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Summary

Generating immersive virtual reality avatars is a challenging task in VR/AR appli-
cations, which maps physical human body poses to avatars in virtual scenes for an
immersive user experience. However, most existing work is time-consuming and lim-
ited by datasets, which does not satisfy immersive and real-time requirements of VR
systems. In this paper, we aim to generate 3D real-time virtual reality avatars based
on a monocular camera to solve these problems. Specifically, we first design a self-
attention distillation network (SADNet) for effective human pose estimation, which
is guided by a pre-trained teacher. Secondly, we propose a lightweight pose mapping
method for human avatars that utilizes the camera model to map 2D poses to 3D
avatar keypoints, generating real-time human avatars with pose consistency. Finally,
we integrate our framework into a VR system, displaying generated 3D pose-driven
avatars on Helmet-Mounted Display devices for an immersive user experience. We
evaluate SADNet on two publicly available datasets. Experimental results show that
SADNet achieves a state-of-the-art trade-off between speed and accuracy. In addi-
tion, we conducted a user experience study on the performance and immersion of
virtual reality avatars. Results show that pose-driven 3D human avatars generated by
our method are smooth and attractive.
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1 INTRODUCTION

Virtual reality avatar generation is favored by the advancement of deep learning andmotion capture technologies and has a variety
of applications in Virtual Reality. In particular, pose-driven human avatars are urgently demanded to replace time-consuming
and expensive hand-crafted1 virtual characters in telepresence, 3D gaming, augmented and virtual reality communication.
Common methods use a variety of sensors for precise motion capture, including wearable motion capture sensors (digital

gloves2, wearable IMU3), multi-view camera systems4, or expensive 3D scanners5, and depth cameras6,7. These methods are
capable of accurately capturing motion signals beyond RGB images with high-cost sensors and can generate human models
with high quality. However, these motion capture sensors are generally expensive and time-consuming, while multi-view camera
systems require complex environments, which limits their practicability. With the development of deep learning, some studies
have started to utilize monocular cameras for pose estimation to drive human avatars and increase their realism. Some of them
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Figure 1 Immersive 3D avatar generation for different scenarios. We first obtain 2D human poses from SADNet (the left col-
umn), then generate 3D pose-driven avatars (the middle column). We finally integrate avatars into virtual scenes and display in
binocular VR devices for an immersive user experience (the right column).

use deep networks to reconstruct parametric models8,9 from a single image to obtain human body models with a fixed topology
and rough skinning. However, most of them are data-driven. On the one hand, they are trained using fixed datasets that are
captured in a homogeneous scene and lack outdoor data. On the other hand, they do not take into account the camera model and
environment settings, influencing model robustness. Thus we are motivated to design a lightweight framework that accurately
drives human avatars and does not rely on high-cost systems or complex algorithms.
To address the above issues, we generate 3D pose-driven virtual reality avatars based on a monocular camera for presence and

immersion requirements. As shown in Figure 1, we first design SADNet for real-time human pose estimation, which employs a
teacher-student framework. Secondly, we propose a lightweight pose mapping method for generating human avatars with pose
consistency. Finally, we integrate our method into a VR system for an immersive user experience. Comprehensive experimental
results show the superiority of our framework at low cost.
Our contributions are summarized as follows:
1. We introduce a unified framework for generating 3D real-time pose-driven human avatars, which presents an immersive

experience and connects users with virtual bodies.
2. We propose SADNet for real-time human pose estimation, which uses lightweight litetrans blocks instead of transformer

blocks and employs a pre-trained teacher to guide the student through a distillation token.
3. We present a Lightweight pose mapping method for human avatars. It utilizes the camera model to recover 3D human poses

and generates dynamic 3D human avatars with pose consistency.

2 RELATEDWORK

Immersive human avatars. Recently, a large amount of work has been devoted to obtaining accurate motion capture using
sensors5,2,4,3,6,7,10. These methods are capable of accurately capturing motion signals beyond RGB images with expensive sen-
sors, and can generate human models with high quality. However, these motion capture sensors are generally expensive and
time-consuming, while multi-view camera systems require complex setup environments, which limits their practicability.
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Figure 2 Pipeline of our framework. Firstly, we design SADNet for real-time 2D pose estimation, which uses lightweight litetrans
blocks to replace transformer blocks and employs a pre-trained teacher to guide the student. Secondly, we propose an efficient
pose mapping method to generate dynamic human avatars with pose consistency. Finally, we integrate avatars into virtual scenes
and display in binocular VR devices for an immersive user experience.

With the development of deep learning, some studies design deep networks to regress parametric 3D human models di-
rectly from images8,9,11,12,13,14. They are divided into two main categories: learning-based and optimization-based methods.
Learning-based methods13,14 refer to regressing the 3D keypoints or meshes of the human body directly from the image. How-
ever, these methods are data-driven and receive limitations of the trained dataset. The way of obtaining 3D human keypoint
annotations is too complicated, making the data only to be collected in a fixed homogeneous scene and lacking large outdoor
data. Optimization-based methods11,12 usually use reprojection to calculate the error at 2D key points in the image for optimiza-
tion. These methods are more dependent on the accuracy of 2D human pose estimation and mostly do not consider the physical
camera and environment settings, influencing these models’ robustness.
Human pose estimation.Human pose estimation is a basic vision task, aiming to detect human keypoints in the given image.

Recent studies on 2D pose estimation have achieved excellent performance on public benchmarks15,16,17,18. These are divided
into two main categories: bottom-up and top-down methods.
Bottom-up methods15,19,20 first detect all non-identified keypoints and then group them into individual poses. They are more

suitable for crowded scenarios and the amount of computation does not vary with the number of people, but need to deal with
various human bodies. HrHRNet15 designs a multi-resolution fusion network to obtain features at different scales for accurately
detecting human keypoints. SWAHR19 proposes adaptive ground-truth human keypoint heatmaps to deal with various human
bodies. Pose-AE20 guides the network to output both group assignment and body joint localization results. However, these
methods need to handle a variety of human scales, making them challenging in accuracy and speed of inference.
Top-down methods16,17,18 first use a human detector to detect the human body and then perform keypoint localization. These

methods outperform bottom-up methods in terms of speed and accuracy in non-extreme scenarios (no more than 6 people).
TransPose17 uses CNNs to extract modeling global relationships. TokenPose18 introduces additional tokens to estimate the
location of occluded keypoints and to model relationships between keypoints. ViTPose16 shows the surprising performance
of plain visual transformers for human pose estimation and achieves state-of-the-art performance on public datasets. How-
ever, its application in industry still suffers from heavy parameters and high latency. Several methods also work on lightweight
models21,22.
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Figure 3 Overview of SADNet. We introduce the teacher-student framework to close the gap between large and small models.
The teacher (a) is employed to train the student (b) via distillation loss. (c) LiteTrans block is used to replace self-attention maps
with low computing costs.

Figure 4 CKA of self-attention maps (a) and MSA (b). ViTPose-S has a high correlation across intermediate 3-8 blocks.

3 REAL-TIME POSE-DRIVEN HUMAN AVATAR GENERATION

In this paper, we aim to generate 3D pose-driven virtual reality avatars based on a monocular camera for presence and immersion
requirements as shown in Figure 2. Firstly, we start with SADNet for real-time 2D pose estimation, which uses lightweight
litetrans blocks instead of transformer blocks and employs a pre-trained teacher to guide the student. Secondly, we propose a
lightweight pose mapping method for human avatars that generates dynamic human avatars with pose consistency. Finally, we
display human avatars in VR devices for an immersive user experience.
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Figure 5 Camera imaging model. Based on 2D pose estimation results, we use the camera imaging model to recover 3D human
poses for human avatars.

3.1 Real-time human pose estimation based on self-attentive distillation
ViTPose16 shows the surprising performance of plain visual transformers for human pose estimation and achieves state-of-the-
art performance. However, the large model parameters with high latency make it difficult to deploy on resource-constrained
edge devices. In this paper, we present a real-time pose estimation method based on self-attentive distillation.
Firstly, we introduce Knowledge distillation to compress the model as shown in Figure 3. We employ a pre-trained teacher

to guide the student through a distillation token. Specifically, We add a distillation token to the initial embeddings (patches) for
feature distillation. Distillation token is used similarly to the class token, except that it aims at reproducing the features estimated
by the teacher. This transformer-specific strategy allows our model to learn from the teacher’s intermediate features to bridge
the gap between large and small models.
The learnable distillation token t is randomly initialized and attached to the visual tokens after the embedding layer of the

teacher. Then, the trained teacher is frozen and only the distillation token is updated as Equation 1, where Hgt is the groud-
truth keypoint heatmaps and X is the input image. T (t;X) denotes output of the teacher, and t∗ denotes the optimal token that
minimizes the loss.

t∗ = argmin
t

(MSE(T (t;X),Hgt)) (1)

During training, the distillation token t∗ is frozen and added to the visual tokens in the student network, thus transferring
knowledge from the teacher to the student. The losses in the student network are shown in Eq 2, where the first term is the
distillation loss of intermediate features, and the second term is the heatmap loss. It is worth noting that the distillation loss
occurs only after replaced blocks.

ℒ =MSE(S(t∗;X), Ft)
+MSE(T (t∗;X),Hgt)

(2)

To further compress the model, we study the similarity of intermediate features. It is well established that the self-attention
maps (A) and multi-head self-attention blocks (Z) from the class token in the transformer structure exhibit high correlation
especially in intermediate layers23. Motivated by this observation, we utilize the distillation token to compute the Centered
Kernel Alignment (CKA)24 between the self-attention maps and MSA blocks in ViTPose-S as shown in Figure 4, and find that
there is indeed a high degree of similarity in intermediate 3-8 layers, verifying our hypothesis. Therefore we introduce skipatt23
to create lightweight LiteTrans blocks as Figure 3(c).

3.2 Pose mapping for human avatars
Based on the system service setup, we reasonably assume that the initial state of the target person is to stand naturally facing the
camera and the starting motion direction is always towards the camera. Here we propose a lightweight pose mapping method to
generate human avatars with pose consistency which are displayed in Helmet-Mounted Display (HMD).
Skeleton alignment. Firstly, we quickly detect human keypoints in the given image by SADNet. Since our model is trained on

a fixed dataset, to align with the topology of the human skeleton activity, we crop and correspondingly interpolate the obtained
2D keypoints. We design a human skeleton as shown in Figure 2, where we drop keypoints like eyes, ears and add keypoints



6 Ling Jiang ET AL

like neck, chest, spine, hip. Besides, our model is designed based on images, so it is obvious that it produces non-smoothness
in videos. Thus we use Kalman25 for de-jittering.
Camera calibration. We bind a camera to HMD, the intrinsic parameters of the camera (M) are pre-obtained, and through

the HMD, we can easily obtain the extrinsic parameters of the camera (R rotation matrix, t translation matrix). The distance
(Zm) between the initial plane of the target person and the camera plane can also be obtained by the RoomScale localization
system. In addition, we need to pre-enter body scales (shank length, etc.) of the target person.
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3D human pose recovery. We start to recover 3D human keypoints from 2D poses through the camera imaging model as
shown in Figure 5(a). At a fixed depth (Zconst), we first estimate 3D human keypoints on the initial body plane. We take the
right shoulder (P ) as an example, where P is a keypoint in the given image detected by SADNet. We can recover the 3D spatial
positions of human keypoints according to the camera imaging model in Equation 3. Then we estimate 3D human keypoints
outside the initial body plane according to the assumption that the target person moves toward the camera. We take the right
elbow (Q) as an example, whereQ is a keypoint in the given image detected by SADNet. As shown in Figure 5(b), we can easily
calculate the angle � by the two points P , Q (obtained by SADNet) in the image. In ΔOPQ, we can calculate ⃖⃖⃖⃖⃖⃗OQ by Equation
4, then further get the 3D spatial position of Q. Where |PQ| is the length of the right elbow and right shoulder of the target
person recorded in advance. It is worth noting that we add motion estimation information such as velocity and acceleration to to
deal with the uncertainty of depth in the subsequent motion. We correct for some of the distorted poses by the coherence of the
motion between sequential frames. In addition, the RoomScale localization system is employed for pose calibration and global
3D localization, and Kalman25 is still employed after obtaining 3D human keypoints.

|OQ|2 = |OP |2 + |PQ|2 − 2|OP |2 sin2 �

±2|OP |
√

(|PQ|2 − |OP |2 sin2 �) cos2 �
(4)

Pose mapping. After obtaining 3D keypoint positions of the target person, we need to calculate the rotation angles between
joints to drive the human avatar to move consistently with the target person. Here we mainly calculate the rotation matrix
according to the Euler angles. We first build a tree structure with the hip as the root node and then calculate the rotation angle
of the current joint node concerning its parent node according to the 3D human body pose to build a human avatar with pose
consistency.We can reduce rendering time by just entering the structural data of the model’s motion instead of rendering screens.
Inter-frame interpolation (spherical linear interpolation) is then performed in the time domain, which solves the problem of
lower motion capture speeds not being able to match higher rendering frame rates.

4 EXPERIMENTS

4.1 Performance Assessment
Experiment setup.Our framework is integrated into a VR system with C++. We use HMD devices (VIVE Cosmos and VIVE)
for experiments. The experimental computer with a 1080ti GPU and Windows 10 system connects HMDs and is configured
with SADNet (onnx) and the pose mapping module.
Data flow. We access the online camera and pass images into SADNet model for 2D pose estimation (2D SADNet), use the

pose mapping module to activate the human avatar for pose consistency (PoseMap), and finally, display in HMDs(Render).
Performance. We count the average latency required for each module in the computer as shown in Figure 6. It can be seen

that the pose estimation takes the longest time in the end-to-end system latency, which can be weighed against time and accuracy
when selecting a model. In addition, all our models can reach 60+FPS (frames per second). In particular, we calculate the latency
of Ours-S (i7-8700 CPU) model and get 14.69ms, which also can reach 60+FPS. Notably, we perform interframe interpolation
(spherical linear interpolation) in the time domain, which solves the problem of lower pose estimation speeds not being able to
match higher rendering frame rates.
Visualization in Unity.We visualize the pose-driven human avatars generated by our method in Unity as shown in Figure 7.

The first column shows the input image sequences with 2D pose. The other columns show pose sequences of the human avatar
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Figure 6 End-to-end system latency.

for different behaviors (sitting, walking, and playing). It can be seen that our model can effectively generate pose-driven avatars
under daily behaviors.

4.2 Comparisons with State-of-the-art Methods
Experimental details of SADNet. Following16, SADNet is conducted in Ubuntu with a 3090 GPU with two publicly available
datasets (MS COCO201726 and MPII27). For MS COCO dataset, our models are trained on train2017 (118k images), evaluated
on val2017 (5k images), and tested on test-dev in terms of average precision (AP) and average recall (AR). For MPII dataset,
our models also are trained on the trainset, and evaluated on the validset using mean average precision (mAP). Unless otherwise
stated, the settings of our body detectors follow16. We present three models with detailed structures as shown in Table 1.

Table 1 Detail structures about SADNet.

Method Params Transformer LiteTrans Decoder
block block

Ours-S 15.3M 4 4 Simple
Ours-M 60.0M 4 4 Simple
Ours-L 182.1M 4 10 Simple

Results on COCO val set. The performance of our model on COCO val2017 is shown in Table 2. Under similar or lower
computing costs, our method is superior to other products. For example, SADNet can achieve 75.9AP at lower FLOPs, which is
0.8AP higher than TokenPose18. With similar accuracy, our method is faster than other methods. For example, SADNet achieves
the best performance (78.4AP ) with faster speed as shown in Figure 8.
Results on COCO test-dev. The performance of SADNet on COCO test-dev is shown in Table 3. Compared to bottom-

up methods, SADNet outperforms HrHRNet21 in all non-extreme scenarios (77.2% vs. 66.4%). Bottom-up methods generally
use large-resolution images as input, which increases computing costs. Compared with top-down methods, SADNet achieves a
state-of-the-art trade-off between speed and accuracy.
Results on MPII val set. To further evaluate our models, we compared SADNet with SOTA methods on MPII val set with

ground truth bounding boxes. Following default settings of MPII, we use PCKh as the evaluation metric of performance. Note
that ViTPose*16 refers to the model trained using MPII train set and extra data, but our models are trained only with MPII train
set. The experimental results show that our method reduces parameters and computing costs by nearly half without decreasing
the accuracy (93.9 mAP).
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Figure 7 Visualization of different behaviors (sitting, walking, playing) in Unity. We get human pose sequences by SADNet
(left) and then generate the human avatar with pose consistency (right). Our models can effectively generate 3D avatars under
daily behaviors.

Ablation study. We propose SADNet to perform real-time 2D pose estimation including LiteTrans block and distillation
network. To verify the impact of eachmodule, we design ablation experiments using SADNet-B to distill ViTPose-L16 on COCO
val set as shown in Table 5. (a) SADNet-B is a lightweight model of ViTPose-B. (b) After we replaced the Transformer block
with the LiteTrans block, the accuracy of SADNet-B decreased by 3.3AP although parameters and computing costs decreased.
(c) To close the gap between large and small models, we employ the ViTPose-L model to teach our model for human pose
estimation, which brings an improvement of 0.5AP . (d) To improve the accuracy of (b), we propose to use a teacher-student
network to address the accuracy degradation caused by the LiteTrans block. Overall, experimental results show that SADNet
achieves a state-of-the-art trade-off between speed and accuracy.

4.3 Application
We integrate the proposed framework into a VR system and display pose-driven human avatars in VR devices for an immersive
experience. We get higher smoothness and save system capacity by transferring motion data instead of rendered screens. With
motion interpolation, the rendering frame rate on VR devices can reach 60+FPS.
We render pose-driven human avatars into virtual scenes to provide interactive applications. We design two patterns to use

our systems: single-user mode and multi-user mode. Under the single-user mode, we capture the human body in the field of
view through a monocular camera fixed on the HMD and generate the pose-driven human avatar to be displayed in the user’s
virtual scene. For multi-user mode as shown in Figure 10, we need multiple users to be equipped with HMDs. They can see
human bodies in the field of view in the virtual scene.
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Table 2 Comparisons with SOTA methods on COCO val set.

Methods Input size Params GFLOPs AP AR

Bottom-up methods

HrHRNet-W3221 512×512 28.6M 47.9 67.1 71.8
HrHRNet-W4821 640×640 63.8M 154.3 69.8 76.4

Top-down methods

HRNet-W3228 384×288 28.5M 16.0 75.8 81.0
HRNet-W4828 384×288 63.6M 32.9 76.3 81.2
HRNet-W3228 256×192 28.5M 7.1 74.4 78.9
HRNet-W4828 256×192 63.6M 14.6 75.1 80.4
HRFormer-T29 256×192 2.5M 1.3 70.9 76.6
HRFormer-S29 256×192 7.80M 2.8 74.0 79.4
HRFormer-S29 384×288 7.80M 6.2 74.5 79.8
HRFormer-B29 256×192 43.2M 12.2 75.6 80.8
HRFormer-B29 384×288 43.2M 26.8 76.2 81.2
TransPose-H-A617 256×192 17.5M 21.8 75.8 80.8
TokenPose-B18 256×192 13.5M 5.7 74.0 79.1
TokenPose-L/D2418 256×192 27.5M 11.0 75.1 80.2
TokenPose-L/D2418 384×288 29.8M 22.1 75.9 80.8
RTMPose-M30 256×192 24.7M 1.9 73.6 -
RTMPose-L30 256×192 52.3M 4.2 74.8 -

ViTPose-S16 256×192 22.0M 5.3 73.8 79.2
ViTPose-B16 256×192 86.0M 17.1 75.8 81.1
ViTPose-L16 256×192 307.0M 59.8 78.3 83.5

Ours-S 256×192 15.3M 2.9 73.6 79.0
Ours-B 256×192 60.0M 11.5 75.9 81.2
Ours-L 256×192 182.1M 35.1 78.4 83.6

4.4 User study
We conducted a user experience study with 50 participants to evaluate our method. We compared it with ThreeDPoseTracker31,
VTuber32 and MW33. The user study is designed in terms of smoothness, accuracy, enjoyment, learnability, preference, and
latency. We quantitatively built evaluations and experiences into 10 levels, from 1 (“no satisfaction") to 10 (“high satisfaction").
Before and after each experience, participants were asked to fill out the Simulator Sickness Questionnaire34.
We recruited 50 volunteers from universities and office buildings, including 25 males and 25 females. All of them had no

background in professional knowledge as well as experience in animation work. Each participant took 15 minutes to complete
this survey. We invited participants for an interactive experience with common activities, such as playing, and dancing.
Based on the total scores for all categories in Figure 9, our method achieved the highest mean score with low standard deviation

(�TℎreeDPoseT racker = 6.28 ± 1.25, �KTuber = 5.70 ± 2.17, �MW = 6.60 ± 1.64, �Ours = 7.74 ± 1.09). Note that no participant
illnesses were reported for all tests. Due to the small sample set, it was not appropriate to use the chi-square test directly. The
average scoring data shown in Figure 9 was converted into a matrix with 6 columns (scoring criteria) and 4 rows (methods).
We calculated the test statistic to get Q = 22.61. From the Friedman test table, we can find that it is significant when the upper
critical value F0.05[4, 6] = 7.6, and the p-value(p < 0.05). We then utilized the Niemeny test for postoperative comparisons. We
calculated the critical distance for average ranking (CD0.05 = 1.915) with q�=0.05[4] = 2.569. It shows that our framework gets
a significant difference from 3DPoseTracker and VTuber, and is slightly better than MW. The user study results show that 3D
human avatars generated by our method are more attractive.
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Table 3 Comparisons with SOTA methods on COCO test-dev.

Methods Input size Params GFLOPs AP AR

Bottom-up methods

Pose-AE20 512×512 277.8M 206.9 58.0 66.1
HrHRNet-W3221 512×512 28.6M 47.9 66.4 72.1

Top-down methods

HRNet-W3228 384×288 28.5M 16.0 74.9 80.1
HRNet-W4828 384×288 63.6M 32.9 75.5 80.5
HRFormer-S29 384×288 7.80M 6.2 74.5 79.8
HRFormer-B29 384×288 43.2M 26.8 76.2 81.2
TransPose-H-A617 256×192 17.5M 21.8 75.0 -
TokenPose-B18 256×192 13.5M 5.7 74.0 79.1
TokenPose-L/D2418 384×288 29.8M 22.1 75.9 80.8

ViTPose-B16 256×192 86.0M 17.1 75.1 80.3
ViTPose-L16 256×192 307.0M 59.8 77.3 82.4

Ours-B 256×192 60.0M 11.5 75.2 80.4
Ours-L 256×192 182.1M 35.1 77.2 82.1

Figure 8 Speed-accuracy performance comparisons on COCO val set. SADNet achieves a state-of-the-art trade-off between
speed and accuracy.

5 CONCLUSION

In this paper, we generate 3D pose-driven virtual reality avatars based on a monocular camera for presence and immersion re-
quirements. As shown in Figure 1, we first design SADNet for real-time human pose estimation, which employs a teacher-student
framework. Secondly, we propose a lightweight pose mapping method for generating human avatars with pose consistency. Fi-
nally, we integrate our method into a VR system for an immersive user experience. Comprehensive experimental results show
the superiority of our framework at low cost.
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Figure 9 Scoring boxplots of user experience study results.

Figure 10 Display in VR devices. In multi-user mode, we use the camera to capture the human body and display the human
avatar with pose consistency in the virtual scene.
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Table 4 Comparisons with SOTA methods on MPII val set.

Methods Input size Head Shoulder Elbow Wrist Hip Knee Ankle Mean

HRNet-W3228 256×256 96.9 85.9 90.5 85.9 89.1 86.1 82.5 90.0
HRNet-W4828 256×256 97.1 95.8 90.7 85.6 89.0 86.8 82.1 90.1
HRFormer-S29 256×256 97.1 95.8 90.5 85.9 88.7 85.7 82.1 89.9
HRFormer-B29 256×256 96.8 96.7 90.4 85.9 89.0 87.3 84.1 90.4
TransPose-H-A617 256×192 - - - - - - - 92.3
ViTPose-S*16 256×192 97.4 97.2 92.9 89.0 82.3 90.4 86.8 92.7
ViTPose-L*16 256×192 98.0 97.6 94.3 90.9 92.9 92.6 89.5 94.0

Ours-S 256×192 97.1 97.2 92.7 89.1 82.3 90.3 86.7 92.3
Ours-B 256×192 97.2 97.3 93.1 89.7 91.5 90.4 87.5 92.5
Ours-L 256×192 97.9 97.6 94.3 90.7 92.9 92.6 89.2 93.9

Table 5 Ablation study on each module.

LiteTrans Distillation AP AR

(a) 75.8 81.1
(b) ✓ 72.5 78.2
(c) ✓ 76.3 81.4
(d) ✓ ✓ 75.9 81.2
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