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Abstract 3D shape representation using mesh data is essential in various applications, such as virtual

reality and simulation technologies. Current methods extracting features from mesh edges or faces struggle

with complex 3D models due to edge-based approaches missing global context and face-based methods

overlooking variations in adjacent areas, which affects overall precision. To address these issues, we

propose the Feature Discrimination and Context Propagation Network (FDCPNet), a novel approach that

synergistically integrates local and global features in mesh datasets. FDCPNet is composed of two modules:

1) Feature Discrimination Module (FDM), which employs an attention mechanism to enhance the

identification of key local features, 2) Context Propagation Module (CPM) enriches key local features by

integrating global contextual information, facilitating a more detailed and comprehensive representation of

crucial areas within the mesh model. Experiments on the popular datasets validate FDCPNet's effectiveness,

showing a improvement in classification accuracy over the baseline MeshNet. Furthermore, even with

reduced mesh face numbers and limited training data, FDCPNet achieves promising results, showing its

robustness in variable complexity scenarios.
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1 Introduction

In computer vision and graphics, analyzing and representing 3D shapes is critical for applications in virtual

reality[1-3], simulation technology[4-6], and model simplification[7-9]. In recent years, deep learning has made

significant progress in 3D shape analysis and representation[14, 15], enhancing the accuracy and efficiency of

processing complex 3D models. It has been effectively applied to various types of 3D data, including multi-

view images[10, 11], voxel grid[12, 13], point cloud[16, 19], and mesh[17, 18].

In this study, we consider 3D shape representation methods based on mesh data. Compared to other

types of 3D data, mesh offers a more comprehensive and detailed 3D shape representation. This enhanced



representation results from mesh data constructing a structural framework and continuous surfaces for 3D

objects by defining vertices, edges, and faces. Additionally, mesh data incorporates extra attributes like

textures, further enhancing the rendering effects.

Existing 3D shape representation methods based on mesh data typically extract features from mesh edges

or faces to facilitate effective geometric and topological feature learning[28]. However, edge-based

approaches like MeshCNN[17] and FPCNN[31] tend to focus on local features within mesh regions, often

missing the hierarchical global shape context and struggling with complex topologies and abnormal

geometric shapes. Conversely, face-based approaches, exemplified by MeshNet[18] and SubdivNet[21], may

overlook subtle variations between faces, leading to less precise feature representation.

To address these issues, this paper proposes the Feature Discrimination and Context Propagation

Network (FDCPNet), a novel method that effectively represents key regional features in 3D mesh models,

as illustrated in Figure 1. FDCPNet identifies variations between different regions by enhancing key local

features and further enriches their representation through the integration of contextual information.

In the implementation of FDCPNet, we adopt MeshNet as our baseline, leveraging its proficiency in

extracting and processing face features from mesh data. FDCPNet consists of two modules: Feature

Discrimination Module (FDM) and Context Propagation Module (CPM). Specifically, FDM employs a

multi-head attention mechanism to identify and enhance key local features in the mesh model. This module

initially divides input face features into multiple subsets, each corresponding to a different attention head.

This division facilitates the capture of the mesh's local features across multiple dimensions. Subsequently,

each subset is independently mapped to a specific subspace through linear transformation layers, allowing

FDM to understand and represent the mesh's local geometric and topological features.

CPM plays a critical role in integrating local features, extracted by FDM, with the global contextual

features in the mesh model. Utilizing residual connections and feature averaging scaling techniques, CPM

computes average feature representations to effectively encapsulate the mesh model's global features. This

computation of global feature effectively reflects the model's primary geometric and topological

characteristics. By integrating global features with local features, CPM aligns fine details with the

hierarchical structure, enriching the representation of key features. This results in a more accurate and

comprehensive representation of the 3D shape.

Experimental results have shown the effectiveness of our FDCPNet. On the Manifold40 dataset, it

surpassed the baseline model with a 1.9% increase in classification accuracy, reaching 90.3%. Notably,

when the number of mesh faces was reduced to one-tenth of the training set (50 faces), the network

maintained a classification accuracy of 89.7%. Furthermore, even when trained on datasets with limited

sample sizes, comprising only four samples per category, it still achieved an accuracy of 60.5%. These

results indicate its applicability and robustness in practical applications with meshes of varying

complexities or limited data. In summary, our work contributes as follows:

 We propose FDCPNet, which integrates FDM and CPM to enhance the identification of key local

features and enrich their representation through contextual information in 3D mesh models.



 We evaluate FDCPNet on popular datasets, achieving an effective improvement in classification

accuracy over the baseline.

 We evidence our network's robustness under specific conditions, such as reduced numbers of mesh

faces and limited training data, confirming its potential in practical mesh processing applications.

Figure 1 Method Overview. Integrating key local features with contextual features enriches the representation of

crucial areas in 3D mesh models, facilitating a more comprehensive understanding of the 3D shape.

2 Related work

Recent advancements in deep learning have significantly advanced 3D shape representation, introducing

innovative and efficient methods for modeling complex geometries. This section provides a comprehensive

overview of these approaches and evaluates their strengths and limitations.

Multi-view images. This strategy involves representing 3D objects through several 2D perspectives,

effectively translating them into a 2D format. Hang et al.[10] utilized conventional CNN architectures to

integrate information from various 2D views into compact descriptors, enhancing the classification of 3D

objects. Kalogerakis et al.[11] applied multi-view and multi-scale projections on different segments of 3D

objects, subsequently employing Conditional Random Fields for region characterization. Kanezaki et al.[29]

investigated fixed multi-view angles to identify essential views that accurately depict model features for

classification. Nonetheless, this method can introduce redundant information and might not entirely capture

all aspects of 3D details.

Voxel grid. In these methods, 3D shapes are transformed into binary voxel grids. Wu et al.[12]

represented these shapes as probability distributions in subdivided voxels, applying a deep belief network

for feature learning. Sedaghat et al.[13] included model orientation as a variable in classification, refining the

voxel-based representation of 3D shapes. Ren et al.[32] aimed to solve the inefficiency issue in voxel

convolution by representing models in multi-layer 2D formats, and extracting classification features

through 3D deep shape descriptors. Despite their effectiveness in structured feature representation, these

methods face limitations due to high memory requirements at increased resolutions, restricting their

practicality in large-scale and intricate 3D models.



3D Point Cloud. These methods conceptualize 3D shapes as collections of unordered 3D points. Qi et

al.[16] introduced PointNet, a framework for classifying and segmenting these point clouds, achieving

efficient classification of sparse point cloud data. Subsequently, Qi et al.[19] further extracted multi-scale

features from point clouds, improving 3D shape representation. Ma et al.[30] developed descriptors that

aggregate progressively extracted local features, employing residual MLPs for the final shape

representation. However, point cloud data lacks surface structure information and is inherently sparse and

unordered, complicating the understanding and reconstruction of complex 3D shapes. However, the

inherent sparsity and lack of surface structure in point cloud data pose challenges in comprehending and

reconstructing complex 3D geometries[20].

3D Mesh. Mesh data excels in precisely representing complex geometries and intricate surface attributes

in 3D shape representation. Current methods primarily focus on mesh model edges or faces. Hanocka et

al.[17] developed MeshCNN, a method that learns mesh geometric and topological structures through edge-

based convolutions and pooling. Liang et al.[31] focused on the information from neighboring edges,

providing an intuitive description of 3D shapes by adjusting edge folding sequences. In contrast, Feng et

al.[18] converted mesh data into face lists, adopting a face-unit feature learning approach for more precise

and efficient 3D shape analysis and representation. Hu et al.[21] proposed an approach that accumulates

local features from adjacent faces, building a structured hierarchy for representing 3D object shapes.

In this paper, we adopt MeshNet[18] as our baseline, capitalizing on its efficiency in extracting and

processing face features from mesh data. Our approach aims to enhance the network's representation of 3D

object shapes, by accurately and comprehensively identifying key features in mesh model.

3 Methods

3.1 Method Overview

In this study, the Feature Discrimination and Context Propagation Network (FDCPNet) is proposed, a

novel method for 3D shape representation, as illustrated in Figure 2. This method includes two modules:

the Feature Discrimination Module (FDM) and the Context Propagation Module (CPM). FDM utilizes a

multi-head attention mechanism to precisely identify and emphasize key local features in the mesh. This

process involves dividing input features into multiple subsets, each associated with a distinct attention head,

thus enabling a thorough multi-dimensional assessment of local features, resulting in a rich representation

of the mesh's local geometric and topological intricacies. Concurrently, CPM effectively combines these

local features with global contextual information through the use of residual connections and feature

averaging. The integration of the two modules in FDCPNet, emphasizing key local features and merging

with global context, enhances its capability to accurately represent the shapes of 3D objects.



Figure 2 The proposed FDCPNet includes two modules: Feature Discrimination Module (Sec 3.2) and Context

Propagation Module (Sec 3.3).

3.2 Feature Discrimination Module

We adopt MeshNet[18] as our baseline. MeshNet interprets mesh data as a sequence of faces, comprising

centers, corners, and normals. MeshNet employs spatial descriptors to process face center values related to

spatial positions. These descriptors are composed of multilayer perceptrons, used to output initial spatial

features. Structural descriptors apply face rotation convolutions to capture internal and external structural

information. This process effectively generates initial structural features of the faces. Subsequently, these

features are processed through mesh convolution blocks, aggregating information from adjacent faces,

resulting in a consolidated feature representation denoted as Fagg. Although MeshNet efficiently captures

the basic structure of mesh models, its averaged face processing approach does not adequately emphasize

key areas critical for shape representation. This can lead to omitting crucial local features, diminishing the

network's overall effectiveness.

To address this, we propose the Feature Discrimination Module (FDM), aimed at enhancing the

network's ability to identify and highlight key features in mesh models. In our technical implementation,

FDM employs a multi-head attention mechanism to discern variations among the model's faces. It receives

Fagg, a blend of spatial and structural features, as input. This mechanism divides the Fagg along feature

dimensions d into multiple subsets, each aligned to a specific head in the multi-head framework. Assuming

the total number of heads is n, Fagg is divided into multiple subsets:

Fagg = Fsplit
0 , Fsplit

1 , ⋯, Fsplit
n−1 , Fsplit

n ∈ RN×d
n (1)



This strategy allows the network to capture diversified feature information across different dimensions.

The subdivided feature subsets ������
� are individually processed through linear transformation layers in

each head, projecting each subset into a unique subspace. This projection allows for a multi-perspective

analysis of the input features, thus equipping the network with the ability to discern critical geometric and

topological attributes of mesh models from various dimensions. The computation in each subspace is

formulated as:

�ℎ���
� = �� ∙ ������

� + �� (2)

Where Wi and bi are the weight and bias of the ith head, respectively. By processing multiple heads in

parallel, the network is enabled to simultaneously focus on various areas and local features in the mesh

model. Each head independently captures different geometric or topological features in the mesh model.

For instance, some heads may focus on the relative positioning of facets and topological connectivity, while

others might concentrate on aspects like the curvature of surfaces or surface textures. This integration of

diversified perspectives enables the network to detect changes and differences in local features in the model,

thereby enhancing its capability to discriminate between distinct regions.

Following each head completes its independent feature transformation, an attention mechanism is

applied to weight the features of various regions in the mesh model:

Attention �, �, � = ������� ���

��
� (3)

Here, Q, K, V represent the Query, Key, and Value, respectively, derived from the transformation of

�����
� . By computing the dot product between Q (Query) and K (Key), the network quantifies the

correlation or similarity between features. For mesh models, this approach allows the model to discern

which local features are geometrically or topologically significant, emphasizing those features vital to the

model's overall structure and form. Additionally, the introduction of the multi-head attention mechanism

effectively processes and analyzes noise and redundant information in mesh models. By optimizing the

focus of the different heads in FDM, the network can identify and filter out non-essential local features.

3.3 Context Propagation Module

The Context Propagation Module (CPM) in the FDCPNet plays a crucial role in integrating local and

global context representation in 3D mesh models. Its primary objective is to integrate the detailed local

features, extracted by FDM, with comprehensive global contextual information. Such an integration

strategy is crucial for achieving a thorough and nuanced representation of 3D mesh models.

Inspired by the research of Woo et al.[33], CPM first utilizes average feature scaling techniques to obtain

global features:

x�j = 1
c k=1

c xj,k� , j ∈ 0, N − 1 (4)

Where c represents the dimension of the feature. By calculating the global features x�j, which reflect the

model's predominant geometric shapes and essential topological structures, CPM provides a fast and

effective method for the network to encapsulate global features. This method allows the network to



intensify its focus on these key trends in subsequent processing phases, thereby improving the recognition

of the model's comprehensive geometric and topological attributes.

These global features x�j are then integrated with the initially extracted local features. This fusion

process is represented as:

xj
' = xj + λ ∙ x�j (5)

Here, λ represents a learnable scaling factor designed to balance the impact of local and global features.

By adjusting λ , the network can retain essential local features while incorporating global features to

enhance understanding of the mesh model's overall structure. This fusion strategy improves the network's

ability to capture features in mesh models that are significant at both local and global scales, consequently

improving the accuracy in identifying key shape features of the model.

4 Experiments

4.1 Datasets

In experiments, we evaluate the effectiveness of FDCPNet using two datasets: the Manifold40[21] and the

Cube Engraving[17]. The Manifold40 is an extension of ModelNet40[13], and includes 12,311 mesh models

across 40 categories. The Cube Engraving includes 4,381 samples distributed across 22 categories. Each

sample comprises small objects randomly embedded on the surface of a cube.

In particularly, Manifold40 is an optimized version of ModelNet40, it retains the same data structure and

classification rules as ModelNet40. To conduct an in-depth comparison of representation methods across

different data modalities, we directly compared FDCPNet with several methods implemented on

ModelNet40, similar to comparisons previously conducted by Hu et al.[21].

4.2 Implementation Details

In our technical implementation for classification tasks, we employed a series of fully connected layers to

perform the classification. Before the last two fully connected layers, we introduced dropout layers with a

drop probability of 0.5. The model optimization relied on cross-entropy loss, and we used Accuracy (Acc)

to measure the classification performance of our proposed method.

Our network was implemented on the PyTorch 1.8.0 platform and utilized a Stochastic Gradient Descent

(SGD) optimizer for updating the weights and biases of the neural network. The training batch size was set

to 32, with an initial learning rate of 5e−3, momentum of 0.9, and weight decay of 0.0005. During training,

we also implemented a learning rate adjustment strategy. Specifically, if there was no significant

improvement in performance on the validation set over several epochs, the learning rate would decrease at

a fixed ratio. This approach allowed for fine-tuning of the model parameters, further optimizing network

performance. To ensure effective processing of mesh data of varying scales, we standardized the input data

by normalizing all mesh models to a uniform scale. Additionally, Gaussian noise was applied to the vertex

positions for data augmentation, enhancing the network's generalization capabilities and robustness.



Table I Performance comparison of different methods in model classification.

Method Modality ModelNet40 Acc Manifold40 Acc

3DShapeNets[22] volume 77.3% -
VoxNet[23] volume 83.0% -
FPNN[24] volume 88.4% -
LFD[25] view 75.5% -
MVCNN[26] view 90.1% -
Pairwise[27] view 90.7% -
PointNet[16] point 89.2% -
PointNet++[19] point 90.7% 87.9%
SPH[31] mesh 68.2% -
MeshCNN[17] mesh - 79.3%
FPCNN[31] mesh - 83.1%

MeshNet[18] mesh 91.9% 88.4%

FDCPNet (ours) mesh - 90.3%
Note: ModelNet40 Acc and Manifold40 Acc represent test results on the respective datasets. Manifold40, an improved refinement of

ModelNet40, shares its classification rules, enabling direct comparability of method results across both datasets[21]. Comparative method

results listed are from the Manifold40 benchmark[21], with "-" indicating that results for the corresponding dataset were not provided. As

data in the ModelNet40 dataset have been updated to Manifold40, FDCPNet is exclusively evaluated on Manifold40.

4.3 Comparative Results

In the tasks of 3D model classification, our FDCPNet has shown performance advantages. As shown in

Table I, FDCPNet achieved a classification accuracy of 90.3% on the Manifold40 dataset, significantly

outperforming other mainstream 3D shape representation methods. Notably, compared to MeshNet,

FDCPNet achieved a 1.9% increase in classification accuracy. These results not only validate the

effectiveness of our method in processing mesh data but also reflect its advancement in capturing and

expressing complex 3D shape features.

In a comprehensive comparison of 3D shape representation techniques, mesh models stand out for their

ability to handle complex structures and intricate details. Compared to representations based on volume,

point clouds, and other forms, mesh models can more accurately reflect the geometric features and

topological structures of objects. FDCPNet effectively exploits these intrinsic benefits of mesh models by

incorporating feature discrimination module and context propagation module. The experiment results

indicate that this integration not only shows the potential of mesh models in 3D shape analysis but also

shows that our method can further enhance the representational performance of mesh models for 3D shapes

by comprehensively representing key features in mesh models.

In addition, we validate the performance of FDCPNet on the Cube Engraving dataset[21]. As shown in

Table II, FDCPNet achieves a classification accuracy of 93.5%, which is a 1.3% improvement over

MeshCNN. These results highlight FDCPNet's effectiveness in representing various 3D shape categories.

Due to the unique characteristics of the Cube Engraving dataset, which includes large flat areas and subtle

texture variations, these results further indicate that FDCPNet can learn key local features, thereby

improving classification performance.



Table II Classification results of different methods on Cube Engraving.

Method Modality Acc

PointNet++[19] point 64.3%
MeshCNN[17] mesh 92.2%

FDCPNet (ours) mesh 93.5%

4.4 Performance Analysis of FDM and CPM

Table III Analysis of the impact of each components in FDCPNet.

Method Acc

MeshNet 88.4%

MeshNet + FDM 89.7%

MeshNet + CPM 88.8%

MeshNet + FDM + CPM (FDCPNet) 90.3%

This section evaluates the impact of FDM and CPM on the performance of network, as shown in Table III.

When only FDM was added, there was a 1.3% increase in classification accuracy compared to MeshNet,

achieving 89.7%. The improved network performance indicates that FDM effectively enhances the

network's ability to identify key features in mesh models, confirming the importance of exploring and

emphasizing local features in 3D shape representation.

Compared to MeshNet, adding only CPM to the network resulted in a 0.4% improvement in

classification accuracy, a smaller increment compared to the network augmented with only FDM. This is

attributed to the lack of sufficient local feature enhancement in the absence of FDM, resulting in less

effective global information integration.

The most significant improvement in the network's performance was observed when both FDM and

CPM were integrated. This indicates that the enhancement of local features and the integration of global

features contribute to 3D shape representation. The precise processing of local features provides the

network with rich detailed information. Simultaneously, the integration of global contextual information

enhances the expression of key features, leading to an improved understanding and representation of the

mesh model's overall geometric and topological structure.

4.5 Impact of Different Attention Heads' Number

Table IV Performance of Different Attention Heads' Number in FDM.

Method Acc

FDCPNet (n=4) 89.5%
FDCPNet (n=8) 90.0%
FDCPNet (n=16) 90.3%
FDCPNet (n=32) 89.1%

Note: In FDCPNet (n=x), 'n' represents the number of attention heads in the Feature Discrimination Module (FDM).



Table IV illustrates the variation in network performance with different numbers of attention heads in

FDM. An increase in the number of attention heads from 4 to 16 significantly improved the classification

accuracy of the network. Specifically, with 4 attention heads, FDCPNet achieved a classification accuracy

of 89.5%. The accuracy improved to 90.0% when the number of attention heads was increased to 8. Further

increasing the attention heads to 16, we observed optimal network performance, with a classification

accuracy of 90.3%. These results indicate that increasing the number of attention heads in an appropriate

range can effectively enhance FDCPNet's ability to process 3D mesh data, as more heads contribute to

better representation and emphasis of the shape features in mesh models.

However, an increase to 32 attention heads resulted in a decline in network performance, with the

classification accuracy dropping to 89.1%. This change suggests that exceeding a certain threshold in the

number of attention heads may lead to excessive information integration and redundancy, adversely

affecting network performance. To summarize, choosing the right number of attention heads in FDM is

critical for enhancing FDCPNet's performance in 3D shape classification. Future research could focus on

identifying the optimal number of attention heads for various 3D shape representation tasks and devising

strategies to mitigate the negative effects of excessive parameterization.

4.6 Robustness Evaluation

Table V Classification results of different numbers of faces on Manifold40.

Number of Faces MeshNet[18] FDCPNet (ours)

500 88.4% 90.3%
300 87.9% 90.1%
100 86.7% 89.8%
50 86.1% 89.7%

To validate the robustness of our proposed method, we tested the FDCPNet using mesh models with

different numbers of faces, as depicted in Figure 3. The experimental results, detailed in Table V, show

FDCPNet's adaptability and robustness to changes in the face numbers of mesh models. Specifically, with

the 500 faces, FDCPNet achieved a classification accuracy of 90.3%. When the number of faces was

reduced to 300, the accuracy decreased only slightly to 90.1%. Even with a further reduction to 50 faces,

the accuracy moderately dropped to 89.7%, getting promising results.

In contrast, when the number of faces was reduced from 500 to 50, the performance of MeshNet declined

by 2.3%. Whereas, FDCPNet's performance only decrease 0.6%. This disparity demonstrates that FDCPNet

offers an effective solution that can reduce model complexity while still preserving an accurate

representation of the shape.

Table Ⅵ Classification results of different numbers of training samples on Manifold40.

Samples of category MeshCNN[17] MeshNet[18] FDCPNet

Full 79.3% 88.4% 90.3%
16 37.4% 77.8% 79.1%
4 24.5% 57.1% 60.5%



Figure 3 Examples of mesh models with different number of faces

Given the high acquisition cost of 3D models and the resulting scarcity of 3D mesh data in real-world

applications, we focused on evaluating FDCPNet's classification performance under conditions of sparse

training samples to assess its robustness. The experimental results reveal that FDCPNet maintains superior

performance across different training sample sizes. As shown in Table Ⅵ, when trained with a full set of

samples from each category, FDCPNet achieved its best performance, attaining a classification accuracy of

90.3%. This result notably surpassed MeshNet's 88.4% and MeshCNN's 79.3%. Moreover, even when the

number of samples per category was reduced to just 16 and 4, FDCPNet exhibited a reasonable decline in

performance, still outperforming the other methods. Notably, with only 4 samples per category—about 5%

of the full dataset—the classification accuracy of FDCPNet increased by 36.0% and 3.4% over MeshCNN

and MeshNet, respectively.

This robust performance is due to the effective collaboration of the FDM and the CPM in FDCPNet. The

FDM introduces a multi-head attention mechanism that analyzes the input face features from multiple

perspectives, enabling the network to capture more detailed and abundant local features and effectively

extract key information from limited data. Meanwhile, the CPM calculates the global average features to

effectively capture and represent the main structural features of the mesh models. By integrating local and

global features, the CPM further enhances the network's accurate representation of shapes, ensuring that the

network can precisely depict the model shape, even under conditions with limited numbers of faces or

samples. These strategies enable FDCPNet to excel, compared to other methods, not only in standard 3D

shape representation tasks, but also in demonstrating good stability and robustness under conditions of

limited data availability.

In summary, FDCPNet demonstrates effective learning capabilities and robustness across datasets of

various complexities and sizes. This makes FDCPNet a promising solution in environments with limited

data, such as in the fields of cultural heritage preservation and remote sensing exploration for 3D shape

representation. For instance, in situations where repeated scanning to acquire detailed 3D data is

challenging due to the fragility or inaccessibility of artifacts, FDCPNet still maintains good performance.



4.7 Time And Space Complexity Comparison

TableⅦ Comparison results of time and space complexity for different methods in classification tasks.

Method #params (M) FLOPs / sample (M)

MVCNN[26] 60.0 62057
MeshNet[18] 4.25 509

FDCPNet (ours) 10.17 673
Note: #params" indicates the total number of parameters in the network, representing the space complexity; "FLOPs/sample" denotes the

number of floating-point operations per input sample, reflecting the time complexity.

To delve deeper into the performance of FDCPNet in practical scenarios, we compare its time and space

complexity with several methods in classification tasks. As shown in Table Ⅶ, compared to the baseline

model MeshNet, FDCPNet has an increase of 5.92M params and 164M FLOPs. Despite the increased time

and space complexity, the enhanced complexity of the network architecture allows FDCPNet to capture and

represent key regional features of 3D models more effectively. Particularly, it shows improved robustness

in data-limited application scenarios. To further optimize the potential of our method, future work will

consider employing techniques such as knowledge distillation or more efficient convolutional operators to

meet the demands of actual deployment.

5 Conclusion

This study proposes FDCPNet, an innovative approach that integrates FDM and CPM. FDCPNet not only

identifies feature representations of various key areas but also effectively enriches key feature information,

thereby offering a more comprehensive understanding of complex 3D shapes. Importantly, FDCPNet

shows robustness, maintaining promising performance even under specific conditions with reduced mesh

faces and limited training data. Future research will extend its validation to other baseline models. This

broader evaluation will ascertain its versatility and effectiveness across a wider range of 3D data and model

types, thereby solidifying its utility in the field of 3D shape representation.
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