.61 3.53 26.27 - 2.25 3.27
8425 BAYs 6.33 6.24 7.78 8.64 3.81 7.03 8.19 41.53 - 6.80 2.72

Ours 4.73 4.74 5.05 4.68 6.35 5.75 4.98 3.40 12.31 4.73 4.25
BAY 43 6.98 6.47 8.69 6.69 8.13 0.14 7.24 238.04 197.91 9.05 275.75

8505 BAYs 11.30 10.14 11.97 10.95 7.13 0.13 10.99 242.10 189.99 9.01 272.19
Ours 6.08 6.43 5.97 5.99 6.14 3.75 6.58 12.09 17.44 6.34 21.50

As shown in Table 4, all three methods demonstrate outstanding performance under conditions of brightness, darkness, light
rain, and light snow. This indicates that the three algorithms are capable of mitigating interference caused by minor weather
changes. However, as weather severity increases, such as in moderate rain and mist, the BAY method and the BAYs method
begin to produce incorrect estimates in the 878 scene. Under conditions of moderate snow, heavy rain, heavy snow, and heavy
fog, the BAY and BAYs methods nearly fail, either producing completely incorrect estimates (e.g., the 8505 scene in moderate
snow and the 878 scene in fog), or failing to estimate the parameters altogether (e.g., the 878 scene in heavy rain and the 8425
scene in heavy snow). In contrast, our method maintains strong robustness under these weather conditions. Even when the other
methods fail, the estimation results of our method show only a few pixel offsets compared to the normal case (e.g., the 878 scene
in heavy rain and the 8425 scene in heavy snow).

Real-time performance analysis: We evaluated the real-time performance analysis of different methods, as shown in Tab. 3.
The frame rate of PTZ camera was set to 60 frames per second. As shown in the table, our motion estimation model achieves a
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frame rate of 60 frames per second, with predicted errors close to the ground truth. In contrast, other methods can only achieve
frame rates of 1 to 2 frames per second, failing to meet the real-time requirements. To balance the real-time requirements with
the effectiveness of the method, we combine the motion estimation model with the PTZ calibration method. When the model is
in motion, the pose is estimated using the motion model. When the model is stationary, the PTZ calibration method is invoked to
calibrate the camera.

F I G U R E 11 Result visualization of parameter estimations in PTZ image dataset. The image sequence in the first column
consists of images (1, 2, 3) from the 803 scene, the second column contains images (27, 28, 29) from the 8505 scene, and the
third column includes images (40, 41, 42) from the 878 scene. Yellow represents the first image, green represents the third image,
and other colors denote the overlapping areas between adjacent images. Red boxes highlight significant misalignments.

6.2 Experiment Visualization

Visualization of accuracy experiments: We project several of the parameter estimation results from Table 1 onto a spherical
surface, as shown in Fig. 11. Compared to the other two methods, our approach effectively eliminates artifacts caused by
inaccurate preset parameters (Red boxes in Fig. 11). Additionally, the result of the BAY method in the third column differs from
the preset value in terms of image size. This indicates that the image size of the result from the BAY method changed due to the
lack of a reference in the optimization stage. These findings are consistent with the results presented in Table 1.

We visual the calibration results from our PTZ camera calibration algorithm on four scenes, shown as Fig. 12. In Fig. 12,
we observe that our approach still accurately projected the image onto the panoramic model with the less-texture regions from
the second row. In Outdoor scenes, more features mean more interference. However, our method gains satisfactory calibration
results demonstrating the good application of our method in various scenes. In addition, our method can effortlessly reach the
target area with the support of the panoramic model, which is a challenging task for other AVE method yet.
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F I G U R E 12 The visualization results of our PTZ camera calibration algorithm. The green box indicates the projection of
PTZ images on panoramic models. Regions outside green boxes are panoramic models.

Visualization of robustness experiments: We also collected images from the outdoor scene "Industrial Zone" at 2:00 p.m.
and 6:00 p.m. to evaluate the robustness of illumination on camera calibration. We selected three groups of images: (1) images
with minimal changes in illumination (pan = 0◦, tilt = 10◦), (2) images with local changes in illumination (pan = 60◦, tilt = 10◦),
and (3) images with significant variations in illumination (pan = 80◦, tilt = 10◦). All images within each group shared the same
camera pose. We estimated the parameters for each of these groups using Dynamic Calibration, the Two-Point method, TPCM,
and our method, followed by projecting the images onto a spherical surface using the estimated parameters. The experimental
results are presented in Fig. 13. Since the two images share the same pose, they should be projected onto the same region. Yellow
is used to indicate images captured at 6:00 p.m., and purple represents images taken at 2:00 p.m. The overlapping region between
the two images is highlighted in light red. If the estimation is correct, only the light red area should be visible. Inaccurate
estimations will result in visible yellow or purple areas. The reprojection errors of matched pairs were also provided between
images for each projection. When the illumination change is subtle (shown in the first column of Fig. 13), all four methods
produce acceptable parameter estimates with minimal reprojection errors. When local illumination changes (shown in the second
column of Fig. 13), the Dynamic Calibration method produces significant bias (yellow areas in the third row), while both the
Two-Point method and the TPCM method show biased results (purple area in the fourth row and yellow area in the fifth row). In
contrast, our method consistently produces accurate parameter estimation results. When the illumination difference is significant
(shown in the third column of Fig. 13), the Dynamic Calibration method, the Two-Point method, and the TPCM method all fail
(yellow and purple areas in the figure). However, our method still produces acceptable results, with only a minor increase in
reprojection error compared to the first column.

7 CONCLUSION

We propose a novel visual expansion and real-time calibration for PTZ cameras assisted by panoramic models. Firstly, we
extend the two-point method to the two-ray method, which is then applied to parameter estimation. Secondly, we improve the
feature matching and parameter estimation in the image stitching method by leveraging the geometric properties of adjacent
PTZ images. The improved method achieves superior parameter estimation during the spherical stitching of PTZ images. We
construct the panoramic model based on the improved method. Besides, we present a real-time PTZ camera calibration algorithm,
which primarily consists of a PTZ motion estimation model and a camera calibration algorithm based on key-ray collection. We
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F I G U R E 13 PTZ calibration results under different illumination conditions. The first column indicates that the condition
with few substantial changes in illumination; The second column indicates the condition with local changes in illumination; The
third column indicates that the condition with entirely different illumination. In the figure, the yellow area indicates the image at
6:00 p.m.; the purple part indicates images at 2:00 p.m.; the light red area indicates the overlap of the two images.

validate our method using both public and our datasets. Experimental results demonstrate that our method exhibits outstanding
performance.

However, there are several limitations in this work. We have not yet considered the lens distortion, which may introduce
biases during PTZ camera calibration. Additionally, we assume that the principal point coincides with both the projection center
and the zoom center. However, this assumption may not hold uniform for zooming cameras. Finally, while we presume that the
optical center of the PTZ camera is fixed, it would have variations when the camera rotates.
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