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ABSTRACT
We study the problem of few-shot open-set object detection (FOOD),
whose goal is to quickly adapt a model to a small set of labeled
samples and reject unknown class samples. Recent works usually
use the weight sparsification for unknown rejection, but due to
the lack of tailored considerations for data-scarce scenarios, the
performance is not satisfactory. In this work, we solve the chal-
lenging few-shot open-set object detection problems from three
aspects. First, different from previous pseudo-unknown sample
mining methods, we employ the evidential uncertainty estimated
by the Dirichlet distribution of probability to mine the pseudo-
unknown samples from the foreground and background proposal
space. Second, based on the statistical analysis between the number
of pseudo-unknown samples and the Intersection over Union (IoU),
we propose an IoU-aware unknown objective, which sharps the
unknown decision boundary by considering the localization quality.
Third, to suppress the over-fitting problem and improve the model’s
generalization ability for unknown rejection, we propose the HSIC-
based (Hilbert-Schmidt Independence Criterion) moving weight
averaging to update the weights of classification and regression
heads, which considers the degree of independence between the cur-
rent weights and previous weights stored in the long-term memory
banks. We compare our method with several state-of-the-art meth-
ods and observe that our method improves the mean recall of un-
known classes by 12.87% across all shots in the VOC-COCO dataset
settings. Our code is available at https://github.com/binyisu/food.

CCS CONCEPTS
• Computing methodologies→ Scene anomaly detection.

KEYWORDS
few-shot open-set object detection, evidential deep learning, HSIC-
based moving weight averaging

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3611850

ACM Reference Format:
Binyi Su, Hua Zhang, and Zhong Zhou. 2023. HSIC-based Moving Weight
Averaging for Few-Shot Open-Set Object Detection. In Proceedings of the
31st ACM International Conference on Multimedia (MM ’23), October 29-
November 3, 2023, Ottawa, ON, Canada. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3581783.3611850

1 INTRODUCTION
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Figure 1: The few-shot open-set object detection aims to
identify the known objects and reject the unknown objects
based on limited training samples of known classes.

Object detection [11, 14, 26, 28, 34–36, 41–45, 47, 48, 50] is a
fundamental computer vision task, which has achieved significant
progress. However, modern object detectors often require a large
number of annotated samples for training and develop with a close-
set assumption, where the training and testing sets share the same
classes. In real-world scenarios, these detectors quickly lose their
efficiency when handling long-tail and unknown data. To tackle the
above issues, few-shot open-set object detection (FOOD) [46] has
been recently investigated, where the detector trained on few-shot
close-set data is asked to detect all known objects and reject all
unknown objects in open-set situations, as shown in Fig. 1.

Rejecting unknown objects with a limited number of training
samples is indeed a challenging task, which needs to reject unknown
objects without harming the detection accuracy of few-shot known
classes. Recently, safe autonomous driving [12, 18, 53] has put
forward higher requirements on FOOD, such as detecting hazards or
anomalies in autonomous driving scenes. The FOOD problem refers
to the challenge of training models with unbalanced datasets in real-
world scenarios, where a subset of categories have fewer training
samples than others. Furthermore, there are countless unknown
classes that the model may encounter during inference that were
not present in the training data. The challenge is to develop open-
set detectors that can leverage the unbalanced training data to
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accurately identify known classes while also rejecting unknown
classes, which is an extremely difficult problem.

Previous method [46] leverages decoupling optimization and
sparsification for few-shot unknown rejection, which lacks gen-
eralization and poses unsatisfactory performance for real-world
applications. The few-shot training samples make the model easy
to overfit the known classes and lose the generalization ability for
unknown classes, and thus the model easily recognizes unknown
objects as known classes. Therefore, obtaining a model with strong
generalization is one of the keys to rejecting unknown classes. A
well-known strategy to improve generalization is ensemble learning
that averages the prediction results of many models. While it runs
multiplemodels and increases the evaluation time, which cannot sat-
isfy the requirement of real-time applications. Motivated by moving
weight averaging (MWA) [2], which achieves state-of-the-art perfor-
mance in out-of-distribution (OOD) generalization [32, 33], MWA
averages the weights in a training trajectory and succeeds in robust
prediction because it finds solutions with flatter loss landscapes
[5], where it is defined as 𝜃 = (1− 𝛼) · 𝜃𝑐𝑢𝑟 + 𝛼 · 𝜃𝑝𝑟𝑒 . Here, 𝜃 , 𝜃𝑐𝑢𝑟 ,
and 𝜃𝑝𝑟𝑒 express the updated weights, current weights, and previ-
ous average weights, respectively. 𝛼 denotes a constant. However,
MWA may not be optimal for all situations, as it assumes that the
previous weights vary linearly over time (fixed constant 𝛼), which
is not suitable for non-stationary data. One commonly observed
issue is that the weight updates occur rapidly during the initial
stages of training, while they become progressively slower towards
the end. To solve this problem, we propose a new momentum-based
weight averaging method to adaptively update the weight. By us-
ing Hilbert-Schmidt Independence Criterion (HSIC) to measure the
independence between the current and previous weights, we can
identify when the current weights are significantly different from
the previous weights. This indicates that the model has encountered
new and important data and needs to adapt its weights accordingly.
HSIC provides a more flexible and adaptive approach to update the
model’s weights, allowing it to better adapt to weight distributions
that change over time.

In this paper, we provide a new solution to solve the challenging
FOOD problem in weight space. Specifically, we propose a moving
weight averaging method based on Hilbert-Schmidt Independence
Criterion (HSIC), which is used to average the weights obtained
along a training trajectory. The HSIC function measures the de-
gree of independence between the current and previous weights
stored in the long-term memory bank, determining the direction
of model updates in the form of momentum. Alongside, a chal-
lenging problem is that there is no real unknown data for training.
Inspired by [46], we select pseudo-unknown samples with high
uncertainty from the foreground and background proposals to reg-
ularize the predefined unknown branch. Instead of using energy
score [13, 20, 46], we adopt the evidential uncertainty estimated
by Dirichlet distribution of the output probability [3, 4] to select
the pseudo-unknown samples in optimization. To improve the lo-
calization quality of unknown objects, we propose an innovative
approach that involves an IoU-aware unknown training objective.
This objective penalizes the model if there is a high Intersection
over Union (IoU) between the predicted unknown object and the
ground truth of known classes. In other words, if the model predicts

an object as unknown, but it has a high IoU with the ground truth
of known object, then the model is penalized. Experimental re-
sults show significant superiority of our method and indicate large
room for improvement in this direction. Our main contribution is
threefold:

• We propose a novel few-shot open-set object detector with
the proposed HSIC-based moving weight averaging, which
is verified to be effective for FOOD.

• We propose a new unknown sample mining approach based
on evidential uncertainty estimation to mine the pseudo-
unknown training data.

• We develop a novel IoU-aware unknown training objective,
which effectively shapes the decision boundary between
the known data and the mined pseudo-unknown data by
considering the localization quality.

2 RELATEDWORK
2.1 Few-Shot Open-Set Recognition
Few-Shot Open-Set Recognition (FSOSR) aims to quickly train a
classifier based on a few examples while identifying all known
classes and rejecting countless unknown classes in open-world
scenes. Liu et al. [25] bench-marks the first FSOSR model, which
modifies an existing meta-based few-shot learning framework for
unknown recognition. On top of training the distance-based clas-
sifier, it adds an open-set loss term for pseudo-unknown samples,
which are additionally sampled from the base data. Jeong et al.
[19] proposes to solve FSOSR from the perspective of prototype
transformation, which rejects samples by the distance from the
transformed prototype. Pal et al. [31] utilizes a novel outlier calibra-
tion network to reject the unknown classes. Song et al. [39] selects
the background region as the pseudo-unknown classes to train the
classifier. Huang et al. [18] proposes task-adaptive negative class
envisions for FSOSR to integrate threshold tuning into the learning
process. However, few-shot open-set object detection is indeed a
more challenging task than few-shot open-set recognition, because
it involves not only identifying known and unknown object classes
but also accurately localizing them in the image.

2.2 Few-Shot Open-Set Object Detection
Few-shot open-set object detection (FOOD) is an extension of
FSOSR in object detection. Su et al. [46] bench-marks the first
FOOD model, which is required not only to learn a discriminative
detector to identify the pre-defined classes with few training sam-
ples but also to reject objects from unknown classes that never
appear at training time. This method decouples training the known
classes and unknown class, which assists the model to construct
an unknown decision boundary and reject the unknown objects.
Different from the previous method, we explore weight averaging
in optimization to improve the model’s generalization for unknown
objects. By analyzing the degree of independence between the cur-
rent weights and the previous weights, our method modifies the
direction of model update, so that the model can better learn the
generalization knowledge to reject unknown objects.
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2.3 Moving Weight Averaging
Learning robust models that generalize well is critical for many real-
world applications. Moving weight averaging (MWA) [2] averages
the weights obtained along a training trajectory, which succeeds
in out-of-distribution (OOD) detection [32], because it improves
OOD generalization [5, 33, 38]. However, there is no work based on
MWA to solve the challenging few-shot open-set detection task. We
propose an HSIC-based moving weight averaging approach, which
regularizes the model’s generalization ability for unknown rejection
in few-shot scenes and achieves a significant improvement.

2.4 Uncertainty Estimation
Estimating the uncertainty of model predictions is important for
real-world applications. There are several uncertainty measure-
ment methods, such as entropy, energy, and probability. Several
works [8, 13, 20, 27, 46] adopt energy score to estimate the sam-
ple’s uncertainty, where the energy is denoted as− log

∑
exp(𝑙𝑜𝑔𝑖𝑡).

Several works [6, 13, 17] use the entropy score of the model predic-
tions to choose the high-uncertainty samples, where the entropy
is defined as −∑

𝑝 log(𝑝). Some works [7, 16, 22, 49, 51] employ
max(𝑙𝑜𝑔𝑖𝑡) ormax(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) to mine the high-uncertainty sam-
ples for unknown regularization. Differently, we are the first to use
the Dirichlet distribution constructed by the output probability to
estimate the proposal’s uncertainty and select the high-uncertainty
proposals as pseudo-unknown samples for optimization, which can
assist the model to form a compact unknown decision boundary.

3 METHODOLOGY
3.1 Preliminary
The typical setup for FOOD follows the recent work [46]. We are
given an object detection dataset 𝐷 = {(𝑥,𝑦), 𝑥 ∈ X, 𝑦 ∈ Y}, where
𝑥 denotes an input image and 𝑦 = {(𝑐𝑖 , 𝑏𝑖 )}

𝐼

𝑖=1 represents the ob-
jects with its class 𝑐 and its box annotation 𝑏. The dataset𝐷 consists
of the training set𝐷𝑡𝑟 and the testing set𝐷𝑡𝑒 .𝐷𝑡𝑟 contains𝐾 known
classes 𝐶𝐾 = 𝐶𝐵 ∪𝐶𝑁 = {1, ..., 𝐾 = 𝐵 + 𝑁 }, where 𝐶𝐵 = {1, ..., 𝐵}
represents 𝐵 base known classes, and𝐶𝑁 = {𝐵 + 1, ..., 𝐾} expresses
𝑁 novel known classes, each with 𝑀-shot support examples. In
practice, the testing set 𝐷𝑡𝑒 that includes 𝐶𝐾 = 𝐶𝐵 ∪ 𝐶𝑁 known
classes and 𝐶𝑈 unknown classes is used to evaluate the detector.
There is no overlap between the known labels 𝐶𝐾 and unknown
labels 𝐶𝑈 . Due to the countless unknown categories, we merge all
of them into one class 𝐶𝑈 = {𝐾 + 1} labeled as “unknown”. Briefly
speaking, we aim to employ the unbalanced or long-tail data split
𝐷𝑡𝑟 to train a detector in an open-set assumption, which can cor-
rectly classify (𝐾 + 2) classes in total, including 𝐾 known classes
(base and novel classes), 1 unknown class, and 1 background class.

3.2 Baseline Setup
The proposed framework is illustrated in Fig. 2. We adopt Faster
R-CNN [36] as the base detector consisting of a backbone, region
proposal network (RPN), and R-CNN. Following the Evidential
Deep Learning (EDL) [3, 4], we augment an unknown class of
the classifier and mine the pseudo-unknown samples from the
foreground and background proposals ranked by the evidential
uncertainty, where a novel evidential deep learning loss 𝐿𝐸𝐷𝐿 is

used to optimize the model. Then the pseudo-unknown samples are
used to regularize the proposed IoU-aware unknown loss 𝐿𝑈 , which
can assist the model to form a compact unknown decision boundary.
During weight optimization, we adopt the proposed HSIC-based
moving weight averaging to update the weights 𝜃𝑐𝑙𝑠 and 𝜃𝑟𝑒𝑔 of
classification and regression heads in the form of momentum and
develop a novel HSIC loss (𝐿𝐻𝑆𝐼𝐶 ) to regularize the model.

3.3 Pseudo-unknown sample mining
FOOD lacks real unknown data to train the model. Therefore, we
need to generate the pseudo-unknown samples, which can help the
model better generalize to unknown objects that it may encounter in
real-world applications. The previous work [46] adopts the energy
score, which ranks the proposal features and selects high-energy
proposals as the unknown data. While the energy had its merits, it
couldn’t always capture the true essence of uncertainty and often
suffered from limitations. We expect to develop a novel, efficient,
and optimization-based pseudo-unknown sample mining method
that can fit the true unknown distribution as closely as possible.
Starting from this motivation, we innovatively redefine pseudo-
unknown sample mining by the evidential uncertainty estimation,
which employs the evidential uncertainty estimated by the Dirichlet
distribution of probability to mine the pseudo-unknown samples
from the proposal space. Our method is inspired by Evidential Deep
Learning (EDL) [3], which has recently been introduced with the
aim of utilizing the evidence framework of Dempster-Shafer theory
[37] and subjective logic [21] to estimate uncertainty. It provides a
structured and systematic means of formulating uncertainty mod-
eling of input data, allowing for a more principled and reliable
approach to uncertainty estimation. As shown in Fig. 2(a), we first
assume the output probability 𝑃 following the Dirichlet distribution
𝑃 ∼ Dir(𝑃 |𝛽), and then estimate the evidential uncertainty (𝑢) of
each proposal 𝑏𝑖 following the existing Evidential Deep Learning
(EDL) [3]. The evidential uncertainty is formulated as:

𝑢 (𝑏𝑖 ) =
𝐾 + 2
Δ(𝑏𝑖 )

=
𝐾 + 2∑𝐾+2

𝑘=1 𝛽𝑘 (𝑏𝑖 )
, (1)

where 𝐾 + 2 denotes the total number of classes including 𝐾 known
classes, 1 unknown class, and 1 background class. Based onDempster-
Shafer theory [37] and subjective logic [21], the class-wise strength
𝛽𝑘 is linked to the learned evidence 𝑒𝑘 by the equality 𝛽𝑘 = 𝑒𝑘 + 1,
where 𝑒𝑘 can be defined by 𝑒𝑘 = exp(𝑙𝑘 ), 𝑙𝑘 represents the output
logit of each class. For FOOD, high-uncertainty proposals can be
regarded as pseudo-unknown samples, while low-uncertainty pro-
posals are used to optimize the known classes. Here, we select top-𝑘
proposals ranked by the uncertainty criterion 𝑢 (𝑏𝑖 ) from the fore-
ground and background proposals as the pseudo-unknown samples,
which can be used to regularize the virtual unknown class.

Following the previous Evidential Deep Learning, we directly
predict 𝛽 by deep neural networks. The model is trained by min-
imizing the following negative digamma function [1] of data. In
particular, given a proposal 𝑏𝑖 for (𝐾 + 2)-class classification, as-
suming that class probability follows a prior Dirichlet distribution,
the FOOD model can be optimized for learning evidence:

𝐿𝐸𝐷𝐿 =
1 − 𝜆𝑡
𝑁

𝑁∑
𝑖=1

𝐾+2∑
𝑘=1

𝑐𝑖,𝑘 (
𝑑 ln(Γ(Δ𝑖 ))

𝑑Δ𝑖
−
𝑑 ln(Γ(𝛽𝑖

𝑘
))

𝑑𝛽𝑖
𝑘

) , (2)
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Figure 2: The framework of our proposed method. Our method is a two-stage detector with (a) pseudo-unknown sample min-
ing, (b) IoU-aware unknown optimization, and (c) HSIC-based moving weight averaging. Pseudo-unknown sample mining
selects unknown samples from the foreground and background proposals ranked by evidential uncertainty (𝑢), which are
formulated by a Dirichlet distribution of the prediction probability. The EDL loss 𝐿𝐸𝐷𝐿 linking to evidential uncertainty (𝑢)
provides a principled and effective way to uncertainty modeling. The IoU-aware unknown optimization with the unknown
loss 𝐿𝑈 is proposed to regularize the unknown estimation by considering localization quality. The HSIC-based moving weight
averaging with the HSIC loss 𝐿𝐻𝑆𝐼𝐶 is proposed to improve the model generalization ability for unknown rejection.

Figure 3: Mathematical statistic between the number of
pseudo-unknown samples and IoU in training time. The IoU
of pseudo-unknown samples from the background and fore-
ground mainly falls in 0∼0.1 and 0.5∼0.6, respectively.

where 𝑁 denotes the number of training samples, and 𝑐𝑖,𝑘 is a bi-
nary element of the one-hot form of label 𝑐𝑖 , and Γ(·) is the gamma
function. Moreover, Δ𝑖 =

∑
𝑘𝛽
𝑖
𝑘
is the total Dirichlet strength over

𝐾 + 2 classes. 𝜆𝑡 = 𝑛𝑐 exp{−(ln𝑛𝑐/𝑇 )𝑡} ∈ [𝑛𝑐 , 1] denotes the an-
nealing weighting factor, where 𝑛𝑐 ≪ 1 is a small positive constant,
𝑡 ⩽ 𝑇 is the training iteration. The motivation of 𝜆𝑡 is that at the
beginning of the training, the inaccurate uncertainty estimations of
Eq. 1 are high-frequency cases so the EDL loss should be optimized
more, while at the end of the training, the accurate estimations
are dominant, thus the EDL loss should be tamer. The EDL loss
function is a principled and effective way to model uncertainty in
deep learning models. By linking to evidential uncertainty (𝑢), it
provides a measure of how uncertain the model is about a given
prediction. The differences between our EDL loss and the previous
[3] are that we add the annealing weighing factor and propose the
digamma function for loss optimization instead of the logarithm
function [3], because the digamma function makes the optimization
of EDL loss smoother (Fig. 6(a)), where the digamma function is
denoted as the logarithmic derivative of the gamma function [1].

3.4 IoU-aware unknown optimization
There are no explicit boundaries to separate known and unknown
objects. Previous works [13, 30, 46, 55] lack the constraints of IoU,
leading to the misidentification of known objects as unknown ob-
jects. Intuitively, a proposal that overlaps more regions with the
ground truth location should have a lower unknown probability.
This is because the greater the overlap, the more likely it is that
the proposal actually contains the known object of interest, which
should keep low uncertainty. Therefore, when optimizing a FOOD
model, it is important to consider both the overlap between the
pseudo-unknown proposal 𝑏𝑖 and the ground truth location 𝑏𝑖 , as
well as the unknown probability 𝑃𝑈 . Here, in order to accurately
separate the unknown objects, we propose an IoU-aware unknown
objective by considering localization quality:

𝐿𝑈 = − 1
𝑁

𝑁∑
𝑖=1

𝑤
𝑏𝑖 ,𝑏𝑖

log 𝑃𝑖𝑈 , (3)

𝑤
𝑏𝑖 ,𝑏𝑖

=


1 − |𝑏𝑖∩𝑏𝑖 |

|𝑏𝑖∪𝑏𝑖 |
, unknown foreground

0.5 −max
(
|𝑏𝑖∩𝑏𝑖 |
|𝑏𝑖∪𝑏𝑖 |

, 𝜆

)
, unknwon background

,

(4)
where 𝑁 represents the total number of pseudo-unknown training
samples and 𝑃𝑈 = exp(𝑙𝑈 )/(

∑𝐾+2
𝑘=1 exp(𝑙𝑘 ) − exp(𝑙𝑔𝑡 )) is denoted

as the predicted unknown probability, which is defined as a softmax
probability without the logit of ground truth class 𝑙𝑔𝑡 [13]. Because
there is no supervision for the unknown optimization, the above
unknown probability can reduce the impact of optimizing unknown
classes on known classes [13] and 𝑙𝑈 expresses the unknown logit.
𝜆 is a small non-negative constant. The optimization process of 𝐿𝑈
is that if the unknown proposal is selected from the foreground
or background, a high unknown probability should correspond to
a low IoU score. Note that for Faster R-CNN, the proposal with
IoU≥0.5 is classified into the foreground, oppositely, the proposal
with 0.5>IoU≥0 is classified into the background. The fact is that
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when the IoU of the foreground and background is close or equal
to 0.5 and 0, respectively, the proposal is considered to be more
uncertain, as illustrated in Fig. 3. The mathematical statistic shows
that the IoU of pseudo-unknown samples from the background
and foreground mainly falls in 0∼0.1 and 0.5∼0.6, respectively. This
is consistent with the optimization process of the model, as the
model tries to find high-uncertainty samples with low IoU scores.
For the unknown foreground, 𝑤

𝑏𝑖 ,𝑏𝑖
in Eq. 3 is pushed towards

0.5, and for the unknown background,𝑤
𝑏𝑖 ,𝑏𝑖

is pushed towards 𝜆
(𝜆 is a small constant). Therefore, it is essential to understand the
impact of IoU on the proposal’s uncertainty in the FOOD task. This
knowledge can help us design better objectives by considering the
IoU between the pseudo-unknown samples and the ground truths
of known classes. Note that the constants 1 and 0.5 in 𝑤

𝑏𝑖 ,𝑏𝑖
are

used to balance and positivize the IoU-aware weights of foreground
and background.

3.5 HSIC-based moving weight averaging
Hilbert-Schmidt Independence Criterion (HSIC). HSIC is a
widely usedmeasure of independence between two high-dimensional
random variables. It is particularly useful when dealing with data
that has a large number of features or dimensions. In practice, we
employ the unbiased HSIC estimator in [40] with 𝑛 samples to
measure the independence between variables𝑈 and 𝑉 :

HSIC𝑘,𝑙 (𝑈 ,𝑉 ) = 1
𝑛 (𝑛−3)

[
𝑡𝑟 (𝑈 𝑉𝑇 ) + 1T𝑈 11T

∼

V1
(𝑛−1) (𝑛−2) −

2
𝑛−21

𝑇𝑈 𝑉𝑇 1
]
,

(5)
where 𝑈 is the kernelized matrix of 𝑈 with radial basis function
(RBF) kernel 𝑘 by𝑈𝑖 𝑗 = (1−𝜉𝑖, 𝑗 )𝑘 (𝑢𝑖 , 𝑢 𝑗 ), {𝑢𝑖 } ∼ 𝑈 and the (1−𝜉𝑖 𝑗 )
sets the diagonal of𝑈 to zeros. 𝑉 is defined similarly with kernel 𝑙 ,
𝑡𝑟 expresses the trace of a matrix, and 1 is an all-one vector. Note
that the HSIC value is equal to zero if and only if the two variables
are independent.

In the context of FOOD tasks, there is a lack of real unknown
data and only a limited number of training samples are available, it
is highly likely that the trained model will suffer from overfitting
issue and have poor generalization ability for unknown classes.
This is because the model will likely memorize the few training
data instead of learning generalizable patterns, leading to poor per-
formance on new data. Recently, moving weight averaging (MWA)
[2] has achieved state-of-the-art performance in out-of-distribution
detection [32], which can improve the model generalization abil-
ity for unknown rejection. Our proposed method differs from the
commonly used MWA method in that we use an HSIC-based ap-
proach to update the model’s weights. Specifically, we measure
the degree of independence between the current weights and the
previous weights stored in the long-term memory bank and use this
measure to update the model’s weights. HSIC, or Hilbert-Schmidt
Independence Criterion, is a statistical measure of the independence
between two random variables. By using HSIC to measure the in-
dependence between the current and previous weights, we can
identify when the current weights are significantly different from
the previous weights. This indicates the model has encountered
new and important data, prompting necessary weight updating. In
contrast, MWA updates the model’s weights by taking a weighted

average of the current weights and the previous weights. This ap-
proach may not be optimal for all situations, as it assumes that the
previous weights vary linearly over time, which is not suitable for
non-stationary data. Differently, our HSIC-based moving weight
averaging (HMWA) method provides a more flexible and adaptive
approach to update the model’s weights, allowing it to better adapt
to the distribution of weight data over time.

As shown in Fig. 2(c), our HMWA includes two memory banks
and an HSIC loss (𝐿𝐻𝑆𝐼𝐶 ). Specifically, we initialize the memory
weight banks Ω𝑐𝑙𝑠,𝑟𝑒𝑔 of the classification and regression heads with
size𝑄 , respectively. In a training trajectory, we sample the classifica-
tion and regression weights every 𝑆 iterations and store them in the
long-term memory banks Ω𝑐𝑙𝑠,𝑟𝑒𝑔 . Then we calculate the averaging
weights 𝜃𝑐𝑙𝑠,𝑟𝑒𝑔 =

∑
Ω𝑐𝑙𝑠,𝑟𝑒𝑔/|Ω𝑐𝑙𝑠,𝑟𝑒𝑔 | of the memory bank and

adopt HSIC to measure the degree of independence between the cur-
rent weights 𝜃𝑐𝑙𝑠,𝑟𝑒𝑔 and the averaging weights 𝜃𝑐𝑙𝑠,𝑟𝑒𝑔 , which can
be expressed as ℎ𝑐𝑙𝑠,𝑟𝑒𝑔 = HSIC(𝜃𝑐𝑙𝑠,𝑟𝑒𝑔, 𝜃𝑐𝑙𝑠,𝑟𝑒𝑔). The weights of
the current iteration are updated by considering the independence
with the averaging weights 𝜃𝑐𝑙𝑠,𝑟𝑒𝑔 of the memory bank:

𝜃𝑐𝑙𝑠 = (1 − ℎ𝑐𝑙𝑠 ) · 𝜃𝑐𝑙𝑠 + ℎ𝑐𝑙𝑠 · 𝜃𝑐𝑙𝑠 , (6)

𝜃𝑟𝑒𝑔 = (1 − ℎ𝑟𝑒𝑔) · 𝜃𝑟𝑒𝑔 + ℎ𝑟𝑒𝑔 · 𝜃𝑟𝑒𝑔, (7)

where 𝜃𝑐𝑙𝑠,𝑟𝑒𝑔 denotes the updated weights. We repeat the above
process every 𝑆 iterations where the oldest head weights are out of
the memory and the newest into the queue. In particular, impor-
tant samples bring more model weight updates (small ℎ𝑐𝑙𝑠,𝑟𝑒𝑔), so
the current weights account for a large in Eq. 6 and Eq. 7. HSIC
encourages the model to smoothly focus on important samples,
which play a positive role in weight updating. Simultaneously, we
also propose an HSIC loss to learn more generalized weights of the
prediction heads. HSIC loss can guide the model to find the flat
minima, and flatten the loss landscapes, which makes the model
converge well.

𝐿𝐻𝑆𝐼𝐶 = E𝜃𝑐𝑙𝑠

[
1 − HSIC(𝜃𝑐𝑙𝑠 , 𝜃𝑐𝑙𝑠 )

]
+E𝜃𝑟𝑒𝑔

[
1 − HSIC(𝜃𝑟𝑒𝑔, 𝜃𝑟𝑒𝑔)

]
.

(8)
Note that we start optimizing the HSIC loss when the first set of
sampled weights is stored in the memory banks. Alongside, a simple
decay weight 𝛼 = 1− 𝑡/𝑇 is adopted during HSIC loss optimization.

3.6 Training and inference
Our method can be trained by minimizing the following weighted
sum of losses in an end-to-end manner:

𝐿 = 𝐿𝑟𝑝𝑛 + 𝐿𝑐𝑒 + 𝐿𝑟𝑒𝑔 + 𝜆1𝐿𝐸𝐷𝐿 + 𝜆2𝐿𝑈 + 𝜆3𝐿𝐻𝑆𝐼𝐶 , (9)

where 𝐿𝑟𝑝𝑛 denotes the objective function of RPN, 𝐿𝑐𝑒 and 𝐿𝑟𝑒𝑔
represent the classification and regression losses of R-CNN. 𝜆1, 𝜆2,
and 𝜆3 are the weighting coefficients.

In inference, the input in an open-set assumption is fed into
the FOOD model, and our method can produce locations 𝑏𝑖 and
directly predict classification labels𝑦𝑖 = argmax𝑗 ∈[1,...,𝐾+2] (𝑃𝑖 𝑗 ) in
a threshold-free way, which means that recognizing known objects
and rejecting unknown objects depends entirely on the arguments
of the maxima (argmax) of predicted probabilities 𝑃 of all classes.
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(a) VOC10-5-5 𝑚𝐴𝑃𝐾/𝑚𝐴𝑃𝑁↑ 𝑅𝑈↑ 𝐴𝑅𝑈↑
Method 1 3 5 10 Mean 1 3 5 10 Mean 1 3 5 10 Mean
DS [30] 43.82/7.22 46.89/14.48 48.01/19.27 48.01/25.66 46.68/16.65 23.99 23.62 19.99 19.99 21.90 12.15 11.98 10.80 10.83 11.44
PROSER [55] 41.64/8.49 43.30/15.16 45.12/20.08 48.35/25.13 44.60/17.22 30.95 32.30 32.68 32.61 32.14 15.41 16.17 16.48 17.01 16.27
OpenDet [13] 43.45/8.27 46.47/14.09 47.56/17.90 50.95/25.14 47.11/16.35 33.64 30.62 32.13 36.30 33.17 17.28 15.89 16.72 18.89 17.20
FOOD [46] 43.97/8.95 48.48/16.83 50.18/23.10 53.23/28.60 48.97/19.37 43.72 44.52 45.65 45.84 44.93 23.51 23.58 23.61 23.86 23.64
Ours 45.12/11.56 48.90/18.96 52.55/27.31 57.24/32.63 50.95/22.62 60.03 61.21 62.02 62.14 61.35 31.19 32.03 32.79 32.80 32.20
(b) VOC-COCO 𝑚𝐴𝑃𝐾/𝑚𝐴𝑃𝑁↑ 𝑅𝑈↑ 𝐴𝑅𝑈↑
Method 1 5 10 30 Mean 1 5 10 30 Mean 1 5 10 30 Mean
DS [30] 15.47/2.11 17.10/6.30 19.06/9.46 23.40/15.27 18.76/8.29 3.57 3.86 3.75 3.95 3.78 1.69 1.71 1.77 1.83 1.75
PROSER [55] 13.58/2.32 15.67/6.40 17.00/8.75 21.44/14.30 16.92/7.94 7.53 9.59 10.06 12.06 9.81 3.07 4.08 4.89 5.98 4.51
OpenDet [13] 16.01/2.51 17.16/7.19 18.53/8.62 22.93/14.02 18.66/8.09 7.24 11.49 13.89 18.07 12.67 3.14 5.21 6.32 8.76 5.86
FOOD [46] 15.83/2.26 18.08/6.69 20.17/9.35 23.9/14.47 19.5/8.19 15.76 20.02 21.48 23.17 20.11 7.20 9.45 9.56 11.45 9.42
Ours 18.54/4.33 19.88/11.95 22.64/13.82 23.71/17.67 21.19/11.94 30.87 32.53 32.78 35.74 32.98 14.13 15.74 16.52 17.26 15.91

Table 1: The few-shot open-set object detection results on (a) VOC10-5-5 and (b) VOC-COCO dataset settings. For a fair com-
parison, we report the average results of 10 random runs with the same backbone (Resnet50) for all comparison methods.

4 EXPERIMENT
4.1 Datasets
We follow the recent work [46] and use the same data split such
as VOC10-5-5 and VOC-COCO to evaluate our method for a fair
comparison. As for VOC10-5-5, we divide 20 classes into 10 base
classes, 5 novel classes, and 5 unknown classes in PASCALVOC [29].
Each novel class has 1, 3, 5, and 10 objects sampled from the train
and validation sets of VOC07 and VOC12. The test set of VOC07 is
selected as the testing data. As for VOC-COCO, we use the train
and validation sets of PASCAL VOC as the known base training
data. We select 20 categories disjoint with the 20 VOC classes as
the novel classes in the train set of MS COCO2017 [23]. Each novel
class has 1, 5, 10, and 30 objects sampled from the train sets of
COCO2017. The remaining 40 classes are chosen as the unknown
classes. The val2017 set is used as the testing data. More details are
shown in the supplementary material.

4.2 Evaluation Metrics
The mean average precision (mAP) of known (𝑚𝐴𝑃𝐾 ) and novel
(𝑚𝐴𝑃𝑁 ) classes is chosen to evaluate the known object detection
performance. To evaluate the unknown detection performance, the
recall (𝑅𝑈 ) and average recall (𝐴𝑅𝑈 ) are reported. The unknown
recall (𝑅𝑈 ) is a popular metric, which is the ratio of well-found
objects whose IoU with ground truth is higher than the threshold of
0.5.𝐴𝑅𝑈 is the average recall at IoU thresholds from 0.5 to 0.95 with
a 0.05 interval, which is a fairer metric for unknown evaluation.

4.3 Implementation Details
Similar to most open-set detection methods [13, 30, 46], ImageNet
pre-trained Resnet50 [15] is used to initialize the backbone. We
adopt a two-stage fine-tuning strategy [52] to train the few-shot
open-set detector. In the base training stage, we employ the abun-
dant samples of the base classes𝐶𝐵 to train the entire base detector
from scratch, such as Faster R-CNN. Then, in the few-shot fine-
tuning stage, a small balanced training set from base and novel
classes (𝐶𝐵+𝐶𝑁 ) is used to fine-tune the model. Simultaneously, we
scale the gradient from R-CNN and stop the gradient from RPN [36]
to slowly update the parameters of the backbone network to get the

few-shot open-set object detector. In the fine-tuning stage, 𝐿𝐸𝐷𝐿 ,
𝐿𝑈 , and 𝐿𝐻𝑆𝐼𝐶 are optimized. Noting that the above three losses
are not optimized in the base training phase. All models are trained
using SGD optimizer with a mini-batch size of 16, a momentum of
0.9, and a weight decay of 1e-4. The learning rate of 0.02 is used in
the first stage and 0.01 in the second stage. The coefficients 𝑛𝑐 , 𝜆,
and 𝜏 are 0.01, 0.0001, and 0.05, respectively. The queue size 𝑄 of
the memory bank is 32 and the sampling step 𝑆 is 10 iterations.

4.4 Comparison Results
VOC10-5-5. As illustrated in Table 1(a), we present the evaluation
results on VOC10-5-5 and conduct a comparison of our performance
with other state-of-the-art results obtained byDS [30], PROSER [55],
OpenDet [13], and FOOD [46] with the same Resnet50 backbone.
We choose 1, 3, 5, and 10 samples of each known class to train the
open-set detectors in the two-stage fine-tuningway [52].We can see
that our method outperforms previous methods by a large margin
for unknown rejection. For example, the unknown mean recall
(𝑅𝑈 ) reaches 61.35%, which outperforms the second best by 16.42%.
The unknown average recall 𝐴𝑅𝑈 is a more fair metric, while our
method outperforms the second best by 8.56%. The mAP of the
known classes is also competitive. In particular, our𝑚𝐴𝑃𝐾 increases
by 1.98% for the mean result of 1, 3, 5, and 10 shots. It demonstrates
that our method not only has a strong unknown generalization
ability with limited training samples but also performs well at
identifying known classes.

VOC-COCO. As shown in Table 1(b), we evaluate our method
using the more challenging cross-dataset setting (VOC-COCO),
where 40 classes of COCO are defined as the unknown classes.
Our method achieves 12.87% (𝑅𝑈 ) and 6.49% (𝐴𝑅𝑈 ) improvements
over the second-best method (FOOD [46]), respectively. The highest
recall of our method is 35.74% (30-shot), which means that one-third
of unknown objects are recalled in the challenging cross-dataset
setting, which demonstrates that our method exhibits a strong
generalization for unknown classes. The knowledge learned by our
method from a few samples and large categories is more generalized
than the close-set detectors. Alongside, our method preserves a high
accuracy on the original in-distribution task (measured by𝑚𝐴𝑃𝐾
and𝑚𝐴𝑃𝑁 ) compared with other state-of-the-art methods.
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(a) VOC10-5-5 (b) VOC-COCO

Figure 4: Unknown recall (𝑅𝑈 ) versus IoU threshold on VOC10-5-5 (1 and 10-shot) and VOC-COCO (1, 10, and 30-shot). AR is
twice the area enclosed by the recall-IoU curve.

VOC COCO RoadAnomaly

Figure 5: Visualization of detected objects on the open-set images (from VOC, COCO, and RoadAnomaly [24]) by the FOOD
[46] (Top) and our method (bottom). The inference model of RoadAnomaly is trained by a 1-shot VOC-COCO setting.

Figure 6: Visualization of the loss functions in 1-shot VOC-
COCO setting. (a) Ablation studies of 𝐿𝐸𝐷𝐿 with the loga-
rithm and digamma functions. (b) Ablation studies of 𝐿𝑐𝑒
with/without 𝐿𝐻𝑆𝐼𝐶 .

Overall. For few-shot detection, our method achieves 3.25%
(𝑚𝐴𝑃𝑁 ) and 3.65% (𝑚𝐴𝑃𝑁 ) improvements over the second-best
method (mean results) in VOC10-5-5 and VOC-COCO dataset set-
tings, respectively. The reason is that HMWA suppresses the over-
fitting issue caused by few training data, and then improves the
general representation ability for few-shot classes. Focusing on
suppressing overfitting problems and improving the unknown gen-
eralization is beneficial for dealing with the few-shot problems and
open-set problems, simultaneously.

As shown in Fig. 4, we present the recall-IoU curves on VOC10-
5-5 and VOC-COCO of different shot settings. They show that
the recall-IoU performance varies significantly both across shots

and IoU thresholds, and our proposed method could consistently
outperform other state-of-the-art methods on all two benchmarks
and ten thresholds. Fig. 5 visualizes the results of FOOD (top) [46]
and our method (bottom) on VOC, COCO, and RoadAnomaly [24]
datasets. Note that the inference model of RoadAnomaly is trained
by a 1-shot VOC-COCO setting. It can be seen that FOOD misses
many unknown objects such as sheep in VOC (the 2𝑛𝑑 column),
orange in COCO (the 3𝑟𝑑 column), and stone in RoadAnomaly (the
7𝑡ℎ column). While our method does not miss any unknown objects
and has high confidence scores because we learn more generaliz-
able representations for unknown rejection. More qualitative and
quantitative analyzes are shown in the supplementary material.

4.5 Ablation Study
4.5.1 Pseudo-unknown sample mining. As illustrated in Table 2(a),
we carefully study the designs of different pseudo-unknown sample
mining methods. A good sampling method can not only improve
the performance of known classes but also boost the rejection abil-
ity of unknown classes. Our evidential uncertainty outperforms the
known and unknown results of other methods including random
selection, max logit [16], min score [13], maximum softmax proba-
bility (MSP) [49], entropy [17], energy [27], and conditional energy
[46], which demonstrates its effectiveness. Table 2 (b) presents the
results of only mining pseudo-unknown samples from foreground
or background proposals, the performance of which is not as ef-
fective as mining samples from both of them. We also analyze the
effect of logarithm-based, digamma-based, or without 𝐿𝐸𝐷𝐿 , the
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(a) Mining methods 𝑚𝐴𝑃𝐾 𝑅𝑈 𝐴𝑅𝑈

Random 17.32 21.73 10.14
Max logit [16] 17.79 28.77 12.62
Min score [13] 17.98 26.27 11.84
Maximum softmax probability [49] 18.09 26.18 11.51
Entropy [17] 17.39 25.83 11.80
Energy [27] 17.20 28.00 11.87
Conditional energy [46] 17.95 28.73 12.43
Our evidential uncertainty 18.54 30.87 14.13

(b) w/o foreground 17.01 27.89 12.03
(b) w/o background 17.88 28.95 13.48

(c) Logarithm-based 𝐿𝐸𝐷𝐿 18.51 30.29 13.97
(c) Digamma-based 𝐿𝐸𝐷𝐿 18.54 30.87 14.13
(c) w/o 𝐿𝐸𝐷𝐿 17.23 28.28 13.07

Table 2: Results of pseudo-unknown sample mining in 1-
shot VOC-COCO settings. (a) Different mining methods. (b)
Without foreground or background. (c) Logarithm-based,
digamma-based, or without 𝐿𝐸𝐷𝐿 .

(a)𝑤
𝑏𝑖 ,𝑏𝑖

𝑚𝐴𝑃𝐾 𝑅𝑈 𝐴𝑅𝑈

|𝑏𝑖 ∩ 𝑏𝑖 |/|𝑏𝑖 ∪ 𝑏𝑖 | 18.01 27.96 11.46
max

(
|𝑏𝑖 ∩ 𝑏𝑖 |/|𝑏𝑖 ∪ 𝑏𝑖 |, 𝜆

)
18.29 28.39 11.93

1 − |𝑏𝑖 ∩ 𝑏𝑖 |/|𝑏𝑖 ∪ 𝑏𝑖 | 18.08 28.47 11.99
0.5 − |𝑏𝑖 ∩ 𝑏𝑖 |/|𝑏𝑖 ∪ 𝑏𝑖 | 12.87 0 0
1 −max

(
|𝑏𝑖 ∩ 𝑏𝑖 |/|𝑏𝑖 ∪ 𝑏𝑖 |, 𝜆

)
18.32 29.56 13.03

0.5 −max
(
|𝑏𝑖 ∩ 𝑏𝑖 |/|𝑏𝑖 ∪ 𝑏𝑖 |, 𝜆

)
12.04 0 0

Ours (Eq. 4) 18.54 30.87 14.13

(b) w/o𝑤
𝑏𝑖 ,𝑏𝑖

18.05 27.91 11.39
(c) w/o 𝐿𝑈 19.17 0 0

Table 3: Results of IoU-aware unknown optimization in 1-
shot VOC-COCO settings. (a) Different IoU-based weights.
(b) Without weight𝑤

𝑏𝑖 ,𝑏𝑖
. (c) Without 𝐿𝑈 .

digamma-based 𝐿𝐸𝐷𝐿 outperforms other settings by 0.03%∼1.31%
(𝑚𝐴𝑃𝐾 ) and 0.16%∼1.06% (𝐴𝑅𝑈 ). Simultaneously, the qualitative
comparison between the logarithm and digamma is shown in Fig.
6(a). We can see that our digamma-based EDL loss is smoother than
the logarithm, which illustrates its advantage.

4.5.2 IoU-aware unknown optimization. We first explore the dif-
ferent IoU-based weights (𝑤

𝑏𝑖 ,𝑏𝑖
). Table. 3(a) line 1-6 set the same

𝑤
𝑏𝑖 ,𝑏𝑖

of pseudo-unknown samples from the foreground and back-
ground. As illustrated in Table. 3(a), improper settings can lead to
a significant drop in performance for both known and unknown
classes, for example, (0.5 − |𝑏𝑖 ∩ 𝑏𝑖 |/|𝑏𝑖 ∪ 𝑏𝑖 |), which causes the
𝑤
𝑏𝑖 ,𝑏𝑖

of foreground (IoU>0.5) is negative and the loss (𝐿𝑈 ) swings
between positive and negative, thus it is difficult to converge. There-
fore, the unknown results are zero. According to the mathematical

(a) Averaging methods 𝑚𝐴𝑃𝐾 𝑅𝑈 𝐴𝑅𝑈

Weight averaging [5] 18.58 27.87 11.96
Diverse weight averaging [33] 18.37 28.19 12.08
Moving weight averaging [2] 18.05 28.59 12.32
Our HMWA 18.54 30.87 14.13

(b) w/o HMWA 18.08 25.63 10.91
(c) w/o 𝐿𝐻𝑆𝐼𝐶 18.28 30.10 13.78

Table 4: Results ofWA in 1-shot VOC-COCO settings. (a) Dif-
ferent WAmethods. (b) Without HMWA. (c) Without 𝐿𝐻𝑆𝐼𝐶 .

statistic between the number of pseudo-unknown samples and
IoU (Fig. 3), our method (Eq. 4) designs more appropriate IoU-
based weights, effectively improving the localization quality of
unknown classes. Table. 3(b) and (c) present the ablation studies
of without𝑤

𝑏𝑖 ,𝑏𝑖
and 𝐿𝑈 , respectively. It shows that𝑤𝑏𝑖 ,𝑏𝑖 can sig-

nificantly boost the localization performance of unknown objects
(𝐴𝑅𝑈 : 11.39%→14.13%) and 𝐿𝑈 is necessary for unknown rejection.

4.5.3 HSIC-based moving weight averaging. We improve the gen-
eralization of model to unknown classes by weight averaging [5].
As listed in Table 4(a), our HSIC-based moving weight averaging
(HMWA) outperforms other averaging methods [2, 5, 33]) for un-
known rejection, which verifies that considering the dependency
between current and previous weights is helpful for unknown gen-
eralization. Our method provides a more flexible and adaptive way
to update the model’s weights of the prediction heads, making it
to better adapt to the data distributions of the weights over time.
When we remove HMWA (Table 4(b)), the unknown results drop a
lot (𝐴𝑅𝑈 : 14.13%→10.91%), which illustrates its necessity. Along-
side, Table 4(c) presents the effectiveness of 𝐿𝐻𝑆𝐼𝐶 . We also show
the ablation studies of cross-entropy-based classification loss (𝐿𝑐𝑒 )
with/without 𝐿𝐻𝑆𝐼𝐶 . As shown in Fig. 6(b), 𝐿𝑐𝑒 with 𝐿𝐻𝑆𝐼𝐶 is closer
to zero as the iterations increase, which demonstrates that the HSIC
loss guides the model to find flatter minima.

5 CONCLUSION
In this paper, we propose a new solution to solve the challenging
FOOD problem. Specifically, we propose a few-shot open-set de-
tector, which is a novel unknown-aware training framework for
unknown rejection. Since there is no real unknown data, the evi-
dential uncertainty estimated by the Dirichlet distribution of the
output probability is used to mine the pseudo-unknown data in
optimization. We also propose an IoU-aware unknown training
objective, which meaningfully regularizes the unknown estimation
by considering localization quality. Furthermore, the HSIC func-
tion measures the degree of independence between the current and
previous weights, determining the direction of model updates. Ex-
tensive experiments on three dataset settings show that our method
significantly outperforms the state-of-the-art methods.
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A SUPPLEMENTARY MATERIAL
A.1 Dataset settings
VOC10-5-5 setting: 𝐶𝐵={aeroplane, bicycle, bird, boat, bottle, bus,
car, cat, chair, cow}, 𝐶𝑁 ={diningtable, dog, horse, motorbike, per-
son}, 𝐶𝑈 ={pottedplant, sheep, sofa, train, tvmonitor}={unknown}.

VOC-COCO setting: 𝐶𝐵={aeroplane, bicycle, bird, boat, bottle,
bus, car, cat, chair, cow, diningtable, dog, horse, motorbike, person,
pottedplant, sheep, sofa, train, tvmonitor}, 𝐶𝑁 ={truck, traffic light,
fire hydrant, stop sign, parking meter, bench, elephant, bear, zebra,
giraffe, backpack, umbrella, handbag, tie, suitcase, microwave, oven,
toaster, sink, refrigerator}, 𝐶𝑈 ={frisbee, skis, snowboard, sports
ball, kite, baseball bat, baseball glove, skateboard, surfboard, tennis
racket, banana, apple, sandwich, orange, broccoli, carrot, hot dog,
pizza, donut, cake, bed, toilet, laptop, mouse, remote, keyboard, cell
phone, book, clock, vase, scissors, teddy bear, hair drier, toothbrush,
wine glass, cup, fork, knife, spoon, bowl}={unknown}.

RoadAnomaly setting: This dataset is mainly employed to test
the generalization effect of our model in open-world road scenes.
𝐶𝑈 ={rhino, stone, deer, obstacle, road hole, wild boar, haystack,
donkey, fox}={unknown}.

A.2 Preliminaries of Evidential Deep Learning
and Weight Averaging

Details on evidential uncertainty and evidential deep learning can
be found in the supplementary materials of [3]. For the theoretical
proof that weight averaging can improve the model’s generalization
for out-of-distribution (or open-set) detection, please refer to [33].

A.3 Ablation Study of Pseudo-Unknown
Sample Mining

We select top-𝑘 pseudo-unknown samples from foreground and
background proposals ranked by the evidential uncertainty. Differ-
ent choices of top-𝑘 and sampling ratio (fg:bg) are listed in Table
5. 𝑘 = 3 and 1:1 perform better than other settings. Therefore, we
adopt the above settings in all experiments.

Top-𝑘 fg:bg 𝑚𝐴𝑃𝐾 𝑅𝑈 𝐴𝑅𝑈

1 1:1 18.15 28.75 12.45
3 1:1 18.54 30.87 14.13
5 1:1 18.26 30.62 13.97
10 1:1 18.43 30.09 13.48
3 1:2 18.31 29.27 13.16
3 1:3 18.50 29.42 13.33

Table 5: Pseudo-unknown sample mining. We list different
choices of top-𝑘 and sampling ratio (fg:bg) in 1-shot VOC-
COCO dataset setting.

A.4 Ablation Study of HMWA
We report different choices of the queue size and sampling step
in HSIC-based moving weight averaging (HMWA). In Table 6, (d)
and (e) perform better than other settings, which demonstrates
that long-term memory (i.e., larger 𝑄 ∗ 𝑆 < 𝑇 , where 𝑇 is the max
iterations) is a good choice for HMWA.

Queue size 𝑄 Sampling step 𝑆 𝑚𝐴𝑃𝐾 𝑅𝑈 𝐴𝑅𝑈

(a) 32 1 18.18 30.04 13.98
(b) 32 2 18.39 30.18 14.02
(c) 32 3 18.47 29.89 13.97
(d) 32 5 18.75 30.24 14.08
(e) 32 10 18.54 30.87 14.13
(f) 4 10 18.43 29.74 13.97
(g) 8 10 18.21 30.58 14.09
(h) 16 10 18.09 30.77 14.11

Table 6: HSIC-basedmoving weight averaging. For themem-
oryweight bank,we list different choices of queue size𝑄 and
sampling step 𝑆 in 1-shot VOC-COCO dataset setting.

Backbone 𝑚𝐴𝑃𝐾 𝑅𝑈 𝐴𝑅𝑈

Resnet50 18.54 30.87 14.13
Resnet101 19.58 31.42 14.79
Swin-Tiny 21.80 33.24 15.89
Swin-Small 23.52 34.40 16.71

Table 7: We list different backbones in 1-shot VOC-COCO
dataset setting.

A.5 Ablation Study of Swin Transformer
Swin Transformer [28] is a transformer-based architecture that
uses hierarchical structures and local self-attention mechanisms
to achieve state-of-the-art performance in many computer vision
tasks. Swin Transformer achieves feature extraction by dividing the
image into patches and applying local self-attention within these
patches in a hierarchical manner. This allows Swin Transformer
to capture both global and local features of an image effectively.
Here, as illustrated in Table 7, we employ the Swin Transformer
(Swin-Tiny and Swin-Small) as the backbone of Faster R-CNN and
achieve an evident improvement in both known and unknown
performance compared with Resnet (Resnet50 and Resnet101). For
example, Swin-Tiny achieves 3.76%𝑚𝐴𝑃𝐾 and 1.76%𝐴𝑅𝑈 improve-
ments compared with Resnet50. Note that Swin-Tiny (29M) has
roughly the same number of parameters as Resnet50 (26M), while
Swin-Small (50M) has a similar number of parameters as Resnet101
(45M). It illustrates that in the case of almost the same parameter
amount, Swin Transformer has a stronger feature generalization
ability than Resnet.

A.6 Quantitative Results
As illustrated in Table 8, we report the unknown recall (𝑅𝑈 ) of ten
IoU thresholds (0.5 to 0.95 with 0.05 interval) with different shots
on VOC10-5-5 and VOC-COCO dataset settings. Our method has
demonstrated superior performance over the previous state-of-the-
art results across various shot settings and IoU thresholds (VOC10-
5-5: +7.27%∼+9.72% 𝐴𝑅𝑈 , VOC-COCO: +6.05%∼+7.41% 𝐴𝑅𝑈 ). This
highlights the effectiveness of our approach and its potential for
real-world applications.



MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Binyi Su, Hua Zhang, Zhong Zhou.

VOC10-5-5
Method IoU=0.5 IoU=0.55 IoU=0.6 IoU=0.65 IoU=0.7 IoU=0.75 IoU=0.8 IoU=0.85 IoU=0.9 IoU=0.95 Mean (𝐴𝑅𝑈 )

1-shot

DS[30] 20.34 18.98 16.51 14.61 11.01 9.09 6.35 3.31 0.30 0.13 10.06
PROSER[55] 29.35 27.98 26.56 24.44 21.47 18.89 14.89 9.22 3.74 0.39 17.69
OpenDet[13] 30.48 28.42 27.41 25.89 22.17 20.01 15.12 9.38 3.03 0.23 18.21
FOOD[46] 42.73 40.74 38.35 34.09 29.52 22.87 13.32 9.40 3.12 0.28 23.44
Ours 59.83 56.67 52.03 45.58 37.46 27.85 18.89 9.61 3.93 0.58 31.24

3-shot

DS[30] 20.70 18.51 16.52 13.93 10.41 9.57 6.99 4.45 1.45 0.01 10.25
PROSER[55] 30.08 28.37 27.30 24.82 22.50 19.18 15.15 9.12 3.06 0.19 17.98
OpenDet[13] 33.81 29.14 28.75 26.24 22.50 20.18 16.54 8.13 4.01 0.13 18.94
FOOD[46] 43.25 41.62 39.65 35.70 31.33 23.59 15.66 8.64 2.90 0.26 24.26
Ours 60.08 57.13 52.87 45.72 37.59 28.63 18.90 9.69 4.22 0.45 31.53

5-shot

DS[30] 20.24 18.89 16.76 14.83 11.54 9.61 6.32 3.09 0.77 0.06 10.21
PROSER[55] 30.09 28.73 27.32 24.90 22.31 19.68 15.41 9.73 3.12 0.13 18.14
OpenDet[13] 33.09 28.33 27.27 26.01 23.08 20.83 16.82 8.73 3.13 0.12 18.74
FOOD[46] 43.97 40.42 37.52 31.59 24.82 18.63 11.73 6.57 2.71 0.26 21.82
Ours 60.25 56.22 53.35 46.39 38.04 28.41 18.90 9.89 3.55 0.38 31.54

10-shot

DS[30] 21.92 19.40 18.75 16.40 13.08 10.11 7.51 4.19 1.19 0.58 11.31
PROSER[55] 31.91 28.94 27.58 25.10 22.07 18.59 15.27 11.51 4.47 0.29 18.57
OpenDet[13] 33.71 30.61 28.03 26.75 23.04 20.69 18.86 10.19 4.19 0.77 19.68
FOOD[46] 43.67 41.38 38.83 35.81 30.35 23.94 14.30 10.73 4.32 0.26 24.36
Ours 63.12 58.05 54.55 46.07 40.78 28.05 19.25 11.67 4.77 0.90 32.72

VOC-COCO
Method IoU=0.5 IoU=0.55 IoU=0.6 IoU=0.65 IoU=0.7 IoU=0.75 IoU=0.8 IoU=0.85 IoU=0.9 IoU=0.95 Mean (𝐴𝑅𝑈 )

1-shot

DS[30] 2.65 2.36 2.17 1.78 1.53 1.28 0.89 0.56 0.24 0.01 1.35
PROSER[55] 6.93 6.03 5.18 4.42 3.72 2.88 2.05 1.21 0.53 0.11 3.31
OpenDet[13] 7.21 6.53 5.86 5.06 4.26 3.41 2.58 1.59 0.58 0.05 3.71
FOOD[46] 13.94 12.31 11.06 9.41 7.55 5.55 3.84 2.22 0.83 0.11 6.68
Ours 31.74 28.32 24.32 20.02 15.33 10.44 6.28 3.20 1.14 0.14 14.09

5-shot

DS[30] 3.71 3.29 2.93 2.54 2.26 1.87 1.36 0.83 0.34 0.04 1.92
PROSER[55] 9.31 8.36 7.31 6.11 5.09 4.05 3.04 1.73 0.69 0.08 4.58
OpenDet[13] 10.05 9.00 7.95 6.72 5.76 4.66 3.48 2.12 0.79 0.06 5.06
FOOD[46] 17.59 15.80 14.05 12.13 9.86 7.46 5.22 3.03 1.26 0.16 8.66
Ours 32.12 29.09 25.69 21.47 16.64 12.48 8.01 4.10 1.39 0.19 15.12

10-shot

DS[30] 3.53 3.24 2.83 2.42 2.11 1.70 1.27 0.76 0.34 0.04 1.82
PROSER[55] 8.89 7.90 6.87 5.82 4.76 3.82 2.63 1.57 0.63 0.08 4.30
OpenDet[13] 14.69 13.37 12.03 10.45 8.69 6.62 4.81 2.89 1.00 0.10 7.47
FOOD[46] 19.27 17.46 15.34 13.13 10.94 8.67 5.78 3.36 1.33 0.18 9.55
Ours 32.44 29.69 26.48 22.19 17.58 13.17 8.67 4.19 1.34 0.20 15.60

30-shot

DS[30] 4.62 4.14 3.60 3.05 2.43 1.95 1.31 0.73 0.29 0.03 2.22
PROSER[55] 10.07 8.88 7.71 6.58 5.38 4.29 3.04 1.68 0.67 0.10 4.84
OpenDet[13] 16.47 15.09 13.67 11.94 9.85 7.79 5.58 3.33 1.12 0.20 8.50
FOOD[46] 20.00 18.32 16.38 14.26 11.71 9.07 6.35 3.72 1.36 0.22 10.14
Ours 34.33 31.42 28.04 23.80 19.07 13.67 8.97 4.64 1.49 0.26 16.57

Table 8: We report the unknown recall (𝑅𝑈 ) of ten IoU thresholds (0.5 to 0.95 with 0.05 interval) with different shots.

A.7 Discussion
Here, we’d like to discuss the difference between the few-shot
open-set object detection (FOOD) task and the prompt-based open-
vocabulary (or zero-shot) object detection (OVOD) task [9, 10, 54,
56]. OVOD can leverage the long-tail dataset with the language
[54] or class [56] prompt to train a detector (or large model), which
can detect unknown classes without training samples. For OVOD,
each unknown category needs auxiliary information (prompt), and
the auxiliary information must be associated with the feature of the
unknown category. The main differences are that 1) the auxiliary
information or prompt of the unknown class is not provided in
FOOD; 2) Due to the ambiguity of class definitions, it is impossible
for the model to detect all classes in open-world scenes. Neither the
language prompt nor the class prompt can contain all the category
information in open-world scenes. In particular, there always exists
unknown categories, where OVOD cannot tackle this situation;

3) FOOD aims to reject unknown objects and avoid identifying
unknown classes as known classes with a high confidence score [46].
When a detected unknown object 𝑏1 is not included in the prompt
classes, OVOD will misrecognize it as a known class, however,
FOOD will reject 𝑏1 as an unknown class.

A.8 Limitations
Sometimes our algorithmmakes amistake and thinks that some low-
quality proposals belong to an unknown category during testing,
especially the novel categories with insufficient supervision. We
currently have difficulty in removing these misclassified proposals
from the final predictions. Although this doesn’t affect the accuracy
of our known categories, it is still important to reduce these false
“unknown” predictions in the future. We are working on improving
our method to address this issue.
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