
Web-based Mixed Reality Video Fusion with
Remote Rendering

1st Qiang Zhou
State Key Laboratory of Virtual Reality Technology

and Systems, Beihang University
Beijing, China

ZB2006108@buaa.edu.cn

2nd Zhong Zhou
State Key Laboratory of Virtual Reality Technology

and Systems, Beihang University
Beijing, China
zz@buaa.edu.cn

Abstract—Mixed Reality (MR) video fusion system fuses video
imagery with 3D scenes. It makes the scene much more realistic
and helps the users understand the video contents and temporal-
spatial correlation between them, thus reducing the user’scogni-
tive load. Nowadays, MR video fusion has been used in various
applications. However, video fusion systems require powerful
client machines because video streaming delivery, stitching, and
rendering are computation-intensive. Moreover, huge bandwidth
usage is also another critical factor that affects the scalability
of video fusion systems. The framework proposed in this paper
overcomes this client limitation by utilizing remote rendering.
Furthermore, the framework we built is based on browsers.
Therefore, the user could try the MR video fusion system with
a laptop or even pad, no extra plug-ins or application programs
need to be installed. Several experiments on diverse metrics
demonstrate the effectiveness of the proposed framework.

Index Terms—mixed reality, video fusion, WebRTC, remote
rendering

I. I NTRODUCTION

Mixed Reality (MR) video fusion systems have the impres-
sive ability to produce highly comprehensive imagery and to
yield temporal-spatial consistent scenes. They thus have been
extensively used in many industries such as public security
and transportation. MR video fusion systems, on the other
hand, face a number of challenges. To begin with, existing
MR video fusion systems are built to run on the client side.
Still, the core tasks of these systems, such as image encoding
and rendering multiple video streams with 3D models, require
a powerful server that is beyond the capability of the client’s
personal computer. Secondly, in some user cases, 3D models
are copied and modified by malicious users when loaded by
clients. Therefore, the copyright of those models could not
be protected within existing MR video fusion systems. Last
but not least, with the popularity of web applications, many
systems have released their web application formats based on
modern browsers. However, existing MR video fusion systems
still lack web applications to the best of our knowledge.

We create a web-based MR video fusion framework with
remote rendering to address the aforementioned issues. This
framework proposes a fusion method for dynamically project-
ing video images into 3D models as texture. This process

This work was supported in part by National Key R&D Program ofChina
(Grant No. 2018YFB2100601), and in part by the National Natural Science
Foundation of China (Grant No. 61872024).

runs on a remote server, allowing it to render 3D models
with more realistic effects by utilizing powerful servers and
taking advantage of advanced graphics card features like ray
tracks. By utilizing the encoder module of our framework, the
rendered image will be encoded by graphics card hardware,
which is more effective than soft encoding. Then the encoded
videos are sent to the user’s browser through Web Real-Time
Communication (WebRTC) [1]–[3] protocol. It will protect
the original 3D model from malicious users because the
transferred data are video images displayed in the user’s
browser. Subsequently, the proposed framework is developed
to be more user-friendly based on the B/S model, where users
could access video fusion services via web browser without
pre-installing client software. As shown in our qualitative ex-
periments, users could access a smooth video with high frames
per second (FPS) and don’t feel lagging when taking action
in the browser. It seems the system is just running locally
rather than running remotely. To compare our quantitative
experiments, we bring a general-purpose game engine, Unreal
Engine 4 (UE4). It is found that the proposed framework
exceeds UE4 for the metric like bandwidth usage, and these
two systems are at the same level when comparing freeze
frame count and FPS.

Our main contributions are summarized as follows:

• We propose a web-based MR video fusion framework
with remote rendering. In the render server, a camera’s
model-view matrix and projection matrix are computed
based on its position and pose and utilized to project
video imagery onto scene models. Then the occlusion is
detected by using the depth map of the scene. Selective
projection onto camera visible models could accelerate
fusion computation and add a far plane for every cam-
era to supplement our scene structure. In the encoder
component, several streaming encoding techniques are
introduced to a proposed framework to fulfill different
scenarios.

• Several experiments are performed on our proposed
framework and another remote rendering system. Thus,
the proposed framework shows its effectiveness via ex-
periments.

The remainder of the paper is organized as follows. In

Manuscript Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/vrih/viewRCResults.aspx?pdf=1&docID=291&rev=1&fileID=3825&msid=f31bc17e-83d7-4203-8b6d-b6478c04afeb
https://www.editorialmanager.com/vrih/viewRCResults.aspx?pdf=1&docID=291&rev=1&fileID=3825&msid=f31bc17e-83d7-4203-8b6d-b6478c04afeb


Section II, we review the literature related to the proposed
framework. The system architecture of our proposed system
is presented in Section III. In Section IV, details of MR
video fusion rendering are discussed, and we present another
key component of the proposed framework, WebRTC-based
video streaming with interaction, in Section V. Experimental
evaluation is presented in Section VI, and the article concludes
in Section VII.

II. RELATED WORK

To achieve the above benefits of a web-based MR video
fusion system, two techniques must be discussed. The first
is how to fuse multiple video streaming with an augmented
virtual environment (AVE). The second is how to render the
mixed environment remotely and display it on a web browser.

MR video fusion technology is one of main research aspects
in virtual reality (VR) to fusion models of the virtual scenes
and objects into the real world. The target is to enrich
the expression effects of scene models. Moezzi et al. [4]
presented the concept of video and 3D scene fusion. Their
system captured objects’ motions using cameras with different
viewpoints, reconstructed the objects utilizing 3D voxels, and
finally fused the reconstructed models to the virtual environ-
ment dynamically. The concept of the AVE [5], [6] is firstly
proposed by Neumann et al. to promote video augmented
virtual scene technology. Based on the conception of a virtual
city, they map video captured to the corresponding buildings
and terrain models in real time. Several campus scenes are
built, and the 3D models are dynamic according to the real-
time video image. Sawhney et al. [7] presented a method that
exploits real-time videos as the texture of existing 3D models.
Firstly, it takes several calibrated camera videos, secondly
applies texture mapping technology to render the 3D model
in real time. The new method brings a uniform viewpoint for
users to observe models and videos. It enhances the spatial
expression of videos and extends the user’s observation range.
Zhou et al. [8], [9] presented a method of multiple video fusion
in a 3D environment. Users initially interact with a newly
designed background model named video model to register
and stitch videos’ background frames offline. The method then
fuses the offline results to render videos in a real-time manner.

There are several commercial software or web services that
can perform remote or cloud rendering. Nvidia has released
an SDK called CloudXR, which aims to deliver advanced
graphics performances to thin clients by rendering complex
immersive content on Nvidia cloud servers and streaming the
result to the clients. Google Stadia, a cloud gaming service
operated by Google, launched in November 2019, streams
games directly to users’ desktop, laptop, compatible phoneor
tablet, or TV with Chromecast Ultra. Unreal Engine presents
a new feature called pixel streaming since its version 4.21.
With pixel streaming, users run Unreal Engine applications
remotely on a computer that they probably never see. The
Unreal Engine uses the resources available to that computer
like CPU, GPU, and memory to run the game logic and
render every frame. It continuously encodes this rendered

output into a media stream, passing through a lightweight
web service stack. Users can then view that broadcast stream
in standard web browsers running on other computers and
mobile devices. Zhang et al. [10] implemented an educational
laboratory platform. Models in this platform are divided into
two categories: background and interactive objects. On the
cloud side, the background is rendered, encoded into an image
with H.264, and then pushed to the client via the real-time
message protocol (RTMP). Besides, lightweight rendering is
used for interactive models. Finally, the rendering results are
combined at the end terminal. Lightweight rendering leverages
a terminal-oriented adaptive algorithm to transfer rendered
models based on computing power and network latency. The
authors also propose an improved 3D-warping and hole-filling
algorithm that significantly improves image quality when the
user’s viewpoint changes. Viitanen et al. [11] presented a low
latency edge rendering scheme for remote VR gaming. The
proposal aims to reduce the energy and computation burden
of the end user devices by performing game rendering on the
server side.The rendered views are sent to the user as encoded
high efficiency video coding (HEVC) video frames. The
system creates 360 equirectangular projection (ERP) video
from the rendered views, divides it into 128 pixel-wide image
slices, and uses the user’s head orientation data to limit the
transmission of the image slices to that of the field of view
(FoV). The selected slices are encoded in real time and in
around half bit rate over the case where all slices are encoded.

As indicated above, existing VR/panorama video systems
benefit greatly from remote/cloud rendering technology. How-
ever, video fusion systems usually need to fuse multiple
video streaming and large-scale 3D scenes, so they are quite
demanding for computing power, limiting their application
scenarios. Remote/cloud rendering is just in time to eliminate
this obstacle. We present a web-based MR video fusion system
with remote rendering, introducing remote rendering to the
video fusion system and using a web browser as the front
end, which is quite user-friendly.

III. SYSTEM ARCHITECTURE

This section describes the key components of our web-based
MR video fusion system and the data flow and interfaces
between these components.

An overview of the system architecture is shown in Fig. 1.
Our system is developed based on the B/S model.The server-
side implementation consists of a video connector, a render
server, and a generic WebRTC-based cloud rendering library
consisting of a command receiver, a video encoder, and a
transmitter.

The render server can read the 3D scene files from the
database and multiple videos streaming from the video con-
nector. Then render server will fuse videos into the 3D
scene and then render original pixel-data images into shared
memory where other components could access these images
(More details will be illustrated in Section IV). When users
manipulate the scene via their browsers, the command receiver
component will publish a command that users trigger, such as

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Fig. 1. System architecture.

changing viewport or zoom in/out a particular area.Because
the render server subscribes to a Redis (an open source, in-
memory data structure store) queue, those commands will be
pushed to the render server and triggered to re-render and
generate a new image to the shared memory.

The video encoder is a key component within the cloud
rendering library. It accesses shared memory, decoding the
original pixel data generated by the render server utilizing
H.264/VP9 [12], which could be customized. The encoder will
utilize hardware acceleration technology if it detects supported
GPU. For example, Nvidia encoder (NVENC) is a feature in
Nvidia graphics cards that performs video encoding, offloading
this compute-intensive task from the CPU to a dedicated part
of the GPU. It was introduced with the Kepler-based GeForce
600 series in 2012. The encoded stream will be sent to the
transmission component. It will be packaged to the real-time
transport protocol (RTP) package and sent to WebRTC peer
resident in the user’s browser.

The transmitter component is responsible for establishinga
connection with web peers and delivering media. Because of
the network address translation (NAT) and firewalls, it may
have problems to establish a peer-to-peer connection. These
constraints were solved in the transmitter component utilizing
the session traversal utilities for NAT (STUN) server, traversal
using relays around NAT (TURN) server, and interactive
connectivity establishment (ICE) protocol. Firstly, ICE tries to
connect peers directly with UDP. In this process, the STUN
server is helping the peer behind NAT to find its public IP
address and port. When UDP does not pass through, the
transmission control protocol (TCP) is utilized. The TURN
server will be utilized finally if TCP still does not work.
When the connection is established, the transmitter component
packages media data into RTP and send them to the web peer.
A Google congestion control(GCC) algorithm working with
RTP/RTCP protocols is utilized in the transmitter component.
It is based on the idea of using delay gradient to infer

congestion.
Interaction is an important feature of the MR system. For

our proposed system, user interactions from the web will
be sent to the command receiver, and parameters will be
transformed and transmitted to the render server. Thus, the
render server acts as a thrift server and the command receiver
as a thrift client in this process. More details will be discussed
in Section V.

IV. MR V IDEO FUSION RENDERING

The render server is responsible for fusing videos and 3D
scenes, which is the key feature of our system.

As illustrated in Fig. 2, the input of the render server are
3D models and video images, and the output of the render
server is fusion result in a frame buffer. The whole process is
described as follows. (1) Transform the position and posture of
the camera to the position and posture of the 3D environment.
(2) Calculate the model-view matrix and projection matrix
based on the output of step (1). (3) Calculate the frustum
structure in the 3D environment of the camera and take the far
clipping plane as a far plane to supplement scene structure.(4)
Select visible model collections based on the frustum to speed
up the fusion process. (5) Render depth information of camera
viewport using the model-view matrix and projection matrix,
and then perform occlusion detection toward the model’s
vertex utilizing depth information. We only perform video
fusion for the not occluded parts and keep the occlusion part
of models their original texture. (6) Do the fragment texturing
and coloring (FTC) operation in graphic cards and put frames
into a frame buffer.

A. Visible model selection

Fusing videos requires traversing all models of the scene.
However, the camera can only observe a subset of the models
Therefore, choosing visible models from the view point of
the camera could speed up the traversal process. We calculate

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Fig. 2. Rendering process of video fusion.

the frustum bounding box of the camera, and perform an
intersection operation for the camera’s bounding box with each
model. Only the models whose bounding box intersects with
the camera frustum will be taken into account.

The models we are going to fuse consist of construction
models and a terrain model. For the construction models, we
only fuse video images with constructions that intersect with
the camera frustum; for the terrain, we slice it based on prior
knowledge, demonstrated in Fig. 3.

Fig. 3. Terrain slices.

The whole terrain is sliced into 20 pieces, and all pieces are
numbered. For example, the upper left slice is numbered as
(0,0), while the bottom right slice is numbered as (4,3). Six
cameras are deployed in the whole terrain, and each camera
can only observe a subset of the terrain pieces. The actual
terrain slices guarantee that the frustum of a certain camera
should cover four slices at most. During the fusion process,
the proposed method will filter nearby slices based on the
camera’s position and then intersect those bounding boxes of
slices with the camera’s frustum, finally fuse the intersected
models with the video images.

B. Optimization of fusion result

We optimize our fusion result from the following aspects:
(1) avoiding occluded parts to be fused with video images;
(2) projecting video image without a corresponding scene to
the far plane; (3) tailoring the outside structure of buildings
to observe indoor fusion result.

As illustrated in Fig. 4, if observed from the camera’s
viewport O, area ABCD of model M is occluded by model
N, so a patch E inside area ABCD is invisible. However,
if observed from the user’s viewport, E is not occluded and
visible to the user. If we don’t perform occlusion detection, a
video image patch will be wrongly projected at the occluded
part. When the user observes point E from D, the observed
wrong picture will cause cognitive confusion.

Fig. 4. Occlusion between models.

To solve this problem, detecting occluded parts based on
depth values should be performed to correct fusion results.
Our system utilizes the render-to-texture (RTT) technology
to render and save depth information of visible scenes based
on the model-view matrix and projection matrix. However,
the depth value’s accuracy error exists because of the scale
differences for the camera’s visible space and the whole
scene’s space. To reduce this kind of accuracy error, the depth
of scene can be projected to the RGB color space, and will
be transformed back to depth if a depth judgment is needed.
Fig. 5 shows a depth texture picture from one of our cameras.

When performing FTC, we calculate the relative depth of
fragment of the current viewport. If the relative depth of
fragment is less than the corresponding depth in texture, our
system treats this fragment as visible for the camera and then
assigns pixels of the image to this fragment. Otherwise, the
fragment will keep its original color. When the scene varies
or the camera’s parameters change, our system willre-render
depth to get the correct depth texture.

Normally, when modeling for an outdoor scene, we don’t
model the sky, trees, road signs, street lamps, etc., so cor-
responding objects in the video are missing in the 3D scene.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Fig. 5. Depth texture of a visible scene.

Because of this, those contents will not be projected to models
during the fusion process. As a result, the user will be aware
of this situation of object missing in the image. In our system,
a far plane will be set to improve this missing issue to some
extent. Each camera generates the stereoscopic plane based
on the far clipping plane of the frustum and then adds it to
the far plane node. The system processes vertexes in a far
plane as follows. (1) If the relative depth of vertex is less
than the corresponding depth in depth texture, it implies that
vertex in video image doesn’t have a corresponding model in
the scene. In this case, the video image will be projected to
the corresponding position in the far plane. (2) If the relative
depth of vertex is more than the corresponding depth in depth
texture, it implies that models in the scene occlude vertex.
Users should not observe the corresponding picture, so this
vertex is set to be transparent.The comparison for whether
adding a par plane is shown in Fig. 6. The left part of Fig. 6
shows the fusion effect before adding the far plane and the
right part shows the fusion effect after adding the far plane.
The right picture is quite intact compared to the left one, and
the visual effect improves to some extent.

Fig. 6. Before (left) and after (right) adding a far plane.

In another scenario when users want to observe indoor
fusion results, the indoor models are occluded by the outside
model because the indoor models are inside buildings. To
make the indoor models visible, the system should tailor part
of the outside model to observe the indoor fusion results. The
tailoring effect is shown in Fig. 7, where the left is the fusion
result before tailoring the building’s outside part, whilethe
right is the fusion result after tailoring. Apparently, theview
after the tailoring is better because it would not be occluded
by the outside part so that users could observe the fusion result
of the indoor scene directly.

Fig. 7. Before (left) and after (right) tailoring a building’s outside part.

V. WEBRTC-BASED V IDEO STREAMING WITH

INTERACTION

The output is a video image from the render server. We
should find a way to transmit those images to the user’s
browser, and at the same time, the user should interact with
3D models. Action on the client side should be got immediate
feedback. To achieve this, as illustrated in Fig. 8, we develop a
WebRTC-based cloud rendering library. Images will be trans-
formed from RGB to YUV format and encoded using specified
standards. H.265 outperforms H.264 in several benchmarks,
but due to lack of support by mainstream web browsers,
we select H.264 as one of our options. VP9 introduced by
Google has a higher compression ratio than H.264 for the
same video quality, apparently lower bandwidth usage, so it’s
another encoding standard for our system.

Encoder component consists of a hardware encoder based
on the GPU and a software encoder like x264/libvpx [13]. A
user could change one of the encoders to encode the image
rendered by the render server. The principle of choosing an
encoder is described as follows. If using codecs that the
current hardware encoder can’t support (like VP9), the encoder
module will utilize a software encoder (libvpx); If a serverhas
a killer CPU (like an AMD Ryzen 9 or Intel i9), the encoder
module should utilize x264 with CPU, because x264 with
powerful CPU could get better image quality than hardware-
accelerated encoders; Otherwise, the encoder module utilizes
hardware-accelerated encoders to encode images.

In the next step, encoded images go into the transmitter
component, where they are packaged into the real-time pro-
tocol (RTP) [14] message and sent to the user’s browser via
networks.

Streaming keyboard and mouse events to the render server
makes our system interactive. Keyboard and mouse events
are captured using their native JavaScript event handlers.
Next, they are converted to binary commands and sent over
a data channel where the events are decoded and passed
to the command receiver. For example, when users press a
key, the browser generates a keydown-type event, and when
users release a key, a keyup event is generated. The events
contain the localized key character, such as a, s, d, or f, and
a JavaScript key code such as KeyA, KeyS, KeyD, or KeyF.
Mouse events are captured by JavaScript codes as absolute
positions or as relative motions. By calculating the browser
client viewport, video scaling factor, and page offsets, our
system can send the translated mouse events to the command
receiver.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Fig. 8. The workflow of the WebRTC-based cloud rendering library.

When users perform an interaction generated by keyboard
or mouse in the browser like zoom in/out, change viewport,
etc., as illustrated in Fig. 9, our system captures this interaction
and then delivers it to the data channel of WebRTC. The data
channel is an embedded mechanism of WebRTC to exchange
data between peers when data arrive the command receiver
component, where it will be transformed into a thrift event.

Fig. 9. The interface between components.

The render server has an interface of thrift, so the thrift
event generated by the command receiver will be sent to the
render server, and then a re-render will be triggered. Finally,
a new image will be transmitted to the user browser.

We develop a cloud rendering library based on WebRTC.
The original native WebRTC could only get video sources
from a webcam or captured from the desktop. We develop
a new source connector to access the pixel image data from
shared memory where three-party applications can generate
video frames.

In our case, the render server fuses multiple videos with 3D
scene data and then renders the image to the shared memory
area as a publisher. The connector fetches pixel data from this
shared memory as a subscriber. This connector is designed to
be general-purpose, suitable for other applications whichwant
to transmit via WebRTC, and to be integrated seamlessly with
other WebRTC implementations utilizing this connector.

The render server has a model which could encode the
rendered image with different codecs and push them via lots
of channels like streaming media (RTSP [15] and RTMP),
shared memory, UDT (UDP-based data transfer), etc. Then, we
develop a standalone video pushing service to connect those
streaming data, as illustrated in Fig. 10. It is built based on a
Go programming language implementation of native WebRTC

and can also read video files from local disk and send them
to browser peers.

Fig. 10. Cloud rendering video fusion service that connectsstreaming data
from both the streaming media server and local files.

VI. EXPERIMENTS

We conduct the comparison of our proposed system and
the Pixel Streaming of Unreal Engine 4 (UE4) as UE4 also
provides WebRTC-based remote rendering. We deploy the
pixel streaming plugins, signaling server, and web server of
UE4 on one laptop, and use a web browser installed in another
laptop to access pixel streaming services.

A. Experiment environment

The proposed experimental setup is depicted in Fig. 11.
It comprises two gaming-grade laptops equipped with Nvidia
RTX 2080 Super with Max-Q (NVENC inside) and Intel i7
2.30 GHz CPU. The laptops are connected using 1000 M
wireless router for low latency communication.

The experimental scene is near the southeast door of Bei-
hang University, Beijing, China, as shown in Fig. 12. Video
streaming captured from 3 cameras is introduced and fused
into a 3D scene to observe the real traffic of the road.

B. Multi-client concurrency access test

As illustrated in Fig. 11, we first use one computer as
one client, then two computers, and finally three computers,
to access the video fusion system. Then, the MR video
fusion system is deployed on the server and fuses three video

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Fig. 11. Experiment setup.

Fig. 12. Traffic video fusion in a 3D scene.

streaming in a 3D scene. Finally, we record the workload
(CPU/bandwidth/GPU/memory usage) of the server.

As illustrated in Figs. 13–16, bandwidth and GPU usage
increase linearly according to the number of clients. Still, CPU
and memory usage do not increase linearly when the number
of concurrent clients grows. So if we expect more scalability
to our video fusion system, bandwidth, and GPU bottleneck
should be overcome.

����

���������� ���������� ���	������ ��
������� ��
������� ���������� ����������


�
�
��
�
�
�
�
��
�
��
�
�
��
�
�
�

�


�

��

��

��

��


�������
���������
���������

Fig. 13. CPU usage for the server when multiple clients access concurrently.

C. Contrast Experiment results

We compare two systems on several metrics like FPS, freeze
frame count, and bandwidth usage.

The left picture of Fig. 17 shows the FPS of UE4, and the
right one is that of our proposed system. Most of this time,

����

���������� ���������� ���	������ ��
������� ��
������� ���������� ����������


�
�
�
�
��
��
��
�
�
�
�
��
�
�
�
�

���

���

���

	��


���


���


���


���


�������
����������
���������

Fig. 14. Bandwidth usage for the server when multiple clients access
concurrently.

����

���������� ���������� ���	������ ��
������� ��
������� ���������� ����������


�
�
��
�
�
�
�
��
�
��
�
�
��
�
�
�

�


�

��

��

��

��

��


�������
���������
���������

Fig. 15. GPU usage for the server when multiple clients access concurrently.

����

���������� ���������� ���	������ ��
������� ��
������� ���������� ����������


�
�
�
��
��
�
�
�
�
�
�
�

���

���

���

���

���

���

���


�������
���������
���������

Fig. 16. Memory usage for the server when multiple clients access concur-
rently.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



the two systems could keep around 60 FPS and only have one
or two sudden drops during the one-hour testing.

Fig. 17. FPS comparison of UE4 (left) and our proposed system(right).

We perform bandwidth usage testing between UE4 and our
proposed system for 24 hours. The results are shown in Fig. 18.

����

���������� ���������� ���	������ ��
������� ��
������� ���������� ����������


�
�
�
�

��
��

��
�
�
�
�
��

�
�
�
�

���

�	�

���

���

���

���

�	�

���

���

���

���

�� �� ��������!����
�� ��"�#�������

Fig. 18. Bandwidth usage.

Our proposed system could reduce roughly 15% bandwidth
usage compared to UE4. This improvement is likely because
VP9 utilized in our system has a better compression ratio
than H.264 that UE4 uses. Next, we compare freeze frame
count of the two systems. This metric means to count the
total number of video freezes experienced by the receiver.
It is a freeze if frame duration, which is a time interval
between two consecutively rendered frames, equals or exceeds
Max(3 * avg frame duration ms, avg frame duration ms +
150), where avgframe duration ms is the linear average of
durations of the last 30 rendered frames. As illustrated in
Fig. 19, the freeze frame count is almost the same for the
two systems during the 8-hour testing.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we present a web-based video fusion frame-
work with remote rendering. Our framework consists of a
render server that could project video images as texture to
3D models, a low latency streaming WebRTC protocol with
interaction, a low latency encoder, a command receiver, and
a transmitter. This framework could overcome the limitation
of PC and mobile device, so that a video fusion system could
be applied on a web browser of a low-profile PC or mobile
device. Based on the developed video fusion framework, our
future work include: (1) We will develop an effective 6-
DoF prediction technique to reduce latency. (2)The remote

Fig. 19. Freeze frame count.

rendering method proposed in this paper is universal, not only
applied to the MR video fusion system, but can also be adapt
to real-time Augmented Reality (AR) if the network condition
is fine so that the interaction latency is tolerable. Therefore, we
will attempt an AR scenario utilizing the proposed method.(3)
We will customize the data channel in WebRTC by utilizing
the quick UDP Internet connection (QUIC) protocol [16] to
improve network performance.

REFERENCES

[1] C. Vogt, M. J. Werner, and T. C. Schmidt, “Leveraging webrtc for p2p
content distribution in web browsers,” Proceedings of 201321st IEEE
International Conference on Network Protocols (ICNP), pp.1–2, 2013.

[2] F. Rhinow, P. P. Veloso, C. Puyelo, S. Barrett, and E. O. Nuallain, “P2p
live video streaming in webrtc,” Proceedings of 2014 World Congress on
Computer Applications and Information Systems (WCCAIS), pp. 1–6,
2014.

[3] N. Tindall and A. Harwood, “Peer-to-peer between browsers: cyclon pro-
tocol over webrtc,” Proceedings of 2015 IEEE InternationalConference
on Peer-to-Peer Computing (P2P), pp. 1–5, 2015.

[4] S. Moezzi, A. Katkere, D. Y. Kuramura, and R. Jain, “Reality modeling
and visualization from multiple video sequences,” Comput.Graph.
Appl., vol. 16, pp. 58–63, 1996.

[5] U. Neumann, S. You, J. Hu, and B. Jiang, “Augmented virtual environ-
ments (AVE): dynamic fusion of imagery and 3D models,” Proceedings
of the IEEE Virtual Reality 2003, pp. 61–70, 2003.

[6] L. Wang, S. You, and U. Neumann, “Single view camera calibration
for augmented virtual environments,” Proceedings of 2017 IEEE Virtual
Reality Conference, pp. 255–258, 2007.

[7] H. S. Sawhney, A. Arpa, R. Kumar, and S. Samarasekera, “Video
flashlights: real time rendering of multiple videos for immersive model
visualization,” Proceedings of the 13th Eurographics Workshop on
Rendering, pp. 157–168, 2002.

[8] Y. Zhou, M. Cao, J. You, M. Meng, Y. Wang, and Z. Zhou, “MR video
fusion: interactive 3D modeling and stitching on wide-baseline videos,”
Proceedings of the 24th ACM Symposium on Virtual Reality Software
and Technology, pp. 1–11, 2018.

[9] Y. Zhou, P. Liu, J. You, and Z. Zhou, “Streaming location-based
panorama videos into augmented virtual environment,” Proceedings of
2014 International Conference on Virtual Reality and Visualization
(ICVRV), 2014.

[10] H. Zhang, J. Zhang, X. Yin, K. Zhou, and Z. Pan, “Cloud-to-end
rendering and storage management for virtual reality in experimental
education,” Virtual Reality Intell. Hardware, vol. 2, pp. 368–380, 2020.

[11] M. Viitanen, J. Vanne, T. D. Hamalainen, and A. Kulmala,“Latency
edge rendering scheme for interactive 360 degree virtual reality gaming,”
Proceedings of 2018 IEEE 38th International Conference on Distributed
Computing Systems, 2018.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



[12] D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, and O. Hadar, “Perfor-
mance comparison of H.265/MPEG-HEVC, VP9, and H. 264/MPEG-
AVC encoders,” Proceedings of 2013 Picture Coding Symposium (PCS),
2013.

[13] L. Guo, J. De Cock, and A. Aaron, “Compression performance compari-
son of x264, x265, libvpx and aomenc for on-demand adaptive streaming
applications,” Proceedings of 2018 Picture Coding Symposium (PCS),
2018.

[14] S. Biaz, R. O. Chapman, and J. P. Williams, “RTP and TCP based MIDI
over IP protocols,” Proceedings of the 43rd Annual Southeast Regional
Conference, vol. 2, pp. 112–117, 2005.

[15] Real Time Streaming Protocol (RTSP),
https://datatracker.ietf.org/doc/html/rfc2326, last accessed 01.07.2021.

[16] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F.
Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind,
J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T.
Chang, and Z. Shi, “The QUIC transport protocol: design and internet-
scale deployment,” Proceedings of the Conference of the ACMSpecial
Interest Group on Data Communication, pp. 183–196, 2017.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 




