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This article focuses on reasoning about the location and time behind images. Given that pre-trained vision-
language models (VLMs) exhibit excellent image and text understanding capabilities, most existing methods
leverage them to match visual cues with location and time-related descriptions. However, these methods
cannot look beyond the actual content of an image, failing to produce satisfactory reasoning results, as
such reasoning requires connecting visual details with rich external cues (e.g., relevant event contexts). To
this end, we propose a novel reasoning method, QR-CLIP, that aims at enhancing the model’s ability to
reason about location and time through interaction with external explicit knowledge such as Wikipedia.
Specifically, QR-CLIP consists of two modules: (1) The Quantity module abstracts the image into multiple
distinct representations and uses them to search and gather external knowledge from different perspectives
that are beneficial to model reasoning. (2) The Relevance module filters the visual features and the searched
explicit knowledge and dynamically integrates them to form a comprehensive reasoning result. Extensive
experiments demonstrate the effectiveness and generalizability of QR-CLIP. On the WikiTiLo dataset, QR-CLIP
boosts the accuracy of location (country) and time reasoning by 7.03% and 2.22%, respectively, over previous
SOTA methods. On the more challenging TARA dataset, it improves the accuracy for location and time
reasoning by 3.05% and 2.45%, respectively. The source code is at https://github.com/Shi-Wm/QR-CLIP.
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1 Introduction
Reasoning about implicit information behind images, such as location and time, enables models to
analyze the social context and event details behind images more deeply, thereby enhancing the
intelligence of multimedia applications like news analysis [1, 3], intelligent recommendation [4, 6],
and social media management [7, 9]. However, this reasoning requires models to not only rely on
visual evidence (e.g., geographic markers, architectural styles, and environmental characteristics)
but also to connect with external cues (e.g., historical events and cultural attributes). Such a process
challenges models’ comprehensive reasoning and multidimensional data processing capabilities.

Previous research, such as Cross-View Time (CVT) model [10] and Cross-View Feature
Transport (CVFT) technique [11], use pre-collected remote sensing data to predict the location
and time of images via feature-matching methods [12]. However, these methods usually involve
high costs for data acquisition and processing and have issues with long update cycles and limited
spatiotemporal coverage [13, 15]. With the rapid development of artificial intelligence, vision-
language models (VLMs) like Contrastive Language-Image Pre-training (CLIP) [16] and
Bootstrapped Language-Image Pre-training (BLIP) [17] have emerged in an endless stream,
which are trained on large-scale image-text pair datasets with extensive knowledge, including
geographical information and historical context, showing excellent visual and textual understanding
capabilities. For instance, VLMs can easily connect an image of the Eiffel Tower with related texts
about Paris landmarks. Based on this, Time and Place for Reasoning beyond the image
(TARA) method [18] proposes the CLIP+Seg model, which matches landmarks, buildings, people,
etc., in images with the model’s knowledge to predict the location and time related to the image.
WikiCommon Times and Location (WikiTiLo) [19] introduces a two-stage reasoning task to
uncover whether VLMs can recognize the location and time-relevant features and further reason
about them. However, reasoning about the location and time behind images requires the model to
look beyond the actual content of an image, and relying solely on image information often fails to
produce satisfactory reasoning results. By contrast, human reasoning ability can be expanded and
enhanced through the interaction between individuals, tools, and the environment, as demonstrated
by Hutchins’ distributed cognition [20, 22]. As shown in Figure 1, humans can analyze landmarks,
text, and other content in images and use various tools (e.g., search engines and image recognition
software) to acquire environmental knowledge (e.g., event background and social context), thus
accurately reasoning the information contained in the images.

To enable VLMs to reason like humans, inspired by the above theory, this article proposes a novel
reasoning method called Knowledge Quantity and Relevance Optimization CLIP (QR-CLIP ). QR-CLIP
searches for and effectively uses environmental knowledge from multiple perspectives to enhance
VLMs’ ability to reason about implicit information behind images. As shown in Figure 2, in the
reasoning process, our method involves not only comprehending image details, such as Cristiano
Ronaldo and the language on the sign but also searching for related knowledge in the environment,
such as searching for the latest updates on Cristiano Ronaldo from Twitter or Wikipedia. By
combining the above information, the model can infer that the photo was taken at Cristiano
Ronaldo’s unveiling ceremony with Al-Hilal Club in Riyadh. In this process, the acquisition and
application of knowledge allow the model to look beyond the image for more accurate reasoning.
To ensure the reliability and applicability of the reasoning process, we further introduce two types
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Fig. 1. The diagram of the principle of distributed cognition. When reasoning about implicit information
behind images, individuals engage in interactive exchanges with the environment using various tools such as
smartphones, books, and computers. Through this interactive process, the individual acquires a comprehensive
and profound cognition of the image’s information.

Fig. 2. Comparing traditional computer vision tasks (left) with location and time reasoning (right), it becomes
clear that location and time reasoning requires more human experience and knowledge (a.k.a. explicit
knowledge) rather than just simple image color, texture, and object information.

of environmental knowledge in this study. One is human-curated databases (e.g., Wikipedia entries
on geographical locations and historical events), and the other is task-specific language models
(e.g., language models trained on location and time-related corpora). We term the above knowledge
as Explicit Knowledge (EK), which is clearly defined and easily accessed in the environment.

To effectively utilize EK, QR-CLIP introduces two additional modules based on CLIP: theQuantity
module and the Relevance module. Among them, the Quantity module helps the model search and
gather knowledge that is beneficial to reasoning from the external environment. Unlike traditional
transformer-based models like BERT [23] and Vision Transformer [24], which use a single [CLS]
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token to represent the input. We develop additional [CLS] tokens as cognitive tools to simulate
different human cognitive perspectives of the same image. Each [CLS] processes and interprets the
input information in a unique way. When combined with knowledge from different perspectives,
these tokens contribute to a more comprehensive understanding of the specific input. For example,
different tokens correspond to information about the weather, landmarks, and objects in the image,
which can be used to retrieve rich EK to assist reasoning. On the other hand, the Relevance module
is used to integrate the retrieved EK to form a comprehensive reasoning result. In this module, we
design a scoring mechanism to refine both the image features and EK features. Specifically, we
introduce an adaptive weighting and feature filtering method to dynamically evaluate information
relevant to location and time reasoning in different features, thereby reducing the impact of noisy
features. This makes the model robust to changes in feature and modality quality and enhances
the credibility of the final reasoning results. For example, based on the vision and EK embeddings
extracted in Figure 2, the model adaptively increases the weights of visual features such as persons,
stadiums, and billboards, as well as EK features of relevant descriptions such as Saudi Arabia and
Al Nassr FC, while reducing the weights of irrelevant or noisy features.

The experiments have shown the effectiveness of our QR-CLIP model. On the more challenging
TARA dataset, QR-CLIP achieves an accuracy (or Rank@1) of 19.51%, which is a 3.05% improvement
compared to the previous State of the Art (SOTA) on location reasoning. Moreover, for time
reasoning tasks, our model achieved an accuracy of 3.45%, representing a significant improvement
of 2.45%. Additionally, the Rank@5 also improved from 5.53% to 10.97%. It should be noted that
the accuracy of location and time reasoning was calculated under challenging conditions: location
reasoning required precision at the district level, and time reasoning to specific dates, such as
Dongcheng District, Beijing, China, and Asia in 2017-08-01. To provide a more comprehensive
assessment of themodel, we utilized the Example-F1 [18].This metric evaluates themodel’s accuracy
in multi-level label prediction tasks, for instance, assigning scores based on the model’s accuracy in
reasoning years or months. Specifically, our model achieved a score of 51.25% in location reasoning
and 50.53% in time reasoning on Example-F1, exceeding the previous SOTA by 7.64%. Overall, our
key contributions can be summarized as:

—We propose a novel location and time reasoning method, QR-CLIP, which searches and utilizes
EK in the environment to enhance the ability of VLMs to infer implicit information behind
images.

—We propose a Quantity module, which develops additional [CLS] tokens to help the model
search and gather EK that is beneficial to reasoning from various perspectives.

—We propose a Relevance module, which employs a scoring mechanism to refine and integrate
the visual features and the retrieved EK features to form comprehensive reasoning results.

Comprehensive experiments on the TARA dataset demonstrate the effectiveness of our method.
In particular, our method achieved an accuracy improvement of 3.05%/2.45% in location and time
reasoning tasks compared to the previous SOTA method.

2 Related Work
2.1 Location and Time Reasoning
Location and time reasoning aims to extract spatial and temporal information from inputs. Some
pioneering works propose to predict user locations from social media texts [25], extract temporal
information from various texts [26], and deduce spatiotemporal information from news articles
[27]. These methods demonstrate the potential to understand the spatiotemporal information of
data across diverse textual sources.
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However, as the scale of multimedia data grows, the limitations of extracting information simply
from textual inputs have become increasingly apparent, and researchers have turned their attention
to inferring location and time information from visual inputs. For example, CVT [10] supports tasks
like image geolocation and fake news detection by dynamically mapping time/location metadata to
visual attributes. CVFT [11] simulates human behavior in remembering the relative spatial positions
of objects or buildings during navigation and introduces a domain transfer cross-view feature
transmission method. This method determines the location of an image by matching it with aerial
views in a database. Despite the success of these methods in specific scenarios, they often rely on
extensive pre-collected Geographic Information System data, which limits the practicality of these
methods for widespread deployment.

Recently, the emergence of pre-trained VLMs offers new solutions for location and time reasoning,
as they associate images with a wide range of world knowledge (such as geographic, temporal, and
event information, etc.). Based on this fact, TARA [18] proposes the CLIP+seg method. This method
improves upon CLIP by identifying specific objects in images (e.g., landmarks, buildings, and people)
to predict the location and time when the image was taken. INFOSEEK [28] conducts a large-scale
Visual Question Answering (VQA) experiment, focusing on answering questions about the
location, time, and object attributes in images to enhance the ability of VLMs to infer implicit
information behind images. CogBench [29] performs a thorough evaluation of the cognitive abilities
of VLMs, including location reasoning and special time reasoning tasks, on a cognitive assessment
benchmark constructed for image reasoning and description. Further, WikiTiLo [19] builds a dataset
consisting of images with a broader temporal span and unbiased location distribution, providing
a more comprehensive and accurate benchmark for evaluating and improving the reasoning
capabilities of these VLMs. Based on this benchmark, WikiTiLo introduces a two-stage reasoning
task that enables VLMs to identify location and time-related features and perform further reasoning.

Due to the inability to effectively access knowledge beyond the images, reasoning based solely
on the observed visual content makes these VLMs perform poorly in reasoning about location and
time. In this context, this article proposes a novel reasoning model, QR-CLIP, which searches for
and utilizes relevant knowledge from different perspectives, expanding the breadth and depth of
the model’s understanding of multimedia data, thereby improving the accuracy of location and
time reasoning behind images.

2.2 VLMs
Pre-trained VLMs, which connect visual concepts with textual descriptions, have indicated re-
markable performance across a variety of downstream tasks, such as image retrieval [30], dense
prediction [31], and VQA [32]. As a milestone, CLIP [16], which adopts a contrastive learning
method [33] on a vast collection of image-text pairs, exhibits excellent transferability over 30
classification datasets. Inspired by this work, numerous follow-ups have been proposed to improve
the training strategy (e.g., Tip-adapter [34], A Large-scale ImaGe and Noisy-text embedding [35],
Self-supervision meets Language-Image Pre-training (SLIP) [36], BLIP [17], and Pyramidclip
[37]) or apply it to other fields (e.g., CLIP-Event [1] and CrowdCLIP [38]).

However, despite the impressive ability of existing VLMs to match visual cues with textual
semantics, they fail to further uncover implicit information behind the images based on this
matching. Instead, we propose the Quantity module and Relevance module. The Quantity module
helps VLMs understand images from different perspectives and seek beneficial environmental
knowledge. The Relevance module further enhances the reliability and accuracy of VLMs in the
reasoning process. These two modules effectively expand the functionality of VLMs (e.g., CLIP)
and enhance their reasoning capabilities.
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3 Approach
3.1 Preliminary
Task Background. The Current AI methods are relatively weak in cognizing and reasoning the
information concealed within an image. The goal of this article is to let the model reason the
location and time based on image input [18]: given an image � , we need the model (M(� )) to predict
the location (Pred; ) and time (PredC ).
VLMs. VLMs leverage visual-language pre-training method to learn both visual and language

representations from large-scale image-text pairs. They generally consist of an image encoder
(CLIP-V) EncE and a text encoder (CLIP-T) EncC , which are jointly trained to, respectively, map
input images and texts into a unified representation space. Specifically, the image encoder uses
ResNet [39] or ViT [24] with a global attention pooling layer to generate a class token [CLS]E that
represents the global feature of input image � , while the text encoder adopts a Transformer [40] to
extract the embedding [CLS]C of the input text ) . For simplicity, we represent the above process as:

[CLS]E ← EncE (� ) and [CLS]C ← EncC () ), (1)

Afterwards, contrastive learning [33, 41, 42] is employed as their training objective, with ground-
truth image-text pairs treated as positive samples and mismatched image-text pairs constructed
as negative samples. Using large-scale image-text pairs for model training, VLMs (e.g., CLIP [16],
PyramidCLIP [37]) have powerful visual language understanding capabilities. In this work, we
mainly verify the effectiveness of the proposed method based on CLIP.
Our Pipeline. To enhance the reasoning capability of VLMs (e.g., CLIP), we propose QR-CLIP.

As shown in Figure 3, QR-CLIP consists of two modules: the Quantity module and the Relevance
module. The Quantity module helps the model search and gather knowledge that is beneficial to
reasoning from the external environment, which is crucial for expanding cognitive resources and
enhancing reasoning abilities. The Relevance module integrates this knowledge with a scoring
mechanism to form a comprehensive reasoning result. The two modules work together to further
improve the time and location reasoning performance of VLMs.

3.2 Quantity Module
The Quantity Module aims to expand the cognitive resources of the model. To achieve this, we
propose first encoding multiple distinct [CLS]E8 tokens to represent the image, allowing the model
to seek EK from various perspectives. Next, we fine-tune CLIP on our location and time reasoning
task to further enhance its performance. Finally, we use the fine-tuned model for EK search.
Introducing additional [CLS]. Vanilla CLIP utilizes a single class token [CLS] to summarize

the global features of an image. However, single [CLS] is inadequate in representing an image
comprehensively, as it provides limited location and time reasoning cues. Therefore, we propose
to expand the image representations. It is evident that in real life, individuals can achieve a
more comprehensive and accurate understanding of images by integrating the information and
functionality of various tools. In this vein, we propose to introduce additional [CLS]E8 tokens to
describe images from multiple perspectives, which can be expressed as:

[CLS]E8 ← EncE (� ), (2)

where 8 represents the count of [CLS] tokens in a given image, ranging from 1 to=. By default, we set
= = 6. After passing through the encoder EncE , we get a list of embeddings ( [CLS]E1 ...[CLS]E6 � ). Using
this design, each [CLS]E8 token is treated as a separate cognitive tool, simulating the framework
of distributed cognition. This approach enables the pre-trained model to incorporate multiple
perspectives, enhancing the richness of the captured EK.
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Fig. 3. The QR-CLIP pipeline consists of two modules: the Quantity Module (Section 3.2) and the Relevance
Module (Section 3.3). Each step described below corresponds to Step 1, Step 2, and Step 3 in Figure 1. In Step 1,
we add additional [CLS] tokens to simulate the use of different cognitive tools by individuals. We then design
local and global loss functions to guide location/time fine-tuning. Then, we freeze the fine-tuned CLIP-V
and CLIP-T models and utilize them to search for EK from our EK dataset (Section 4.1). In the Relevance
Module, we use a scoring mechanism to weigh the most valuable information from CLIP-T and CLIP-V. After
multiplying scoring weights for vision and language, we add them for the final similarity calculation.

Regarding the encoding, since the input text contains explicit semantic information and most
language inputs convey clear messages, we directly utilize the original [CLS]C as the input feature
embedding. Afterwards, we utilize image features [CLS]E8 to retrieve relevant textual information:

( [CLS]C ) · ( [CLS]E8 ), (3)

here, · denotes the inner product operation. In the fine-tuning or EK search process, each [CLS]E8
from EncE calculates its similarity with the [CLS]C of the candidate information.

Location/Time Fine-tune. We further fine-tune CLIP with local and global losses (GLs) [43, 44]
to ensure that each [CLS]E8 is aligned with the linguistic features of location and time [CLS]C . The
local loss (LL) is utilized to construct multiple different [CLS]E8 , while ensuring that they encode
the visual features of the image from diverse perspectives. This loss function consists ofmulti-view
contrastive learning (MVC) and multi-view regularization. Among them, the alignment between
each [CLS]E8 and [CLS]C is achieved through the MVC:

!"+� = −log 4 5 (@
8
E , :C+ )

4 5 (@
8
E , :C+ ) + 4 5 (@8E , :C− )

, (4)

here, @8E denotes the query image embedding ([CLS]E8 ), while :C+ and :C− represent the positive
and negative key text embeddings, in a batch of [CLS]C . 5 (G,~) denotes inner product function to
calculate the similarity between G and ~.

Since multiple [CLS]E8 correspond to one [CLS]C , !"+� tends to cluster [CLS]E8 together. To
overcome this issue, we add a regularization term to separate the distance between each [CLS]E8 ,
promoting them to learn and represent information in the image independently from diverse
perspectives:

!"+' = 2
= (=−1)

∑=−1
8=1

∑=
9=8+1

5

(
@8E , @

9
E

)
| |@8E | | · | |@ 9

E | |
, (5)

where = represents the number or [CLS]E8 vectors, 8 ranges from 1 to = − 1, and 9 ranges from
8 + 1 to =. This implies that the calculation of !"+' takes into account all possible pairs of [CLS]E8
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vectors. The numerator of the formula uses the inner product function, 5 (@E8 , @ 9E), to gauge the
similarity between each pair of [CLS]E8 vectors. The denominator normalizes the distance between
the vectors by the product of their magnitudes | |@E8 | | · | |@ 9E | |, which encourages the model to learn
discriminative features that are independent of vector length.

During the optimization phase, the model strives to increase the distances between pairs of
[CLS]E8 , thereby enhancing its ability to discern image features from diverse perspectives. However,
each [CLS]E8 vector faces distinct learning challenges, resulting in uneven rates of training progress.
To counteract this, we use a dynamically balanced learning strategy:

F 8 = softmax(1 − 0228 ), (6)

where the variableF 8 denotes the dynamic learning weight for each [CLS]E8 .This weight is calculated
by applying a softmax function over the (1 − 0228 ), where 0228 represents the prediction accuracy
achieved by the model using each [CLS]E8 during the training process. In essence, this approach
dynamically adjusts the learning priorities, offering more attention to instances of [CLS]E8 that
exhibit slower progress or present greater learning challenges.

Based on the above-mentioned discussions, the LL can be defined as:
!;>20; =

∑=
8=1F

8!"+� + _!"+', (7)

which aims to minimize the distance between each [CLS]E8 and its corresponding sentence embed-
ding ([CLS]C ), while simultaneously maximizing the distance between different [CLS]E8 .

Besides the LL, we further introduce a GL to constrain the correspondence between image
features and location/time features. The calculation for this constraint is as follows:

!6;>10; = −log
4 5<40= (@E , :C+ )

4 5<40= (@E , :C+ ) + 4 5<40= (@E , :C− )
, (8)

here, we have the function 5<40= (@E, :C ) = 1
=

∑=
8=1 5 (@8E, :C ). !6;>10; aims to enhance the learning of

global correspondence by integrating the mean correlation score across various perspectives.
Finally, the total training objective can be formulated as:

!C>C0; = !;>20; + !6;>10; , (9)

which not only encourages the model to learn robust correspondences between diverse visual
perspectives and the text but also enables it to capture the overall alignment of the image features
with respect to location and time attributes mentioned in the text.

EK Search. After fine-tuning, each [CLS]E8 outputted by CLIP-V is capable of representing image
location and time information from various perspectives.Thus, we use them to search more valuable
EK from the EK dataset (Section 4.1), facilitating interaction between themodel and the environment.
Specifically, given an image � and its corresponding EK ($ = ) � 1 ,) � 2 , ...,) � 

:
, : = 122,408), the

search process follows Equation (3): each [CLS]E8 calculates the similarity with 122,408 candidate
Wikipedia corpus (EK). Here, we select the Wikipedia candidate with the highest similarity for
each [CLS]E8 , yielding a total of = EK entries.

Through the above process, theQuantity module collects EK that is highly relevant to the location
and time reasoning task, which is crucial to improving the performance of the method.

3.3 Relevance Module
As the images and the retrieved EK inevitably contain redundant information that is irrelevant to
location and time reasoning, this causes unnecessary interference with the final reasoning process.
To utilize them more reasonably to obtain more accurate reasoning results, we further propose the
Relevance Module, which adopts a scoring mechanism to emphasize and highlight relevant features
and suppress irrelevant features.
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Specifically, we first adopt two-layers MLP (MLP2−;0~4A ) as relevance scoring component:

, G = MLP2−;0~4A ( [CLS]G8 ), (10)

to evaluate the significance of different features. Here, [CLS]G8 is the input embedding,, G is the
calculated weight. Then, we perform adaptive fusion of different features based on the predicted
weights to form a comprehensive feature representation:

[CLS] 5 DB43 =

=∑
1

(, � 
8 × [CLS]� 8 +, E

8 × [CLS]E8 ), (11)

here,, � 
8 and, E

8 are the weights of the [CLS]� 8 and [CLS]E8 . Finally, we calculate the similarity
between [CLS] 5 DB43 and the embeddings of candidate locations/times to perform the final reasoning.

Moreover, to train the Relevance module, we adopt the same loss functions as the Quantity
Module (Section 3.2), i.e., local and GLs. In particular, we maintain the fine-tuned CLIP-T and
CLIP-V frozen, and solely update the parameters of the relevance scoring component.

By utilizing the CLIP (which is pre-trained 400 M explicit corpus) and subsequently fine-tuning
it by adding additional [CLS] with location-and-time-specific data, the model can reason about
meta information more effectively. Further, we enhance its performance by retrieving valuable EK
and utilizing it as auxiliary cues. Finally, we filter the vision and EK embeddings with a scoring
mechanism, enabling the model to achieve more effective reasoning.

4 Experiments
4.1 Experimental Settings
Dataset. In this study, we evaluate our QR-CLIP method using the TARA dataset [18], which
comprises 15,429 samples of news pictures and their location and time descriptions. We train
on 12,306 instances and test on 1,644 instances to assess the effectiveness of location and time
reasoning. Further, we evaluate the method’s generalization performance across four different
datasets. Among them, TARA-Dev [18] contains 1,552 images different from the TARA test set.
TARA-Interest [18] comprises 30 images related to news events occurring after January 2021, which
is the cut-off date for the CLIP model. The Commonsense and Factual Reasoning (COFAR)
dataset [45] includes landmark images with descriptions to verify the model’s understanding of
location-related events. WikiTiLo dataset [19] consists of 6,296 images annotated with specific
times and locations, spanning 30 countries across four continents to minimize distribution bias.
Additionally, The EK for our method is derived from the Wikipedia-based Image Text dataset [46].
We selected 122,408 texts from the 37.5 million English Wikipedia that correspond to the specific
countries and years as our EK.

Evaluation Metrics. For a fair comparison, we first follow the same evaluation metrics as outlined
in the TARA benchmark [18]: Accuracy (Rank@1) and Example-F1. Accuracy is calculated as the
proportion of correctly predicted samples to the total number of samples. It measures whether the
model’s reasoning results accurately include all the information in the location and time labels.
For example, the model needs to accurately predict all the information in {“Dongcheng District,
Beijing, China, Asia, 2017-08-01”} to be considered accurate. Example-F1 is calculated by comparing
reasoning results with hierarchical labels:

Example-F1 =
1
#

#∑
8=1

2 |GT8 ∩ Pred8 |
|GT8 | + |Pred8 |

, (12)

where GT8 represents the hierarchical label, and Pred8 represents the hierarchical reason. If the
entire label is {“Zurich, Switzerland, Europe”}, the progressive hierarchical labels consist of three
combinations of true labels: {“Zurich, Switzerland, Europe”}, {“Switzerland, Europe”} and {“Europe”}.
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Table 1. Summary of the Performance for Different Baselines on the TARA Dataset [18]

ID Method Training Mode Accuracy (Rank@1) Rank@5 Example-F1 F1-Score
Location Reasoning

1 ResNet-50 [39] Fine-tune 3.18% 9.82% 22.19% 2.27%
2 Swin-T [47] Fine-tune 6.70% 17.07% 33.56% 5.02%
3 CLIP [16] Zero-Shot 11.11% 27.85% 44.96% 9.74%
4 BLIP [17] Zero-Shot 4.07% 12.26% 36.01% 2.92%
5 SLIP [36] Zero-Shot 3.17% 11.52% 32.85% 2.33%
6 PyramidCLIP [37] Zero-Shot 4.66% 13.75% 34.64% 2.75%
7 CLIP† [18] Fine-tune 15.72% 37.13% 49.74% 13.82%
8 PyramidCLIP† [37] Fine-tune 7.13% 32.47% 48.23% 5.86%
9 CLIP+Seg [18] Fine-tune 16.46% 37.48% 50.52% 14.63%
10 QR-CLIP (Ours) Fine-tune 19.51% 38.48% 51.25% 17.65%

Time Reasoning
11 ResNet-50 [39] Fine-tune 0.84% 5.14% 39.99% 0.46%
12 Swin-T [47] Fine-tune 0.97% 5.53% 43.95% 0.72%
13 CLIP [16] Zero-Shot 0.46% 2.42% 39.90% 0.25%
14 BLIP [17] Zero-Shot 1.69% 3.99% 43.27% 0.20%
15 SLIP [36] Zero-Shot 0.32% 2.15% 32.89% 0.71%
16 PyramidCLIP [37] Zero-Shot 1.15% 3.61% 41.51% 0.33%
17 CLIP† [18] Fine-tune 1.00% 2.99% 43.09% 0.54%
18 PyramidCLIP† [37] Fine-tune 1.73% 4.32% 43.77% 1.41%
19 CLIP+Seg [18] Fine-tune 0.92% 3.15% 42.89% 0.71%
20 QR-CLIP (Ours) Fine-tune 3.45% 10.97% 50.53% 1.49%

Here, CLIP and PyramidCLIP use the ViT-B/32 model. SLIP uses ViT-B/16 model. BLIP uses the 129M model. The symbol †
denotes that the model was fine-tuned. The best results are in bold.

In addition, the performance of methods is further evaluated using Rank@5 and F1-Score. Rank@5
measures the model’s accuracy in the Top 5 reasoning results. F1-Score is calculated as the harmonic
mean of the model’s precision and recall, evaluating whether the model accurately reasons.

Implementation Details.QR-CLIP is based on CLIP+VIT-B/32model with an input size of 224 × 224.
It is implemented on the PyTorch 1.10.1 platform with the Adam optimizer to update the neural
network’s weights and biases. The training batch size is 32, and the initial learning rate is 14−6. Our
model utilizes a pre-trained model and fine-tuned process on an NVIDIA RTX 3090 GPU running
CUDA 11.7.1.

4.2 Comparison with SOTA Methods
In this section, we compare QR-CLIP with the current state-of-the-art location and time reasoning
methods. By analyzing and comparing these methods on multiple key metrics, we indicate the
performance advantages of our method.

(1) Location Reasoning. We compare the results of QR-CLIP with other methods for location
reasoning in Table 1. In this experiment, both ResNet-50 and Swin-T models were initialized with
ImageNet [48] pre-trained weights and subsequently fine-tuned for location and time reasoning
tasks using the TARA dataset with an additional classification head. Our QR-CLIP model achieves
an accuracy of 19.51% (Rank@1). Additionally, it attains an Example-F1 score of 51.25% for the
hierarchical labels. All the results collectively show that our method outperforms other methods.

Compared with ResNet-50 [39] and Swin-T [47], vanilla CLIP achieves an improvement of 7.93%
and 4.41% in location reason accuracy (IDs: 1, 2, 3). It is evident that in comparison to the vision
model only trained on ImageNet [48], CLIP already possesses a certain level of knowledge for
reasoning. Furthermore, compared to other VLMs, CLIP shows advantages in location reasoning in
both zero-shot and fine-tuned settings. For instance, compared to BLIP [17] and PyramidCLIP [37],
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CLIP improves location reasoning accuracy by 7.04% and 6.45%, respectively. The improvement
is more significant for CLIP†, reaching 11.65% and 11.06%, respectively (IDs: 3–8). This is mainly
because CLIP is trained on a larger dataset of image-text pairs, which not only provides the model
with richer world knowledge but also a powerful visual encoder. In contrast, by integrating CLIP
into our method, QR-CLIP further improves location reasoning accuracy by 8.40%, demonstrating
its effectiveness in improving the reasoning ability of VLMs (IDs: 3 vs 10).

Besides, compared to CLIP† and the previous SOTA method CLIP+Seg [18], QR-CLIP exhibits a
significant accuracy improvement of 3.79% and 3.05%, respectively, along with a corresponding
increase in F1-Score by 3.83% and 3.02%, respectively (IDs: 7, 9, 10). Other evaluation metrics (e.g.,
Rank@5 and Example-F1) also improved. These results show that QR-CLIP can effectively utilize
EK to enable the model to understand and distinguish more detailed visual attributes, creating
stronger connections between image and location information. However, we have observed that
the improvement in Example-F1 is not as apparent. We argue that this is because of the mechanism
of Example-F1. To illustrate, consider Figure 2, which contains many elements of Arabia, such as
turbans and Arabic writing. It is not difficult for many models to recognize that this image was
captured in the Middle East and to predict its hierarchical label as {“Asia”}. However, they failed
when asked to predict the entire label Riyadh, Saudi Arabia, Asia. Therefore, the discrepancy in
other metrics may be more noticeable.

(2) Time Reasoning. Table 1 also presents the performance of our method and existing techniques
for time reasoning. The Accuracy (Rank@1) of QR-CLIP is 3.45%, and Example-F1 is 50.53%; com-
pared to the CLIP model, the two metrics have been improved by 2.99% and 10.63%, respectively (IDs:
13, 20). Compared with CLIP† and CLIP+Seg, which are also based on fine-tuned CLIP, our method
achieves improvements of 2.45% and 2.53% in time reasoning accuracy, respectively. Compared
with traditional image classification methods, QR-CLIP exhibits advantages in all metrics (IDs: 17,
19, 20). In addition, we find that in the time reasoning task, existing VLM-based methods struggle
with achieving effective time reasoning because images often lack features that directly indicate
specific dates.

It is not surprising that even for humans, determining the time a photo was taken may be
difficult, as illustrated by the sample image in Figure 2. For instance, if one is unfamiliar with
Cristiano Ronald or lacks specific knowledge, they may not recognize that the time stamp on the
image, {“03-01-2023”} indicates the date the photo was taken. Nevertheless, our method is effective,
achieving an improvement of +2.45% in predicting time compared to CLIP†.

4.3 Method Generalization Validation
In this section, we analyze the generalizability of QR-CLIP, by showing its performance on different
datasets, its results when using different VLMs, and its outcomes using various types of EK.

(1) Testing on Different Datasets. We first evaluate the zero-shot performance of QR-CLIP on
three datasets (e.g., TARA-Dev [18], TARA-Interest [18] and COFAR dataset [45]) without any extra
training. Next, we conduct a comprehensive evaluation on the WikiTiLo dataset [19], which has
a longer time span and a more even geographic distribution to verify the reasoning capability of
QR-CLIP in larger scenarios.

As illustrated in Table 2, the experimental results show the efficacy of our QR-CLIP in comparison
to other methods. On the TARA-Dev dataset, QR-CLIP achieved an accuracy of 20.35% in location
reasoning and 6.53% in time reasoning, surpassing both the CLIP and CLIP+Seg models (IDs: 21–26).
These results validate the effectiveness of the model in handling diverse and previously unseen
images. A similar trend was observed in the TARA-Interest dataset, where QR-CLIP attained an
accuracy of 58.62% (ID: 29) in location reasoning and 20.69% (ID: 32) in time reasoning. This not only
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Table 2. Performance Comparison of Location and Time Reasoning
Tasks across Different Datasets

ID Method Accuracy (Rank@1) Rank@5 Example-F1
TARA-Dev [18]

Location Reasoning
21 CLIP [16] 10.99% 29.72% 45.90%
22 CLIP+Seg [18] 15.88% 39.15% 51.83%
23 QR-CLIP (Ours) 20.35% 40.23% 51.60%

Time Reasoning
24 CLIP [16] 0.53% 1.82% 42.14%
25 CLIP+Seg [18] 0.53% 2.50% 43.55%
26 QR-CLIP (Ours) 6.53% 18.89% 53.26%

TARA-Interest [18]
Location Reasoning

27 CLIP [16] 13.33% 27.85% 56.44%
28 CLIP+Seg [18] 23.33% 37.48% 63.11%
29 QR-CLIP (Ours) 58.62% 86.20% 80.46%

Time Reasoning
30 CLIP [16] 0.00% 1.85% 24.56%
31 CLIP+Seg [18] 3.33% 9.48% 24.43%
32 QR-CLIP (Ours) 20.69% 41.38% 60.34%

COFAR [45]
Location Reasoning

33 CLIP [16] 70.96% 84.29% 81.97%
34 CLIP+Seg [18] 70.00% 83.33% 80.05%
35 QR-CLIP (Ours) 71.42% 85.71% 85.14%

Here, we show the results on TARA-Dev [18], TARA-Interest [18] and COFAR
[45]. Notably, our method was tested without any additional training. The best
results are in bold.

Table 3. The Performance Comparison of Different Methods on the WikiTiLo Dataset [19]

Times Country Region
ID Method Training Mode Accuracy Precision F1-score Accuracy Precision F1-score Accuracy Precision F1-score
36 CLIP [16] Zero-Shot 78.57% 70.66% 70.66% 44.28% 43.11% 40.19% 63.65% 67.34% 64.42%
37 BLIP [17] Zero-Shot 30.95% 46.81% 46.14% 35.23% 35.30% 30.07% 46.51% 57.02% 49.05%
38 CLIP†[16] Fine-tune 89.37% 85.67% 85.04% 57.83% 55.42% 54.15% 79.37% 79.36% 79.11%
39 BLIP†[17] Fine-tune 86.51% 81.36% 80.51% 47.77% 45.39% 41.25% 75.08% 75.10% 75.26%
40 QR-CLIP (Ours) Fine-tune 91.59% 89.25% 88.23% 64.86% 62.86% 61.80% 83.77% 83.48% 83.17%

Here, CLIP uses the ViT-B/32 model. BLIP uses the 129M model. The symbol † denotes that the model was fine-tuned. The best results are in bold.

shows the generalization capability of QR-CLIP but also suggests its potential uses in evolving real-
world scenarios. Furthermore, on the COFAR dataset,QR-CLIP once again outperforms other models
with a location reasoning accuracy of 71.42% (ID: 35). Given that landmark descriptions contain
more context information, our model has achieved significant growth in all metrics concerning
location reasoning.This result corroborates the robustness and adaptability of our model to different
data types and tasks.

The experimental results on the WikiTiLo dataset [19] are shown in Table 3. The results indicate
that the CLIP variants outperform the BLIP model overall (IDs: 36–39). This is because CLIP uses
a larger pre-training dataset, which allows it to capture and understand visual features more
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Table 4. Performance Results of Adding theQuantity Module and Relevance Module to
PyramidCLIP on the TARA Dataset [18]

ID Method Training Mode Accuracy (Rank@1) Rank@5 Example-F1
Location Reasoning

41 PyramidCLIP [37] Zero-Shot 4.66% 13.75% 34.64%
42 PyramidCLIP† [37] Fine-tune 7.13% 32.47% 48.23%
43 QR-PyramidCLIP Fine-tune 13.65% 35.40% 50.73%

Time Reasoning
44 PyramidCLIP [37] Zero-Shot 1.15% 3.61% 41.51%
45 PyramidCLIP† [37] Fine-tune 1.73% 4.32% 43.77%
46 QR-PyramidCLIP Fine-tune 3.15% 11.03% 48.29%

Here, the symbol † denotes that the model was fine-tuned. QR-PyramidCLIP represents PyramidCLIP with the
Quantity and Relevance Modules. The best results are in bold.

effectively and includes more implicit knowledge of location and time. Moreover, both CLIP and
BLIP show improved performancewhen fine-tuned, as fine-tuning enhances themodels’ adaptability
to downstream tasks (ID: 36 vs 38, 37 vs 39). However, reasoning about location and time is a fine-
grained task that requires models to distinguish more detailed visual cues at the knowledge level,
such as understanding different geographical and cultural elements. Relying solely on extracted
visual features, the models still do not achieve satisfactory accuracy. Further, compared to CLIP†
method, QR-CLIP shows notable performance improvements, increasing the accuracy of location
(Region) reasoning by 4.40% and time reasoning by 2.22% (IDs: 38 vs 40). This further suggests
that leveraging EK from the environment can more accurately distinguish visual cues, thereby
effectively enhancing the model’s reasoning performance. Additionally, the improved performance
shows the potential of our model to reason about location and time in a wider range of application
scenarios.

(2) Performance Analysis Based on Different VLMs. To furthur validate the generalizability of
our method, we add Quantity module and Relevance module to PyramidCLIP [37], naming it
QR-PyramidCLIP. As shown in Table 4, the experimental results indicate that QR-PyramidCLIP
improves accuracy by 6.52% and 1.42% over PyramidCLIP† in location and time reasoning tasks,
respectively (IDs: 42 vs 43, 45 vs 46). These results indicate that QR-PyramidCLIP effectively enhances
the reasoning performance of the original PyramidCLIP, validating the rationality of designed
Quantity and Relevance modules. Additionally, these results confirm that introducing EK is an
effective solution for improving the reasoning capabilities of VLMs.

(3) Search Knowledge From Language Model. Existing language models have gathered a vast
amount of knowledge through training on extensive text data. In this experiment, we utilize task-
specific language models as explicit EK. As shown in Figure 4, to familiarize the model with the text
distribution relevant to the task, we used 122,408 candidate Wikipedia data (ID: 77), updating the
parameters of the GPT-2 language model in an unsupervised method [49]. The experiment employs
Magic [50] decoding methods. By integrating the similarity between the token and the image
generated at each step by the language model into the decoding score, we execute a knowledge
search from the language model.

As shown in Table 5, the experimental results demonstrate that the incorporation of task-specific
language models as EK enhances the model’s capabilities in location and time reasoning tasks
(IDs: 50, 54). The application of EK, derived from both human-curated databases (Wikipedia) and
language model (GPT-2), shows an improvement in the performance of both location and time
reasoning tasks compared to methods without any EK (IDs: 47–50, 51–54). This highlights the
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Fig. 4. The illustration of searching EK from language models. The CLIP-V outputs diverse representations of
image location and time as [CLS]E

8
, which enables semantic alignment between generated results and input

images. This alignment facilitates the selection of the most suitable token for EK search based on visual
information. Each [CLS]E

8
yields a corresponding textual knowledge, consistent with step 2 in Figure 3.

Table 5. The Impact Results of Different EK Sources on Location and Time
Reasoning Tasks

ID EK Source Method Accuracy (Rank@1) Rank@5 Example-F1
Location Reasoning

47 N/A CLIP 15.72% 37.13% 49.74%
48 N/A CLIP+Seg 16.46% 37.48% 50.52%
49 Wikipedia QR-CLIP 19.51% 38.48% 51.25%
50 GPT-2 QR-CLIP 19.73% 38.25% 51.19%

Time Reasoning
51 N/A CLIP 1.0% 2.99% 43.09%
52 N/A CLIP+Seg 0.92% 3.15% 42.89%
53 Wikipedia QR-CLIP 3.45% 10.97% 50.53%
54 GPT-2 QR-CLIP 3.37% 9.51% 46.33%

The EK sources utilized include None (N/A), Wikipedia, and a language model (GPT-2). The best
results are in bold.

significance of EK and showcases the versatility of our approach. We effectively leverage various
types of EK in the environment to enhance the model’s reasoning abilities.

In summary, our model successfully motivates visual language models to perform higher-level
reasoning while maintaining the potent generalization capabilities of large-scale pre-training
models. As a result, this research not only provides substantial support for further studies and
application of location and time reasoning tasks but also carries positive implications for enhancing
the generalization performance of large-scale visual language models in specific tasks.
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Table 6. The Impact of Various Loss Functions and Components
on Performance

ID Method Accuracy (Rank@1) Rank@5 Example-F1
Location Reasoning (Only QM)

55 CLIP+[CLS]E
8
(==6)+!! 16.56% 37.08% 49.85%

56 CLIP+[CLS]E
8
(==6)+�! 17.04% 37.26% 49.93%

57 CLIP+[CLS]E
8
(==6)+!!+�! 17.47% 38.00% 50.10%

Time Reasoning (Only QM)
58 CLIP+[CLS]E

8
(==6)+!! 1.31% 5.56% 44.83%

59 CLIP+[CLS]E
8
(==6)+�! 1.84% 5.77% 44.53%

60 CLIP+[CLS]E
8
(==6)+!!+�! 2.03% 6.33% 45.72%
Location Reasoning (QR-CLIP: QM+RM)

61 CLIP+[CLS]E
8
(==6)+!! 19.19% 37.12% 50.63%

62 CLIP+[CLS]E
8
(==6)+�! 18.61% 37.49% 50.91%

63 CLIP+[CLS]E
8
(==6)+!!+�! 19.51% 38.48% 51.25%
Time Reasoning (QR-CLIP: QM+RM)

64 CLIP+[CLS]E
8
(==6)+!! 3.12% 11.49% 48.85%

65 CLIP+[CLS]E
8
(==6)+�! 2.78% 9.86% 47.11%

66 CLIP+[CLS]E
8
(==6)+!!+�! 3.45% 10.97% 50.53%

!!, �! indicate the local loss and global loss, respectively. QR-CLIP means the
model contains entirely Quantity Module (QM: Section 3.2) and Relevance Module
(RM: Section 3.3). The best results are in bold.

4.4 Ablation Study
We conduct ablation studies to analyze the effectiveness of each component in our method. Specif-
ically, we (1) first analyze the performance of the proposed local and GL functions under differ
module settings. (2) Then, we analyze the impact of different numbers of [CLS] tokens on method
performance. (3) Next, we evaluate the impact of varying amounts of EK in the environment. (4)
Afterward, we test the performance differences of distinct scoring mechanisms. (5) Finally, we
analyze the impact of multi-view representation images.

(1) Effectiveness of Losses and Modules. We analyze the impact of different loss functions, i.e.,
LL and GL, as well as the contributions of the Quantity (Section 3.2) and Relevance Modules
(Section 3.3) to the performance of the model. As shown in Table 6, compared to training with only
one loss function, both modules achieved performance improvements when combining the two loss
functions, demonstrating their combined potential. We attribute the performance improvement to
the fact that these two loss functions help the model integrate image information from multiple
perspectives. Additionally, by adding the Relevance module, we significantly improve the reasoning
abilities of the model. These experimental results validate the rationality of our model design: first,
acquiring extensive knowledge through the Quantity module, and then effectively integrating this
information using the Relevance module to boost the performance.

(2) Impact of Additional [CLS]’ Number. Following the model design process, we first analyze
the impact of different numbers of [CLS] tokens on model performance in the Quantity module.
As shown in Table 7, in location reasoning, compared to CLIP† with a single [CLS](ID: 7), the
model’s accuracy improves by 1.81% and 1.75% when the number of [CLS] tokens is = = 4 and
= = 6, respectively (IDs: 7 vs 68, 7 vs 69). The results indicate that the additional [CLS] effectively
increases image cues by constructingmultiple perspectives, which has promising benefits.Therefore,
we choose = = 6 for subsequent experiments to acquire as much EK as possible from different
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Table 7. Performance of Additional [CLS] in QR-CLIP with
Different Numbers

ID Method Accuracy (Rank@1) Rank@5 Example-F1
Location Reasoning

67 CLIP+[CLS]E
8
(==2) 16.91% 37.91% 49.47%

68 CLIP+[CLS]E
8
(==4) 17.53% 38.10% 50.03%

69 CLIP+[CLS]E
8
(==6) 17.47% 38.06% 50.10%

70 CLIP+[CLS]E
8
(==8) 16.78% 37.40% 48.71%

Time Reasoning
71 CLIP+[CLS]E

8
(==2) 1.90% 5.25% 45.62%

72 CLIP+[CLS]E
8
(==4) 1.99% 5.38% 45.68%

73 CLIP+[CLS]E
8
(==6) 2.03% 5.33% 45.72%

74 CLIP+[CLS]E
8
(==8) 1.66% 5.16% 45.27%

Here, = represents the number of [CLS] tokens. The best results are in bold.

Table 8. The Results of the Effect of Increasing the Candidate Number of EK

ID Candidate EK Accuracy (Rank@1) Rank@5 Example-F1
Location Reasoning

75 29,243 18.26% 37.97% 50.29%
76 52,159 18.83% 38.29% 50.45%
77 122,408 19.51% 38.48% 51.25%

Time Reasoning
78 29,243 2.26% 6.77% 47.85%
79 52,159 2.88% 10.67% 48.52%
80 122,408 3.45% 10.97% 50.53%

The best results are in bold.

perspectives. However, when = increases to 8, the model’s performance slightly declines (IDs: 68–70,
72–74). This may be due to the lack of unique features in an image to support too many [CLS]
tokens, resulting in information redundancy.

(3) Impact of EK’s Number. To validate the impact of varying amounts of EK in the environment,
we conducted an experiment to determine whether increasing the number of EK is beneficial. As
shown in Table 8, the addition of 122,408 EK resulted in more accurate reasons by the network
(lift by 2.04% and 1.42%) for location and time (IDs: 69 vs 83, 73 vs 86), compared to the method
without EK. These results show that our method effectively utilizes EK to enhance the accuracy of
the model for image location and time. Besides, the performance gradually improves as the number
of EK increases (IDs: 75–77, 78–80). It also shows that our method has the capability to explore a
wider range of EK. However, comparing each [CLS]E8 with 122, 408 EK is already time-consuming
and limits the ability to increase the amount. In the future, we will strive to find a more efficient
approach to overcome this challenge.

(4) Analysis of Scoring Mechanism. We evaluate the performance of different scoring mechanisms
in the Relevance Module (Section 3.3), and the results are shown in Table 9. When utilizing ScoreE ,
certain image features may be weakened, and the accuracy of time and location reasoning may
decrease after fusing EK. When using the scoring mechanism on text (ScoreC ), only EK was consid-
ered during the fusion process. As a result, the accuracy of location and time reasoning improved
by 3.11% and 0.11%, respectively (IDs: 81 vs 82, 84 vs 85). This suggests that the weights exert a
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Table 9. The Effect of Different Scoring Mechanisms on
Network Performance

ID Method Accuracy (Rank@1) Rank@5 Example-F1
Location Reasoning

81 ScoreE 15.45% 35.63% 47.87%
82 ScoreC 18.56% 37.55% 50.94%
83 Proposed 19.51% 38.48% 51.25%

Time Reasoning
84 ScoreE 2.72% 10.61% 50.38%
85 ScoreC 2.83% 10.43% 50.42%
86 Proposed 3.45% 10.97% 50.53%

Where scoreE indicates that only images are scored and scoreC means scoring
EK only. The best results are in bold.

Fig. 5. This figure illustrates the impact of diversity on the performance of theQuantity Module. Among them,
graph (a) compares the model’s performance in location reasoning tasks with the blue curve representing the
model’s performance with !"+' loss and the red curve representing the model’s performance without !"+'
loss. Graph (b) tracks the changes in cosine similarity among [CLS]E

8
during training. Similarly, graphs (c)

and (d) present the results of experiments in time reasoning tasks.

significant influence on the final reasoning. When both image and EK embeddings are scored, the
accuracy of location and time reasoning increases by 4.06% and 0.73%, respectively (IDs: 81 vs 83,
84 vs 86). It is evident that by scoring both image and EK embeddings simultaneously, the model
can more effectively optimize the connection between visual cues and EK, thereby improving the
model’s reasoning performance.

(5) Impact of Multi-view representation images. In our method, we enhance the model’s ability
to understand implicit information and search for valuable knowledge in the environment by
encouraging it to represent images from multiple perspectives. To verify the effectiveness of this
design, we evaluate the impact of the diversity of [CLS]E8 in theQuantity module and the duplication
rates in the EK on the performance of method.

As shown in Figure 5, We first use the !"+' (Equation (5)), which increases the distance between
different [CLS]E8 during training, as the experimental variable to analyze the impact of the diversity
of [CLS]E8 in the Quantity module on model performance. The incorporation of !"+' leads to a
peak accuracy of 17.47% (graph(a): blue curve), surpassing the model without !"+' , which achieves
an accuracy of 17.04% (graph(a): red curve). In addition, the inclusion of !"+' results in a decrease
in the similarity between each [CLS]E8 (graph(b): blue curve). Similar trends are also observed
in the experimental results of time reasoning tasks (graph(c), graph(d)). These results show that
the introduction of !"+' enhances the dissimilarity between each [CLS]E8 , allowing the model to
effectively differentiate and capture multiple perspectives, thereby improving model performance.
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Table 10. The Impact of Diversity in EK on Relevance Module Performance

ID Method Duplication Rate Accuracy (Rank@1) Rank@5 Example-F1
Location Reasoning

87 Uniform Search 100% 19.17% 38.11% 50.97%
88 Distinct Search 0% 18.88% 37.97% 50.43%
89 Proposed 67.62% 19.51% 38.48% 51.25%

Time Reasoning
90 Uniform Search 100% 3.16% 10.63% 50.11%
91 Distinct Search 0% 3.03% 10.74% 49.60%
92 Proposed 67.10% 3.45% 10.97% 50.53%

Where “Uniform Search” represents the approach of using the highest-scoring wiki entry for all searches, and
“Distinct Search” involves searching through diverse wiki entries with a zero duplication rate. The best results
are in bold.

Then, we evaluated the effect of diversity on performance using search-derived EK. As shown
in Table 10, the use of the Distinct Search method results in a decrease in location reasoning
accuracy compared to proposed method, due to the lack of diversity in the obtained EK (IDs: 87
vs 89). Compared to other methods, despite obtaining six entirely different EKs, the model using
Distinct Search had the lowest reasoning accuracy (IDs: 87–89). A similar pattern was observed in
Time Reasoning (IDs: 90–92). The proposed method assigns unique scores to each [CLS]E8 and their
corresponding EK, leading to superior performance in both tasks. It achieves a desirable equilibrium
between diversity and reasoning capability, even in the presence of about 67% duplication in EK.
Conversely, Uniform and Distinct Searches, focusing on consistency and diversity, resulted in lower
performance.

4.5 Visualization
We present several visual demonstrations of QR-CLIP in Figure 6. The first figure shows the model’s
performance in a location reasoning task. Our QR-CLIP demonstrates significant improvements
compared to vanilla CLIP [16], which served as a baseline and achieved lower Example-F1 scores
(0%). QR-CLIP utilizes image search to obtain EKs containing location information related to visual
content, such as Thailand. The scoring mechanism assigns weights to each EK, favoring those
rich in valuable location details, thus guiding the model to emphasize the most relevant location
information.

In the third picture, we explore the application of QR-CLIP to time reasoning. Here, vanilla
CLIP serves as the baseline and achieves lower Example-F1 scores (50.00%). However, after using
additional [CLS] and fine-tuning them using global and LLs, our QR-CLIP detects an image from
different perspectives and gets higher scores (66.67%). Subsequently, QR-CLIP retrieves six EK
used as language input, all of which describe the information expressed in the image content: a
public participation activity. In addition, each piece of knowledge contains a wealth of information
regarding the time associated with the activity. The scoring mechanism assigns varying weights to
each EK, with the EK lacking valuable time information receiving a lower weight. This guides the
model to focus on the correct time information.

5 Conclusion and Future Work
In our study, we developed QR-CLIP, a model inspired by Hutchins’s distributed cognition theory,
for image-based location and time reasoning tasks. It contains two Modules. The Quantity Module
enhances cognitive abilities by providing a suite of cognitive tools aimed at aggregating a maximal
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Fig. 6. We show visualizations of five procedures in QR-CLIP. For each process, readers can refer to Figure 3.

amount of EK from the surrounding environment, thereby broadening the scope of cognitive
resources. The Relevance Module integrates relevant information from various cognitive tools to
produce a comprehensive cognitive output. This synergy aligns with the distributed cognition
theory, which posits that cognition is distributed among individuals, tools, and environments.
Through this conceptual alignment, our QR-CLIP outperforms previous SOTA methods, achieving
an improvement of 3.05% in location reasoning accuracy. In the challenging task of time reasoning,
which demands reasoning the exact day in the benchmark, our model shows a significant improve-
ment in accuracy, with a 2.45% increase at Rank@1 and a remarkable improvement from 5.53% to
10.97% at Rank@5. However, the model’s performance is contingent on the quality and quantity
of available knowledge. Insufficient knowledge may also impede the reasoning results. Future
work will focus on enhancing reasoning capabilities by refining its architecture and algorithms
to handle more complex tasks. Furthermore, incorporating more EK will augment the accuracy
of reasoning.
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