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PVEL-AD: A Large-Scale Open-World Dataset for
Photovoltaic Cell Anomaly Detection

Binyi Su, Zhong Zhou, and Haiyong Chen

Abstract—The anomaly detection in photovoltaic (PV) cell
electroluminescence (EL) image is of great significance for the
vision-based fault diagnosis. Many researchers are committed
to solving this problem, but a large-scale open-world dataset
is required to validate their novel ideas. We build a PV EL
Anomaly Detection (PVEL-AD1234) dataset for polycrystalline
solar cell, which contains 36,543 near-infrared images with
various internal defects and heterogeneous background. This
dataset contains anomaly-free images and anomalous images with
10 different categories. Moreover, 37,380 ground truth bounding
boxes are provided for 8 types of defects. We also carry out a
comprehensive evaluation of the state-of-the-art object detection
methods based on deep learning. The evaluation results on this
dataset provide the initial benchmark, which is convenient for
follow-up researchers to conduct experimental comparisons. To
the best of our knowledge, this is the first public dataset for PV
solar cell anomaly detection that provides box-wise ground truth
and focuses on industrial application. Furthermore, this dataset
can also be used for the evaluation of many computer vision tasks
such as few-shot detection, one-class classification and anomaly
generation.

Index Terms—photovoltaic cell, anomalous dataset, deep learn-
ing, defect detection, real-world application

I. INTRODUCTION

PHOTOVOLTAIC solar cells are the main products that
can convert solar energy into electric energy. However,

the inevitable defects can notably decrease the photoelectric
conversion efficiency and lifespan of the modules [1], and
then it will cause great economic losses. This can be avoided
by continuous inspection of solar cells in intelligent manu-
facturing process. Manual inspection of EL images is very
cumbersome and requires professional knowledge. Therefore,
the vision-based automated inspection [2]–[6] process is more
desirable.

However, vision-based inspection algorithms often lack de-
fective samples, which are crucial to train an excellent deep-
learning model. In order to satisfy the urgent requirement,
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Fig. 1: The left is PV cell intelligent anomaly detection system,
right is the near-infrared EL image acquisition subsystem.

we propose a novel comprehensive, large-scale photovoltaic
(PV) cell electroluminescence (EL) image anomaly detection
dataset, named as PVEL-AD. To build this dataset, EL imaging
technology [7] plays a key role in the process of image
acquisition. Because, some anomalies are often in the interior
of photovoltaic cells, which cannot be photographed directly
by optical or infrared camera. But visual inspection using EL
imaging technology allows to easily identify anomaly inflicted
to solar cells either by external environmental influences such
as bump during the manufacturing process, or due to the prior
material defects.

EL imaging requires a special environment, which is illus-
trated in Fig. 1. As we can see, the left is the PV cell intelligent
defect detection system, which is designed for the real-world
industrial application. The right is the EL image acquisition
subsystem, the detailed internal structure is shown in the Fig.
2. In dark room, when PV cell is transmitted to the bottom of
probe strip in a suitable position, the sensor will send signal
to programmable logic controller (PLC). Then, PLC controls
the probe strip to descend until it slightly touches the PV cell.
The contact force should not be too large to prevent the solar
cell from being damaged. Next, the solar cell that connects
to the positive pole is powered on 24-V direct-current (dc)
voltage and 8-A current. Excited with the voltage, the solar cell
emits near-infrared light in a wavelength around 1000-1200
nm [7], which will be captured by a cooled silicon charge-
coupled device (Si-CCD) camera. As illustrated in Table I,
the cooled Si-CCD camera is composed of a near-infrared
Mono Chrome camera of WP-US146 with a SONY ICX825
chip and an industrial lens of VTG1214-M4. The resolution
is about 1 million (1024×1024), which can ensure that the
clear image can be captured by the camera. Moreover, due to
the weak near-infrared light emitted by the photovoltaic solar
cell, the exposure time (0.7 s) should be relatively long. After
being captured, EL image will be saved to the computer server
for dataset construction. Simultaneously, the probe strip rises
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TABLE I: Parameters of the Camera.

Parameter Value
Type WP-US146
Chip SONY ICX825
Resolution 1024×1024
Industrial lens VTG1214-M4
Exposure 0.7 s
Distance to solar cell 350 mm
Field of View 158×158 mm
Color Mono Chrome camera
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Fig. 2: The internal structure of EL imaging subsystem.

and another solar cell is transmitted by conveyer to repeat
above process. Each image is about 1 s from acquisition
to storage, which can satisfy the real-time requirements of
industrial production.

Several samples of the solar cell EL images are visualized
in Fig. 3. The anomalies contain ten types such as linear crack,
star crack, finger interruption, black core, misalignment, thick
line, scratch, fragment, corner, and material defects. The data
in EL imaging that includes a large number of samples and a
variety of anomaly types is not cheap. Acquisition equipment
manufacturing and the scarcity of defects are hindering factors,
which cause a hindrance to the development and evaluation of
visual inspection algorithms. Moreover, most researchers work
with their own datasets that are not public. The comparison be-
tween different inspection approaches is therefore practically
not possible.

To support good scientific practices and promote the devel-
opment of solar cell anomaly inspection approaches, we build
a comprehensive and large-scare solar cell dataset (PVEL-
AD), which consists of box-annotated EL images of solar cells.
All images are labeled with the help of experts, who annotate
the position and category of the appearing anomalies. PVEL-
AD dataset can be used to evaluate many new proposed ideas
and promote the development of solar cell quality monitoring,
which motivate us to release the large-scale and multi-category
dataset. Using the provided data, we build an anomaly-
detection benchmark, which can be convenient for the follow-
up researchers to conduct experimental evaluation. The main
contributions of this paper are summarized as follows.
1) We build a large-scale open-world dataset (PVEL-AD) for

PV cell defect inspection in near-infrared image data. It is
collected from the practical industrial manufacturing and
consists of 36,543 high-resolution images of one defect-
free type and ten defective categories. We provide box-

Defect-free Crack Finger interruption Black core

MaterialFragment
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CornerScratchThick line
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Fig. 3: Example images of PVEL-AD dataset. One defect-free
image and nine images that contain ten types of anomalies are
presented.

wise ground truths for 37,380 anomalies that can be used
to evaluate the newly proposed anomaly detection methods.
Additionally, this dataset is also suitable for evaluation
of one-class classification, few-shot detection, and defect
generation.

2) We propose a defect anomaly annotation method, called
fine-tuning labelImg (F-labelImg), which can reduce the
workload of labeling and prevent some anomalies from
being missed.

3) We conduct a comprehensive assessment of current state-
of-the-art methods for PV cell defect detection task. Fur-
thermore, we show that there are many works that have
not been done in this dataset, it still has much room for
improvement.

This paper is organized as follows: Section II presents
an overview of the related works for existing datasets and
detection methods. Section III gives the description of the
dataset and application analysis. Section IV shows extensive
experiments for anomaly detection. Finally, Section V con-
cludes this paper.

II. RELATED WORKS

In this section, we firstly introduce the datasets that are
commonly utilized for anomaly inspection in various scenes
and demonstrate the necessity of our dataset. Then, we give a
brief overview for the CNN-based anomaly detection methods.

A. Anomaly Datasets

The number of dataset used for the evaluation of anomaly
detection methods is still very small. These datasets have few
defect categories and defect data. As far as we know, there still
not exist a comprehensive, large-scale, and number-increasing
solar-cell dataset for open-world practical scene, such as our
PVEL-AD dataset.

Song et al. [8] provided a steel surface defect dataset, which
includes 1,800 gray-scale images with six types of defects.
Each class of defect has 300 samples with a resolution of
200×200 pixels. This dataset only provides defective samples,
while the non-defective samples are ignored. Li et al. [9]
proposed a CrackForest Dataset. There are 2,688 images of
bridge cracks without any annotation. It needs to be further
processed and cannot be used to evaluate the new proposed
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TABLE II: Statistical Comparison with Different Datasets.

Dataset Anomaly image Anomaly-free image Total Resolution Anomaly Types Box or pixel label

Song et al. [8] steel surface defect dataset 1800 - 1800 200×200 6 yes

Li et al. [9] CrackForest dataset 2688 - 2688 1024×1024 1 no

Carrera et al. [10] NanoTWICE dataset 40 5 45 1024×696 1 yes

Tabernik et al. [11] Kolektor Surface Defect dataset 52 347 399 704×256 1 yes

Bergmann et al. [12] MVTec AD dataset 1258 4096 5354 700∼1024 73 yes

Buerhop et al. [13] elpv dataset 918 1508 2426 300×300 3 no

Ours PVEL-AD dataset 25192 11351 36543 1024×1024 10 yes

algorithms directly. Carrera et al. [10] introduced NanoTWICE
dataset, which only consists of a single-class defect with 40
samples and 5 anomaly-free samples. The single class and
small number of data limit the generalization evaluation of
the new proposed algorithms. For few-shot defect detection,
Tabernik et al. [11] introduced a Kolektor Surface-Defect
dataset. It was collected in a controlled industrial environ-
ment under the open-world situation. This dataset consists of
399 samples (52 anomalous samples and 347 anomaly-free
samples). Due to the small number of defective samples, this
dataset is suitable for the few-shot defect detection task.

In recent years, Bergmann et al. [12] introduced a com-
prehensive real-world dataset (MVTec AD dataset) for un-
supervised anomaly inspection. MVTec AD dataset contains
5,354 high-resolution colorful images of different object and
texture categories. Although this dataset has multi-category
samples, it is artificially purposeful mirroring industrial data,
rather than the real industrial dataset, which may contain
many unexpected anomalous samples. For the identification
of PV cell defect, Buerhop et al. [13] proposed a EL image
dataset (elpv dataset), which included 2,426 samples with class
annotations. These samples were cropped from 44 different
raw images, of which 26 are polycrystalline and 18 are
monocrystalline. Due to the small number of raw images in
elpv dataset, the diversity of the defects is limited.

A challenging problem for industrial defect inspection is
that the defect samples are not easy to be collected. The
actual dataset collection process is expensive and takes a
long time. Several workers spent 2 years collecting our
PVEL-AD dataset, which consists of 11,351 anomaly-free
samples, 21,044 defective samples with box-wise annotations,
and 4,148 defective samples with category annotations. A
comparison between different datasets is carried out in Table
II. It is not hard to see that our PVEL-AD dataset has much
more anomaly and anomaly-free images than other industrial
datasets [8]–[13]. Moreover, compared with the same type
dataset (elpv), PVEL-AD dataset has higher resolution, and
the anomaly types are more diverse and comprehensive.

B. Anomaly Detection

In last three years, many methods have been proposed to
detect the PV cell anomaly. We restrict a brief overview to
current related works for PV cell anomaly detection.

Since Buerhop et al. [13] proposed a benchmark based
on elpv dataset for optical identification of defective PV
cells in EL images, many approaches were proposed based
on this dataset. Deitsch et al. [14] firstly tried to use an

TABLE III: Statistical Overview of the PVEL-AD-2019
Dataset.

Vision task
Anomaly number

Category Train Test Total Image number

Anomaly detection

Crack 452 685 1137

2129Finger 592 1249 1841

Black core 251 272 523

Classification Anomaly-free - - - 1500

TABLE IV: Statistical Overview of the PVEL-AD-2021
Dataset.

Vision task
Anomaly number

Category Train Test Total Image number

Anomaly detection

Linear crack 1260 2797 4057

21044

Finger 2957 22636 25593

Black core 1028 3877 4905

Thick line 981 1585 2566

Few-shot anomaly detection

Star crack 135 83 218

Corner 9 12 21

Fragment 7 5 12

Scratch 5 3 8

Misalignment - - - 901

Material - - - 3247

one-class Classification

and anomaly generation
Anomaly-free - - - 11351

end-to-end deep learning network to accomplish the two-
class classification task in elpv dataset, which achieved a
more accurate result than traditional methods. Akram et al.
[15] proposed a light-weight CNN model to classify defect
or defect-free images in elpv dataset, which achieves better
performance than [14]. Qian et al. [16] combined short term
and long term feature extracted by pre-trained CNN to detect
micro-cracks in elpv dataset. This method can effectively
detect various kinds of micro-cracks. Ge et al. [17] designed
a Hybrid Fuzzy Convolutional Neural Network (HFCNN) to
recognize the defective PV cell image, which achieved the
state-of-the-art results in elpv dataset. However, elpv dataset
does not provide box-wise or pixel-wise annotations that play a
vital role in fair comparison between new developed anomaly
inspection methods. Moreover, as illustrated in Table II, the
number and types are relatively smaller than our PVEL-AD
dataset. Thus, it is hard to train a high-efficiency model.

Some scholars developed several methods on their own
PV cell dataset. Liu et al. [3] introduced a novel iterating
tensor voting method to segment the crack defect in 405 EL
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images. Chen et al. [5] proposed a novel steerable evidence
filter (SEF) to detect micro-crack in PV cell EL image, where
572 images were used to evaluate this method. To detect the
surface defect in PV cell, Chen et al. [18] designed a multi-
spectral deep CNN model to inspect defect with six categories.
Their dataset include 21,245 images that is relatively large.
Subsequently, Chen et al. [19] developed an end-to-end CNN
architecture with attention mechanism to locate the PV cell
defect with six categories. Du et al. [20] introduced several
CNN models to classify PV cell in their dataset with 1440
thermal images. Recently, some researchers proposed several
pixel-wise solar cell defect inspection methods. Han et al.
[21] proposed a two-stage defect segmentation method for
polycrystalline solar cell based on deep convolution network.
This approach achieved a good performance for micro-crack
inspection. Rahman et al. [22] proposed a novel modified U-
net architecture to segment various complex defects in EL
images. This method outperformed many previous methods
under complex background disturbance.

All the above works are done on small-scale elpv or their
own datasets. There is an urgent need for a large-scale and
public dataset to fairly evaluate the newly proposed defect
detection methods, such as our PVEL-AD dataset.

For our large-scale PVEL-AD dataset, we have done several
works based on part of it, but there is still considerable room
for improvement. Su et al. [2] proposed a bag-of-feature
model to classify defects in PV EL image. This approach
achieved a high accuracy for image classification, but it was
used to classify the low-resolution cropped images (128×128
pixels). To detect defect in raw EL image (1024×1024 pixels),
Su et al. [4] proposed a novel region-based deep learning
method (Faster RPAN-CNN), which employed an attention-
based region proposal network (RPN) to extract the suspected
defect region in raw EL image, and a following fully connected
network was applied to output the specific defect category
and position. However, this approach cannot solve gradient
vanishing problem of the small scale defect as the network
deepens. To solve this problem, Su et al. [6] developed a bidi-
rectional attention-based feature pyramid network (BAFPN) to
accomplish multi-scale feature fusion. BAFPN improved the
robustness of network to scales, thus the proposed detector
achieved a good performance in multi-scale defect detection
task.

III. DATASET DESCRIPTION AND APPLICATION

In this section, we sequentially describe dataset, annotation
tool, and dataset application.

A. Dataset

A comprehensive and high-quality dataset often has a great
value in promoting the development of an industry such as
PV cell manufacturing. Curiously, there is an absence of
comprehensive real-world dataset available for such scenarios.
The proposed PVEL-AD dataset is established in the process
of practical intelligent manufacturing. It is an open-world
dataset, that’s mean as time goes by, data is continuously
accumulated, and new anomalies outside the original dataset

may appear. Several workers have spent two years to collect it.
This dataset is unique in its large number and variety of PV-
cell samples, as presented in Fig. 3 and Table II. In contrast to
the elpv dataset that was proposed by [13], PVEL-AD dataset
has more categories and data. Moreover, 8 types of defects are
provided box-wise ground truth that labels the accurate defect
category and position in the image.

1) PVEL-AD-2019: PVEL-AD-2019 is collected and anno-
tated by 2019. As illustrated in Table III and Table IV, this
dataset is a small dataset compared with the released PVEL-
AD-2021 in this paper. The total image number is 3,629, which
is about one tenth of the proposed PVEL-AD-2021. Although
some works [4], [6] has been done in the PVEL-AD-2019, but
note that this dataset is not released in public until now.

2) The proposed dataset PVEL-AD-2021: As time goes by,
image samples are continuously collected and accumulated
in the process of real-world industrial manufacturing. The
proposed PVEL-AD-2021 dataset is incremented based on the
original PVEL-AD-2019 dataset. The number of annotated
images is increased from 2,129 to 21,044. The anomaly-
free image is increased from 1500 to 11351. Moreover, new
categories are introduced in PVEL-AD-2021 dataset, such
as thick line, corner, fragment, scratch, misalignment, and
material anomalies. Note that if there is no special illustration
in this paper, PVEL-AD stands for PVEL-AD-2021.

The image in PVEL-AD dataset has some special character-
istics such as near-infrared image, heterogeneous background.
The material of solar cell is polycrystalline silicon, which
shows the advantages of low cost and high efficiency. For
this material, the EL imaging technology is a convenient and
fast internal defect visualization method. PVEL-AD dataset is
collected by EL imaging technology in the practical industrial
manufacturing. It consists of 36,543 high-resolution images
(1024×1024 pixels) that can be divided into one defect-free
type and ten defective categories. The anomalies with box-
wise annotations consist of eight types (linear crack, star crack,
finger interruption, black core, thick line, scratch, fragment,
and corner) with box-wise annotations. Linear crack, finger
interruption, black core, and thick line are high-frequency
defects that can be used to evaluate the conventional anomaly
detection methods. The training and testing dataset distribution
for anomaly detection is presented in Fig. 4. The testing
samples are slightly larger than the training samples. The
reason why we divide the dataset like this is that the training
data has covered rich texture and shape, which are adequate
to train a high-efficiency deep learning model. Moreover,
we also provide a large number of defect-free images, the
follow-up researchers can use defect-free images to augment
defective images through GAN-based methods [27], [28] or
other augmentation strategies such as CutMix [29], which will
further improve the accuracy of defect detection.

There are four few-shot anomalies: star crack, scratch,
fragment and corner. Compared with other anomalies, these
defects rarely appear in the manufacturing process. They
are promising to evaluate the few-shot anomaly detection
approaches [23]. The remaining two types of anomalies (Mis-
alignment and material) are not suitable for object detection,
but are suitable for image classification. Additionally, 11,351
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Fig. 4: The data distribution of anomaly detection for training
and testing.

anomaly-free images are also collected into this dataset, they
are one of the characteristics for anomaly detection dataset,
which is different with natural scene dataset such as PASCAL
VOC [25] in which all the images contain object. These
anomaly-free images that do not contain anomalies are very
valuable for one-class-classification [26] or anomaly genera-
tion [27].

B. Annotation Tool

The annotation tool is used to annotate the category and
position of anomalous defects in the image, it provides the
ground truth to train the deep learning model. To reduce
the workload of labeling and prevent some background inter-
ference anomalies from being missed, we develop a simple
defect anomaly annotation method for large-scale dataset,
called fine-tuning labelImg (F-labelImg). The flowchart of F-
labelImg is shown in Fig. 5. In this paper, the pre-trained
CSPDarkNet-s-m-l (small, middle, large) [30] are employed as
the feature extraction network of anomaly detector (YOLOv5
[32]). With the increase of labeled data, the feature extraction
network gradually deepens from CSPDarkNet-s to -m to -
l. The parameter setting and data augmentation for training
are same as Section IV. A. Specially, we firstly employ the
total original PVEL-AD-2019 dataset to train the YOLOv5-s
detector, which is used as initialization model for annotation.
The initialized detector is used to predicted 5000 images for
unlabeled data, and save the detection results to text file for
each image. The category and position in the text files are
encoded into xml files (PASCAL VOC format [25]) for each
image. Next, the labelImg tool maps the detected results into
each image. Then, we can get the ground truth by manually
fine-tuning the boundary and category of the box or deleting
false detected box or adding missing detected box. Please
note that not only the number of annotation files is increasing
during the annotation process, but also the types of defects.
Until we get 5000 new annotated images, we use all annotated
images to train YOLOv5-m, the remaining images are used
for prediction, and repeat the above process. Until another
5000 new annotated images are obtained, we use all annotated
images to train yolov5-l, and the remaining images are used
for prediction. Finally, we annotate the rest of dataset. After

 YOLOv5

s-m-l

Fine-tuning

(Manual)

Predicted 

label (1.txt)

Txt2xml 

(1.xml)

LabelImg tool
New label

(1.xml)

1.jpg

Fig. 5: The flowchart of F-labelImg. Green box is predicted
by model, red box is fine-tuned by ourselves.

TABLE V: Similarity Between the Image Labeled by Original
labelImg and F-labelImg. P+F Denotes the Prediction and
Fine-tune.

Similarity labelImg F-labelImg (P+F)

MIoU 99.13%

Time (h) 1.5 0.5

repeated screening and elimination of PVEL-AD dataset, high-
quality dataset is finally obtained, which is convenient to carry
out research works. The difference between F-labelImg and
traditional labelImg is that F-labelImg is a semi-automatic
labeling method, which uses a pretrained model to obtain a
posterior bounding box in advance, and then performs manual
fine-tuning.

To validate the effectiveness of the F-labelImg, a simple
method is used to compare the similarity between the image
labeled by F-labelImg and the image labeled manually (labe-
lImg). The similarity can be evaluated by mean Intersection
over Union (mIoU) index. With the assistant of YOLOv5-s
trained by original PVEL-AD-2019, we label 1000 defective
images that includes 1536 anomalies to evaluate the proposed
F-labelImg. As illustrated in Table V, the mIoU between the
image labeled by F-labelImg and the image labeled manually
is 99.13%, which presents that there is almost no difference
between the image labeled by F-labelImg and the image
labeled manually. The proposed F-labelImg can acquire high-
quality ground truth. Moreover, F-labelImg is three times
faster than labelImg. The reason is that for the evaluation of
F-labelImg tool, the mode that used to infer the images is
YOLOv5-s, which takes about nine seconds to predict 1000
images. However, the fine-tuning of the predicted boxes speeds
half an hour. Thus, inference time plus fine-tuning time is the
annotation time for F-labelImg tool, which is about half an
hour. For labelImg tool without the help of YOLOv5-s, we
would take a lot of time to search for defects with naked
eyes, especially those small defects with serious background
interference. Thus, it speeds more time (an hour and a half).
This reveals that F-labelImg is more efficient than labelImg
to annotate the solar cell EL images. The more accurate the
model labeling, the less our workload will be, but it would
hardly affect the final labeling accuracy.

C. Dataset Application

1) Anomaly detection: as mentioned above, we provide
box-wise annotations for eight types of anomalies. As is
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illustrated in Table IV, due to the unbalanced or long-
tail distribution of the labeled data, only linear crack,
finger interruption, black core and thick line are suitable to
training a traditional anomaly detection model.

2) Few-shot object detection: to solve the few-shot object
detection problem, many few-shot object detection (FSOD)
methods [23], [24] have been proposed. In FSOD, there are
base classes in which sufficient objects are annotated with
bounding boxes. But very few labeled objects are available
in novel classes. The novel class set does not share common
classes with the base class set. With the aid of abundant
data in base classes, the few-shot detectors are expected
to learn from limited data in novel classes and detect all
novel objects in a held-out testing set.

3) One-class classification: it is unclear what kinds of defect
may appear during the practical manufacturing process.
Thus, one-class classification [26] is very suitable for
anomaly elimination. The one-class classification model
is trained only on a single class of the dataset. As for
PVEL-AD dataset, the anomaly-free images are provided
to train the one-class classification model. While testing
the images, the other classes will be detected as anomalies
except for the anomaly-free images.

4) Anomaly generation: the defective images often rarely ap-
pear in the manufacturing process. However, the anomaly-
free images are sufficient. Thus, anomaly generation is an
more and more popular solution to augment the anomaly
data, which employs anomaly-free image to generate re-
alistic anomalous image based on generative adversarial
network [27], [28].

IV. BENCHMARK

We limit our research on the anomaly detection and conduct
a thorough evaluation of multiple object detection methods
[4], [6], [31], [32] as initial benchmark on our PVEL-AD
dataset. The benchmark1 presents the experimental results
of the latest methods on PVEL-AD dataset, which aims to
prepare a reference for future anomaly detection methods. It
can facilitate subsequent researchers to compare their methods
with those in the benchmark. Simultaneously, the quality of
our dataset can be initially verified by these latest methods.

A. Experimental Setup

1) Transfer Learning and Data Augmentation: Transfer
learning [32] and data augmentation [31] are the basic op-
erations to train a high-efficiency object detection model.
In this paper, transfer learning is used in every anomaly
detection method, which extracts texture and semantic feature
through the ImageNet-pretrained network. This operation can
accelerate the speed of convergence and improve accuracy of
the network.

Deep learning is a data-driven approach, which needs a large
number of data to train an excellent model. Thus, data augmen-
tation is necessary. It can prevent the model from over-fitting
and improve the performance of the model. Data augmentation

1Competition benchmark: https://www.kaggle.com/competitions/pvelad

is divided before-training stage and during-training stage. In
this paper, we conduct horizontal flipping before training to
augment the training dataset for above mentioned anomaly
detection methods. Thus, the augmented training dataset is
twice the size of the original one. Moreover, random data
augmentation (resize, place, crop, and distort) is also applied
during training process, it can improve the robustness of the
model to corresponding transformations.

2) Anomaly Detection Method: Several methods [4], [6],
[31], [32] proposed recently are applied to carry out a
comparison in the proposed PVEL-AD dataset. The specific
implementation details for each method are as follows: Faster
RPAN-CNN [4] is a two-stage anomaly detection network,
which suppresses the redundant anomaly-free proposals by in-
troducing the attention mechanism in region proposal network
(RPN). The ImageNet-pretrained VGG16 is selected as the
feature extraction network. The batch size is set to 1, and the
input image is resized to 600×600. The max iteration is fixed
to 40,000 during training. Top 50 proposals (score rank) are
selected as the input of the following detection network, which
will predict the final category and position of the anomalies.

YOLOv5 [32] divides the object detection network into
four parts: input, backbone, neck, and head. Fast and accurate
detector can be obtained by optimizing each part of object
detection network. YOLOv5 integrates a lot of tricks for
each part of the network during training and testing. For
training, mosaic data augmentation, adaptive anchors, Com-
plete IoU, focus structure, hard swish activation function, path
aggregation network, cross stage partial network and so on
are conducted to optimize the speed and accuracy of object
detection. The batch size is set as 8. Moreover, 300 epochs
are used to train the detection model. For testing, test time
augmentation (TTA) is applied to improve the robustness and
accuracy of the detector. TTA augments each test image by
the horizontal flipping and cropping to obtain the augmented
images, which are fed to the prediction model and generate
multiple predictions. TTA integrates these results to output the
final predictions for the test image.

EfficientDet [31] is an one-stage multi-scale network, which
views the object detection as a regression task. For this ene-to-
end detector, the pre-trained efficientnet b0, b1, b2, b3 [33] are
employed as the feature extraction network. This detector is
not a fixed model. From b0 to b3, the width, depth, and input
resolution of the network are gradually raising, and the feature
representation ability is enhanced simultaneously. Moreover,
the batch size and epoch are set to 8 and 300 respectively.
Early stopping and focal loss are also adopted in the training
process.

BAF-Detector [6] is a multi-scale anomaly detection net-
work, which predicts the anomalies in every pyramidal layers.
The resnet101 [34] is employed to extract the multi-scale
features from the input image. Based on these features, the
suspected anomalous boxes are predicted by the following Bi-
directional Attention Feature Pyramid Network and Region
Proposal Network (BAFPN-RPN). Subsequently, a new branch
is used to give the final class and position of the anomalies.
In BAFPN-RPN, a novel cosine non-local attention module
is used to suppress the complex background feature, and
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Fig. 6: The performance comparison on PVEL-AD dataset of
different methods.

highlight the anomaly feature simultaneously. All input images
are resized to 600×600 pixels, and the max iteration is fixed
to 40,000 during training. The multi-scale prediction improves
the robustness of network to scales, thus BAF-Detector is good
at dealing with multi-scale defect detection task.

3) Evaluation Metric: Average Precision (AP) and mean
Average Precision (mAP) are applied to assess defect detection
results. Precision, recall and Intersection over Union (IoU)
are used to compute the AP value. The AP is evaluated
with different IoUs [6]. It can be calculated for 10 IoUs
varying in a range of 50% to 95% with steps of 5%, usually
reported as AP50:5:95. It can also be evaluated with single
value of IoU, where the most common values are 50% and
75%, reported as AP50 and AP75 respectively. AP is used
to evaluate single-class object, mAP is the mean AP value
of all classes. Precision/Recall (P/R) curve is an intuitive
presentation, which can directly evaluate the effect of the
anomaly detection. The AP value is obtained by calculating
the area enclosed by the P/R curve and the axes. Parameters
number and frames per second (FPS) are the metrics used to
assess the time efficiency. All the experiments are carried out
in server with a 24G RTX 3090 GPU.

B. Experimental Results and Analysis

Experimental results for anomaly detection are presented in
Table VI. The evaluations provide a reference benchmark and
validate the quality of the PVEL-AD dataset. Strengths and
weaknesses of each approach are discussed on each category
of anomaly. It shows that there is still considerable room for
improvement of PV EL anomaly detection.

Looking at the experimental results as a whole, no al-
gorithm wins with absolute advantage. In term of mAP
of each method, the YOLOv5-l achieves the best anomaly
detection performance 51.13% mAP50:5:95 with a relative
small parameter number (50.3M). For the speed, the FPS
of YOLOv5-s is 111.11 frames per second, which is faster
than other methods. Although efficientDet-D0 has the least
number of parameter (3.9M), the FPS (83.33) is not the fastest.
There are two reasons, one is the repeated use of feature
parameters in the feature fusion stage of efficientDet-D0,
which consumes computational time. Another is acceleration

TABLE VI: Performance Comparison on PVEL-AD Dataset.

Method mAP50:5:95 mAP50 mAP75 params FPS

Faster RPAN-CNN [4] 40.66% 73.24% 32.30% 260.50M 6.24
BAF-Detector [6] 47.69% 80.77% 41.80% 120.87M 7.57
EfficientDet-D0 [31] 45.78% 76.37% 38.40% 3.9M 83.33
EfficientDet-D1 [31] 47.53% 79.88% 42.06% 6.6M 62.50
EfficientDet-D2 [31] 48.99% 80.17% 44.47% 8.1M 43.48
EfficientDet-D3 [31] 50.31% 81.24% 46.67% 12M 27.02
YOLOv5-s [32] 49.74% 81.19% 46.04% 7.10M 111.11
YOLOv5-m [32] 50.17% 81.57% 46.45% 22.0M 86.49
YOLOv5-l [32] 51.13% 81.93% 46.86% 50.3M 62.03

TABLE VII: AP50 of Four Anomalies.

Method
AP50

Linear crack black core Finger interruption Thick line

Faster RPAN-CNN [4] 45.52% 92.73% 92.96% 61.77%
BAF-Detector [6] 63.95% 98.25% 94.24% 66.63%
EfficientDet-D3 [31] 64.18% 97.64% 90.42% 72.71%
YOLOv5-l [32] 66.04% 97.84% 93.40% 70.46%

of the focus module [32] adopted by YOLOv5-s, which is
designed for parameter reduction and speed increase. By above
analysis, we can see that YOLOv5(s-m-l) is a light-weight
and high-efficiency object detector. It manage to continuously
obtain outstanding performance in practical industrial appli-
cations. Fig. 6 shows the performance comparison on PVEL-
AD dataset of different methods. In addition to providing a
benchmark, the experimental results of these algorithms can
also be used to verify the quality of the annotated dataset.
As shown in Fig. 6, for EfficientDet, the anomaly detection
results are steadily improving from D0 to D3. Simultaneously,
the anomaly detection results are also steadily improving from
YOLOv5-s to YOLOv5-l. This validates that the annotation
quality of the dataset is high. It enables the algorithm to obtain
stable experimental results.

The detection result of each anomaly is presented in Table
VII. YOLOv5-l achieves the best detection results 66.04%
AP50 for linear crack anomaly with a real-time speed (62.03
FPS). Linear crack defect mostly locates on the edge of the
PV cell, some of them present small scale under complex
background disturbance, which causes its relatively poor de-
tection results than other types of anomalies. BAF-Detector is
better at detecting black core and finger interruption anoma-
lies (98.25% and 94.24% AP50 respectively). For thick line
anomaly, EfficientDet-D3 achieves the best detection perfor-
mance 72.71% AP50. Totally, no algorithm wins with absolute
advantage in terms of each anomaly.

P/R curve directly presents the detection result for each
single category. The area enclosed by P/R curve and axis
denotes the AP50 value. The bigger the area is, the larger the
AP50 is. As shown in Fig. 7, the first, second, third, and fourth
rows are the P/R curves of Faster RPAN-CNN, BAF-Detector,
EfficientDet-D3, and YOLOv5-l respectively. The best result
is second column (black core), we hope the curve is as close
as possible to y = 1, which represents that the score-rank
anomaly box in the raw image are all predicted correctly. The
worst detection result is linear crack anomaly, as is shown in
the first column of Fig. 7, the P/R curve decreases faster than
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Fig. 7: The Precision/Recall (P/R) curves of different methods. The first, second, third, and fourth rows are the P/R curves of
different methods. (a1)-(a4) Faster RPAN-CNN, (b1)-(b4) BAF-Detector, (c1)-(c4) EfficientDet-D3, (d1)-(d4) YOLOv5l.

other types of anomaly. An important reason is that PVEL-AD
dataset includes substantive small scale linear cracks, and most
of them locate in the edge of the PV cell, which bring some
challenges to linear crack anomaly detection. Moreover, (d1),
(b2), (b3), and (c4) of Fig. 7 present the best detection results
for linear crack, black core, finger interruption, and thick
line respectively. As analyzed above, in our proposed PVEL-
AD dataset, black core and finger interruption are easy to be
detected. Linear crack and thick line are challenging anomaly,
which are hard to be detected by CNN-based detector. There is
still a large room for improvement. This is very important for
the following researchers who pay attention to our researches.

Several detection results of YOLOv5-l are presented in Fig.
8. The white boxes are the missed detected anomalies. They
have some characteristics, such as small scale, heterogeneous
background interference. In view of these difficulties, some
solutions are provided for reference. For small-scale anomaly,
improving the input resolution of the network [31] or multi-
scale feature fusion strategy will promote the detection accu-
racy. For heterogeneous background interference, filter-based
image prepossessing approach [5] or attention mechanism
[6] can be used to suppress the background disturbance and

highlight the defect region.

V. CONCLUSION

This paper builds the photovoltaic solar cell electrolumi-
nescence image anomaly detection dataset (PVEL-AD), a
novel dataset for anomaly detection in open-world industrial
anomaly inspection scenarios. The proposed dataset is col-
lected from real-world industrial solar-cell production lines,
rather than lab environment. In the future, more samples
with expert annotations will be collected into this dataset.
It can be employed to evaluate several vision-based tasks,
such as anomaly detection, few-shot anomaly detection, one-
class classification and anomaly generation. Several state-of-
the-art methods for object detection are thoroughly evaluated
on this dataset. The experimental evaluations provide the
first benchmark on this dataset, and show that there is still
considerable room for improvement. Here are some improve-
ment methods for reference, such as using rich defect-free
samples to augment the defective dataset, employing a more
expressive feature extraction network, introducing an attention
mechanism, or applying cascade strategy for prediction, etc.
Moreover, clean energy photovoltaic cells are very popular
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Fig. 8: Anomaly detection results of YOLOv5l.

recently. A large and comprehensive public dataset such as
our PVEL-AD dataset will attract more scholars to partici-
pate in photovoltaic fault diagnosis, and then promoting the
production quality of photovoltaic cells.

The limitation is that EL imaging technology requires
electrical contacts, which poses an additional risk to the solar
cell. An alternative option is non-contact photoluminescence
(PL) imaging technology [35], which has no damage to the
solar cell and can measure multiple times. Moreover, when
the training sample is small, F-labelImg will degenerate into
labelImg, because over-fitting may occur, which leads to
failure of the anomaly detection.

APPENDIX

We conduct the comprehensive evaluation of all detection
categories (8 types) in our PVEL-AD dataset, which are
presented in Table VIII. The experimental setting is same as
Section IV. A. The distribution of training data is illustrated
in Table IV, which is extremely unbalanced. However, these
algorithms such as EfficientDet and YOLOv5 still can obtain
relatively stable experimental results (mAP50), which again
verifies the good annotation quality of our PVEL-AD dataset.
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