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Abstract—Phantom dots are common spatial semantic errors
in crowd localization and counting. We attribute these semantic
errors to the absence of bounding boxes and deal with them
through adjacent nodes. One approach to solving this problem
involves constraining the point and its neighbor point set si-
multaneously. However, learning two point sets that satisfy the
surjective relation is challenging because predicting a point set
is an open-set problem. In this paper, we propose a loosen-
structured pair-of-points loss, making predicting a point set and
its neighbor point set simultaneously possible. On the other hand,
to suppress the probability of points far away from the target
points, we compose the connected component map, which is free
with head size. Without bells and whistles, experiment results on
several public datasets reach the state-of-the-art.

Index Terms—crowd counting and localization, computer vi-
sion, phantom dots, loosen-structured pair-of-points loss, con-
nected component map

I. INTRODUCTION

Crowd counting aims at counting the number of the target
objects in the image. Counting approaches f categorized into
regression-based [1]–[6] and detection-based [7]–[12] accord-
ing to the count way. Regression-based methods predict a den-
sity map and sum it up as the total number without considering
each object’s detailed information, such as the localization.
The detection-based method offers the localization of each
object, which is crucial in many crowd analysis tasks, such as
pedestrian detection [13], pedestrian behavior analysis [14],
etc. Unfortunately, the detect-then-count approach needs the
object bounding boxes labels and is challenging to cope with
the severe crowd occlusion scene.

Lempitsky et al. [15] set a Gaussian kernel on each anno-
tated person dot to generate an intermediate representation, the
density map. The density map has been widely adopted in the
field of crowd counting [1]–[4], [6], [16]–[21] for its excellent
performance in the dense crowd. A well-known problem with
density-map regression-based methods is that it does not take
into account the density map’s sensitiveness to head size. Li
et al. [2] produce pseudo head size through neighbor distance
for a head size adaptive density map. The works of wan et al.
[22], [23] show the importance of intermediate representation,
and an adaptive density map generator is proposed. Wang et al.
[24] theoretically prove the gaussian blurred dot map will hurt
the generalization performance of counting. Besides, another
primary defect of density map regression method is it failure to
offer detailed information of each object, such as localization,
bounding box, etc.

Another line of work, detect-then-count, has caused in-
creasing attention because it can offer crucial information,

Fig. 1. Some examples of phantom dots. Red and green dots are predicted
and ground-truth points, respectively.

accurate individual localization, etc. The foremost problems
of these works are the fact that the absence of bounding box
labels [16], [25], [26]. Approaches of [4], [12], [18] introduce
detection framework into crowd counting through generating
pseudo bounding boxes. Wan et al. [27] and Abousamra et al.
[28] achieve localization by post-processing to avoid the need
of bounding box labels. For example, [27] set a maximum
pooling on the predicted density map and utilize a threshold
to lock the person’s location. However, this kind of post-
processing is sensitive to the size of pooling size and the
threshold. Carion et al. [29] utilize the Hungarian algorithm to
transform the bounding box regression problem into an open-
set issue, directly predicting a bounding box set. Continuing
with the idea of [29], Song et al, [30] predict a set of head point
set and achieve the best performance for both counting and
localization. However, duplicate points maybe positioned to
the same object, called phantom dots, because of the constraint
absence of the bounding box, as displayed in Fig. 1.

This paper aims to develop a feasibility method for sup-
pressing these phantom dots. Intuitively, we can constrain both
the target point and its neighbors. However, since predicting a
point set is an open set problem, it is challenging to predict two
point sets whose association relation is surjective. Therefore,
we relax the set of neighbor points formed by definite positions
into an infinite set of relative bearings and relative distances.
In addition, we use the nearest neighbor distance to construct
the connection component, which is used to suppress points
far away from the target position. The key contribution of this
work are presented as follows:

• We design a loosen-structured pair-of-points loss (Sec.
II-B) to constrain each point and its nearest neighbor



Fig. 2. The architecture of the decoder. The input is the learned feature maps, going through three branches to regress head points, classification score, and
component map, respectively.

simultaneously to suppress the generation of phantom
dots.

• We utilize the connected component map (Sec. II-C) to
suppress the probability of points far away from the target
points, which is free with head size.

Experiments on several public datasets show the effectiveness
of our method.

II. OUR APPROACH

In this section, we introduce our method in detail. The
following part includes the framework, the loosen-structured
pair-of-points loss, and the connected component.

A. Framework

Our work is based on P2Pnet [30], which is an encoder-
decoder framework. It first extracts features from VGG16 and
uses a pyramid structure to enrich the representation of the
feature map. Then the learned feature map is used to regress
head localizations and classification scores. Taking the input in
resolution of H×W, the feature map 1

8H× 1
8W, the number of

the predicted head locations is M = k× 1
8H× 1

8W. The k is a
pre-defined foreign parameter to ensure the predicted number
of people is more than the actual number T. The Hungarian
algorithm is then adopted to choose the top T predicted head
locations and constrain them through a || � ||2 distance loss and
a cross-entropy score loss.

To highlight our contributions, we only display the dif-
ference part from P2Pnet in Fig. 2. The differences include
convolution layers in the decoder, a new branch classifica-
tion component, the output component multiplied with the
classification score, and the new output of neighbor point set
in the regression branch. We utilize the predicted component
to decrease the probability of the point without objects. The
neighbor point set combines the point set to generate the

Fig. 3. Structure of the two layers of green blocks shown in Fig. 2. Text on
each block represents its kernel size.

loosen-structured pair point set representation. The convolu-
tional layers in the decoder are replaced with layers with a
big kernel, according to the big kernel’s good performance as
displayed in [31]. The green blocks in Fig. 2 are with different
convolutional layer in [30], and the detail is shown in Fig. 3.
Each convolution with a big kernel assisted with a convolution
with a small kernel for better performance, as recommended
by [31]. Notable, only the kernel size is changed.

B. Loosen-structured Pair-of-points Loss

The main objective is to investigate methods to suppress
phantom dots. The intuitive idea is to simultaneously pre-
dicting two point sets which satisfies the surjective relation.
However, considering it is an open-set problem to predict a
point set, it is arduous to simultaneously predict two point sets
with strict relations. Therefore, we loosen the pair of points’
relation by representing the neighbor point with the relative
orientation and relative distance.

Fig. 4 geometry illustrates the probability change with dif-
ferent loss. Green points are target location and other colored
points are predicted points. We use color to indicate each
predicted point’s probability to be considered as a person’s
localization. The point has a higher possibility when its color
tends to be red. As (a) displayed, p1 and p2 have a higher score



Fig. 4. Geometry illustration of points probability change with different losses. Dots of crossed lines are ground truth points, others are predicted points.
Green line directs to nearest point.

for their tiny distance error to pi, which cause the phantom
dots. While these two points’ score decrease because the their
neighbor point’s huge distance error. Besides, the score of p3
in (b) is improved when considering its neighbor’s cost at the
same time. Thus, the structured loss function is not conducive
to the convergence of the model. When adopt loosen-structured
loss, p3’s score is enhancement, and p1’s score is higher than
p2. Because, the neighbor’s relative orientation loss of p1 is
smaller than p2. The decrease of p2, along with the increase
of p3, shows the loosen-structured loss has a positive effect
on suppressing phantom dots.

Given an image with T individuals in an image, let
P̂ = {p̂i|i ∈ {1, 2, ...,T}} represents the annotated head
center point set. The model outputs point set P = {pi|i ∈
{1, 2, ...,M}}. We use Euler distance || � ||2 to measure the
difference between P̂ and P . We represent point sets differ-
ence with point loss,

Lpoint = ||P, P̂||2, (1)

with structured loss,

Lpoint = ||P, P̂||2 + ||PN, P̂N||2, (2)

and with loosen-structured loss,

Lpoint = ||P, P̂||2 + C(R, R̂) + C(I(
−−→
PPN), I(

−−→
P̂P̂N)), (3)

where C ∈ R
M×T, and PN and P̂N indicate the point set

consist of the neighbor of point set P and P̂ , respectively. It
is a remarkable fact that we normalize C(P, P̂) with R̂2 ,

R̂ = ||P̂, P̂N||2, (4)

to decrease to impact of various head size. We set R and R̂
to the distance of predicted pair points and ground-truth pair
points, respectively. The term of C(R, R̂) means the cost of

relative distance, and the C(I(
−−→
PPN), I(

−−→
P̂P̂N)) indicates the

cost of relative orientation. We also use the || � ||2 to calculate

the distance between point and its neighbor. Moreover, to
ensure the dominance of the predicted point’s accuracy, we
normalize the relative distance,

C(R, R̂) = ||R, R̂||2
R̂

, (5)

and pixel-wise weight each relative orientation,

C(I(
−−→
PPN), I(

−−→
P̂P̂N)) =W × (I(

−−→
PPN))⊕ I(

−−→
P̂P̂N)), (6)

where I represents the sign function, and ⊕ means the logical
relation XOR. The weight W is pixel-wise and is related to
||PP̂||2. We distinguish each predicted point according to the
average cost of C(P, P̂),

U =
1

T×M

M∑
i=1

T∑
j=1

c(pi, p̂j), (7)

where c(pi, p̂j) represents the Euler distance between point
pi and point p̂j . When the c(xi, yi) is small than U , we
punishment its neighbor’s relative orientation with a small
weight, and vice versa. The weight w can be represented as

w =

{
0.1, c(pi, p̂j) 6 U
1. c(pi, p̂j) > U

(8)

C. Connected Component Map

We borrow the idea of the connected component map from
[28], which is free with head size. The aims here are to
distinguish each component’s sphere from each other and pre-
judgment whether the point contains a person or not. Some
examples of the component map are shown in Fig. 5. The
location in the non-component map area will not be considered
as a position containing people. The area of each component
is a square with a radius of r,

r = min(dR̂/2e, 7), (9)



where 7 is considered as the upper bound according to [28].
We constrain the component map with MSELoss,

Lcomponent = ||M− M̂||2, (10)

where M and M̂ means the predicted and ground truth of the
connected component map , respectively.

D. Total Loss

Same as [30], this work utilize Entropy loss Lcls,

Lcls = −
1

M
{

T∑
i=1

logĉi + λ1

M∑
i=T+1

log(1− ĉi)} (11)

to supervise the proposal classification scores. We adopt the
grid layout to ensure the number of the reference point is more
than the number of the target point and set k=4. In equation
11, λ1 is a re-weight factor for negative proposals. The total
loss function L is the summation of the the above three losses,
which is defined as:

L = Lcls + λ2(Lloc + Lcomponent), (12)

where λ2 is a weight term to balance the effect of neighbor
points and connected component.

III. EXPERIMENTS

A. Implementation Details

Dataset. We mainly tested the effectiveness of the proposed
approach by carrying thorough experiments on existing public
crowd counting datasets. Specifically, extensive experiments
are conducted on four challenging datasets, including Shang-
haiTech [16], ShanghaiTechRGBD [32], and UCFCC 50 [25].
SHA and SHB are two parts of ShanghaiTech. Generally
speaking, the crowd density of the three datasets in descending
order is UCFCC 50 > SHA > SHB. We show an example from
SHA, SHB, and UCFCC 50 in Fig. 5. Our component map
is related to the neighbor points distance which is sensitive
to the density. Therefore, ShanghaiTechRGBD with bounding
box labels is introduced to verify the effectiveness of the
component map.

Data Augmentations & Hyper-parameters. This work is
based on P2Pnet [30]. For a fair comparison, we used the
exact same data augmentations and hyper-parameters as [30].
The only difference is that we increase the initial learning
rate to 1e-4. Besides, we fixed the random seed to ensure the
reproducibility of the experiment.

B. Performance Evaluation

The output of our model includes two parts, the predicted
number of people in the image and the location of each
individual. We use Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) to evaluate counting and apply
nAP, proposed by [30] to evaluate localization. The nAP takes
the circle as the target domain, centered at the annotated person
and radius at a distance to its neighbors. When the predicted
point falls in the target domain, it is recorded as a true positive
point (TP); otherwise, a false positive point (FP). Then the nAP
is calculated following the common practice in [33].

TABLE I
COMPARISON WITH STATE-OF-THE-ART CROWD COUNTING METHODS ON

SHANGHAITECH AND UCFCC 50 .

method SHA SHB UCFCC 50
MAE RMSE MAE RMSE MAE RMSE

SDANet [34] 63.6 101.8 7.8 10.2 227.6 316.4
ADSCNet [35] 55.4 97.7 6.4 11.3 198.4 267.3

ASNet [36] 57.78 90.13 - - 174.84 251.63
AMRNet [5] 61.59 98.36 7.02 11.00 184.0 265.8
AMSNet [37] 56.7 93.4 6.7 10.2 208.4 297.3

DM-Count [24] 59.7 95.7 7.4 11.8 211.0 291.5
TopoCount [28] 61.2 104.6 7.8 13.7 184.1 258.3
Resnet-DC [9] 73.51 118.1 13.3 22.5 254.78 326.16
P2PNet [30] 52.74 85.06 6.25 9.9 172.72 256.18

ours 50.82 82.52 5.96 9.78 175.94 288.32

TABLE II
COMPARISON WITH STATE-OF-THE-ART CROWD COUNTING METHODS ON

SHANGHAITECHRGBD.

method ShanghaiTechRGBD
MAE RMSE

CSR [2] 4.91 7.11
RDNet [38] 4.96 7.22
AGD [18] 4.18 6.75

CSR+IDAM [39] 4.38 7.06
ours 3.95 5.72

C. Results

In Tabel I and Tabel II, we compare our results to those of
the method that returns the best results for each one of the 4
public datasets, as currently reported in the literature. They are
those of [30], [30], [30], and [18], respectively. Our method
ranking first on both ShanghaiTech and ShanghaiTechRGBD.
Take SHA as an example, our methods are superior than [30]
and decrease 5.3% and 5.27% in terms of MAE and RMSE,
respectively. However, on UCFCC 50, the counting error of our
model is higher than that of P2Pnet. We consider that this is
caused by the difficulty of convergence of the pair-of-points
loss due to the high crowd density in UCFCC 50. For example,
when the crowd is too dense, the relative positions of the pair
of points will fluctuate significantly due to slight deviations
from the predicted points.

Tabel III prints the nAP of different models on SHA.
Identical to [30], we use the average distance of the three
nearest neighbors to the center point d as the target area.
Besides, the δ is introduced to control the distance error range.
The smaller the δ, the higher the precision, and vice versa.
When the distance of the predicted point to the target points
is smaller than d ∗ δ, the precited point is considered as a
true positive point; otherwise false positive point. The column
of P2Pnet is calculated according to the released trained
checkpoint of [30]. Compared with P2Pnet, the nAP of our
method is improved by 75.1%, 14.1%, and 1.9%, respectively,
when δ increases from 0.25 to 0.5.



(a) SHA (b) SHB (c) UCFCC 50 (d) RGBD
Fig. 5. Some samples from SHA, SHB, UCFCC 50, and ShanghaiTechRGBD. The upper row are images and the lower row are correspondence component
map.

TABLE III
THE NAP OF DIFFERENT MODELS ON SHA.

nAPδ P2Pnet Base Loosen-structured Loss Component Map Ours
δ = 0.05 3.46% 6.15% 6.72% 4.97% 6.06%
δ = 0.25 54.52% 61.89% 62.38% 59.45% 62.19%
δ = 0.5 86.25% 87.39% 87.76% 87.73% 87.95%

δ = {0.05 : 0.05 : 0.50} 52.67% 57.54% 58.18% 55.97% 57.95%

TABLE IV
RESULTS OF MODEL COMBINED WITH COMPONENT MAP OR

LOOSEN-STRUCTURED PAIR POINTS LOSS.

component loosen-structure SHA
MAE RMSE
53.9 86.71√

51.64 83.63√
51.14 81√ √
49.94 80.57

TABLE V
THE NAP OF DIFFERENT MODELS ON RGBD.

nAPδ Base Component Map
δ = 0.05 6.29% 13%
δ = 0.25 63.59% 85.31%
δ = 0.5 91.7% 97.41%

δ = {0.05 : 0.05 : 0.50} 59.82% 74.88%

IV. ANALYSIS AND ABLATIONS

We validate the effectiveness of the loosen-structured pair-
of points loss and component map on SHA. According to [30],
λ1 and λ2 are set to 0.0002.

A. Effectiveness of Loosen-structured Pair-of-Points Loss

Table III and Table IV display the localization precision and
counting error of models combining with or without loosen-

structured pair-of-points loss or component map, respectively.
The Base column in Table III means the model consists
of convolutions with big kernel sizes. The subsequent two
columns represent the base model combined with the Loosen-
structured Loss and the Component Map. When introducing
the loosen-structured loss, the the overall average precision
nAP{0.05:0.05:0.5} is improved about 1.11% and counting error
(MAE) is reduced about 5.12%.

B. Effectiveness of Component Map

Tabel III ∼ IV indicates that when combined with the com-
ponent map, the localization precision (nAP{δ=0.05}) reduced
round 19.18%, but the counting accuracy is improved about
5.12%. We assume this is mainly caused by the low-fidelity
component map on SHA, as shown in (a) of Fig. 5. Since the
component map is related to the distance of the adjacent head
and has an upper limit of 7, the head component map close
to the camera is smaller than the actual map in most cases.
The component map reduces the background noise while
suppressing some points falling into the head area beyond the
component map. In particular, we compare the localization
precision of models with and without the component map on
the RGBD dataset, which offers the head bounding boxes.
Results in Table V show that when the component map
approximates the head bounding boxes is favorable to the
localization precision.



V. CONCLUSION

This work dedicates to dealing with the phantom dots
when localizing each individual in the crowd. We proposed
a loosen-structured pair-of-points loss to constrain the target
point and its nearest neighbor. Without bells and whistles, the
proposed loosen-structured pair-of-points loss improves the
counting accuracy and localization precision simultaneously.
Besides, our work demonstrates the positive effect on counting
accuracy but the reverse effect on localization accuracy of the
component map when free with head size. Especially when
replacing the component map to the head mask with actual
head size, it brings a noticeable improvement in localization.
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