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Abstract. Monocular simultaneous localization and mapping (SLAM)
that using a single moving camera for motion tracking and 3D scene
structure reconstruction, is an essential task for many applications, such
as vision-based robotic navigation and augmented reality (AR). How-
ever, most existing methods can only recover sparse or semi-dense point
clouds, which are not adequate for many high-level tasks like obsta-
cle avoidance. Meanwhile, the state-of-the-art methods use multi-view
stereo to recover the depth, which is sensitive to the low-textured and
non-Lambertian surface. In this work, we propose a novel dense map-
ping method for monocular SLAM by integrating deep depth prediction.
More specifically, a classic feature-based SLAM framework is first used
to track camera poses in real-time. Then an unsupervised deep neural
network for monocular depth prediction is introduced to estimate dense
depth maps for selected keyframes. By incorporating a joint optimiza-
tion method, predicted depth maps are refined and used to generate
local dense submaps. Finally, contiguous submaps are fused with the
ego-motion constraint to construct the globally consistent dense map.
Extensive experiments on the KITTI dataset demonstrate that the pro-
posed method can remarkably improve the completeness of dense recon-
struction in near real-time.

Keywords: Dense Mapping - Visual SLAM - Monocular Depth Predic-
tion.

1 Introduction

Taking advantage of the universality and simplicity of camera sensors, monocular
SLAM [2,24], which typically performs localization while building a 3D map of
the surrounding environment simultaneously by using only a single camera, has

Supported by the National Key Research and Development Program of China under
Grant 2018YFB2100601, and National Natural Science Foundation of China under
Grant (61872023, 61702482).



been extensively studied in the past two decades and has been deployed in various
applications, including online 3D modeling [16], AR [11,12], and autonomous
navigation [4].

SLAM methods can be basically classified into feature-based [14] and di-
rect approaches [6,5]. Feature-based methods normally extract a set of point
features from images, which are used to steadily track camera poses and recon-
struct sparse 3D point clouds. Direct method utilize images directly without
any abstraction and can generate semi-dense maps [5, 6], but the sensitivity to
luminosity changes makes them not as robust as feature-based methods in many
application scenarios. However, neither sparse nor semi-dense 3D maps are ad-
equate for tasks like obstacle avoidance or interaction of virtual and physical
objects.

Unlike RGB-D SLAM systems [15,9] that can directly obtain dense depth
information from depth sensors for dense reconstruction, it is challenging for
monocular SLAM methods to estimate a consistent dense map. One of the main
reasons is that the commonly used multi-view stereo method is sensitive to
the low-textured and non-Lambertian surface, which leads to incomplete depth
estimation. Based on the plane assumption, some works utilize superpixels [3,
19] or depth interpolation [20] to generate dense maps, which improve the 3D
reconstruction completeness for planar environments. Nonetheless, these works
are limited to non-planar scenes and tend to over-smooth the surface details.

More recently, with the rapid development of deep learning techniques, deep
neural networks [8] did dramatically boost the performance of depth prediction
from monocular images (depth-from-mono). Subsequently, some works try to
combine traditional SLAM systems with deep depth prediction networks [18,
10, 21]. However, most of these works focus on small indoor scenes and are not
generalized to large-scale outdoor environments. Moreover, most methods use
the depth prediction as the prior fed into the SLAM system, or directly use it
in the RGB-D SLAM framework, without considering the introduced additional
uncertainty introduced, which makes the reconstruction heavily dependent on
the accuracy of the depth estimation.

In this paper, we propose a novel dense mapping method for monocular
SLAM with consistent deep depth prediction. Our method utilizes the classic
feature-based SLAM framework, ORB-SLAM?2 [14], to track camera poses in
real-time. When one new keyframe is created, it is fed into an unsupervised deep
neural network [8] to predict the corresponding depth map, which will be refined
and used in the subsequent process to generate the local 3D submap. Finally,
contiguous submaps will be fused with the ego-motion constraint to construct
a globally consistent dense map. The main contributions of this work are sum-
marized as follows: 1) We present a novel dense mapping method for monocular
visual SLAM, which integrates the deep depth prediction with the feature-based
SLAM framework. 2) We propose a joint optimization method from 2D and 3D
aspects to deal with the uncertainty introduced by the predicted depth, and
generate a globally consistent dense map with the ego-motion constraint.



2 Related Work

2.1 Monocular Visual SLAM

In the past two decades, monocular SLAM has been extensively investigated
and a large variety of advanced algorithms have been proposed. There are two
main categories, feature-based and direct methods. The feature-based methods
need to extract feature points first, which ensures robustness but also leads to
extremely sparse reconstruction. Typically, ORB-SLAM2 [14] is one of the most
widely used feature-based SLAM frameworks, which contains full capabilities
including loop closing for a complete SLAM system. Directly using the raw
pixels without any abstraction, direct methods have the ability to provide more
expressive semi-dense maps, however, they have to spend extra efforts to deal
with photometric changes [5].

In general, compared to direct methods, feature-based SLAM systems are
not sensitive to photometric changes and perform better when the camera is
moving forward, which makes them more suitable for many outdoor scenarios.
Considering robustness, practicability, and scalability, we choose the widely used
ORB-SLAM2 [14] as the basic framework to track poses of the moving camera,
meanwhile, its loop closing thread can correct the accumulated drift and provide
help for the construction of a globally consistent map.

2.2 Dense Mapping

Most dense SLAM systems typically build dense maps with available depth infor-
mation using RGB-D cameras, such as [15,9]. However, since the depth camera
can only provide reliable measurements in a limited range, the applicable work-
ing scenarios of these methods are limited, usually indoor scenes.

Some researchers have investigated how to obtain dense maps using a single
monocular camera and proposed many charming works. Newcombe et al. [16]
presented a dense SLAM system that generates smooth depth estimates by a
non-convex optimization process. This system needs GPU to optimize the varia-
tional model, and the high computational cost limits its availability in large-scale
environments. Concha et al. [3] proposed a dense mapping approach, which com-
bines semi-dense maps [6] with superpixels. This work performs well in indoor
scenes where low-texture regions are usually flat. Teixeira et al. [19] proposed a
dense reconstruction method for small unmanned aerial vehicles (UAVs), which
combines ORB-SLAM [13] with superpixels to provide a local semi-dense recon-
struction in real-time.

Inspired by [3], Xue et al. [22] proposed a real-time monocular dense mapping
method, which replaces the superpixel method with another efficient homoge-
neous region detector. Wang et al. [20] proposed a monocular dense mapping
method for UAV navigation, which uses the quadtree-based pixel selection to
accelerate the mapping.

Although these works have achieved amazing experiments, building denser
maps is still a challenging task for large-scale outdoor scenes, partly due to the
widespread existence of low-textured and non-planar areas.
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Fig. 1. System Overview. Camera poses are estimated by the SLAM system. Then
submaps are generated from selected keyframs with refined deep depth prediction.
Finally, optimized submaps are fused into a globally consistent dense map.

2.3 SLAM with Deep Depth Prediction

In recent years, with the rapid development of deep learning technology, con-
volutional neural networks (CNNs) have been widely used in monocular depth
estimation. Some researchers have tried to fuse deep depth prediction with tra-
ditional SLAM systems. As the efficiency and accuracy of depth prediction have
been significantly improved, this fusion has become a trend.

Tateno et al. [18] proposed a breakthrough work, which combines CNN-
based depth prediction with LSD-SLAM [6] to obtain dense maps. They also
proposed an extension that fuses semantic labels with the dense map. Ji et al.
[10] presented a depth fusion framework, which exploits the sparse depth esti-
mation from ORB-SLAM [13] and the CNN-inferred depth to generate a dense
reconstruction. These two methods use the direct method and the feature point
method as the SLAM framework, and the application scenarios are mostly in-
door scenes. Wang et al. [21] proposed a surfel-based dense mapping method,
which can fuse dense maps for large-scale outdoor scenes. When using a monoc-
ular camera, ORB-SLAM?2 [14] in RGB-D mode is used to track camera poses
with the deep depth prediction. In order to gain the run-time efficiency, surfels
are used to represent the map, but also reduce the density of the point cloud.

3 System Overview

The pipeline of our work is illustrated in Fig. 1. We first use the state-of-the-
art visual SLAM system, ORB-SLAM2 [14], to estimate the camera poses and



extract keyframes. Then an unsupervised deep neural network]8] is introduced
to predict a dense depth map for each keyframe. Refined depth maps are used
to generate submaps from keyframes. Finally, contiguous submaps are fused to
obtain a globally consistent dense map.

More specifically, when one new frame F; comes, it is firstly tracked with
respect to the reference keyframe K. If it is too far from the reference keyframe
or the visual change conditions are met [14], F; is chosen to generate a new
keyframe. Every new keyframe is simultaneously fed into the deep neural network
to estimate a dense depth map D;.

Given the camera pose R,t and the dense depth estimation D; of each
keyframe, we aim to automatically generate a consistent dense map in near real-
time. To achieve this, we first refine the depth map D; using a joint optimization
method. The local 3D submap 5; for each keyframe K; can be obtained using the
refined depth map D;. Then a classical point cloud registration method is used
to estimate the spatial relationship between contiguous local submaps. Finally,
3D point clouds are fused with the camera ego-motion constraint to obtain a
consistent dense map. An example of dense mapping is shown in Fig. 2.

4 Local Mapping with Depth Refinement

Given the depth maps predicted by the deep neural network [8], we can eas-
ily construct local 3D submaps with intrinsic camera parameters. However, the
depth value predicted by the network contains more noise than the depth mea-
surement obtained by the depth sensor. To refine the depth prediction, we mainly
consider dealing with the 2D image areas that are likely to cause uncertainty in
the depth prediction; in addition, we also need to filter out outliers in the 3D
submaps.

4.1 2D Image Analysis

Intuitively, there are three types of image areas that mainly cause uncertainty
in the depth prediction, including image boundaries, object contours, and pixels
far away from the optical center of the camera.

Image Boundary In the process of depth prediction, the deep neural network
[8] learns to predict the pixel-level depth by incorporating an inbuilt left-right
consistency check. Given the baseline d, the camera focal length f, and the
predicted image disparity d for per pixel, the depth z can be obtained as follows,

2= bf/d (1)

Intuitively, due to the lack of left-right consistency in the areas located at the
image boundary, the depth estimation is more likely to produce high-uncertainty
predictions.
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Fig. 2. The proposed method achieves dense mapping for monocular SLAM by fusing
the deep depth prediction to recover a consistent 3D dense map. (a) shows two example
keyframes extracted from KITTI sequence 06. (b) illustrates the corresponding depth
map predicted by the unsupervised deep neural network [8]. (¢) shows the global dense
map (top) and details of the region labeled at blue wireframes (bottom).

To ensure efficient depth estimation, we first crop the depth image according
to the visual overlap area. In other words, the depth estimation near the image
boundary will be discarded, which also reduces the computing consumption. As
illustrated in Fig. 2 (c), the final dense map discards the boundary parts while
keeping the middle regions.

Object Contour We observe that, as shown in Fig. 2 (b), the depth near the
contour of the object is typically over-smoothed, such as the contours of trees
and cars in the figure. Therefore, we regard the image area near the contour of
the object as another factor that easily leads to uncertainty for depth estimation.

We use a filter-based method to optimize the depth information. More specif-
ically, we use a Gaussian weight function, which calculates the corresponding
weight to refine the predicted depth. In order to ensure the distinguishability
of the boundaries of different objects, we combine the information of color and
depth difference within a small neighborhood S,, = {p;} around a pixel p; into
a multilateral filtering process. The refined depth can be obtained as follows,

“ 1
Dy, = W Z Go.(lpi — pil)Go. (HI P ij”) Go, (HDm - Dpj”) Dy, (2)
¢ pjespi

where ¢ and j are pixel indexes, I, is the color, and D, is the corresponding
depth in the predicted depth map D. G denotes the Gaussian filter kernel, while



the parameters o, 0., and o4 are used to adjust the spatial similarity, the color
similarity, and the depth similarity, respectively. W), is used for normalization.

According to Eq. 2, areas with sharp color or depth changes in the depth
map will be enhanced, while the other areas will be smoothed.

Far Points In stereo vision, if a 3D point is farther from the camera, the
uncertainty of its depth estimation will typically be greater. Similarly, since the
depth estimation network relies on the parallax information from the left-right
image pairs, which could cause high uncertainty for far points. Thus, we need to
detect the pixels corresponding to the far point in the image.

As suggested in ORB-SLAM2 [14], keypoints will be classified as close or far
when using stereo cameras. More specifically, a stereo keypoint will be classified
as the close point when its depth is less than 40 times the stereo baseline, other-
wise, it is classified as a far point. In this work, we follow the strategy to detect
far points and discard them when building local submaps.

4.2 3D Outlier Detection

Due to the occlusion, etc., it is difficult to avoid outliers in the predicted depth
[8], which may introduce additional errors for the global mapping process. Thus,
an outlier detection process is required to refine the generated submaps.

In this work, LOF (Local Outlier Factor) [1] is used to detect outliers in 3D
submaps. More specifically, we calculate the LOF score for each 3D point P; as
follows,

> . Urdi,(Py)
P;ENE(P;) lrdy(P;)
LOF(P)) = (3)
[ Ni(P)]
where Nj(-) is the k-nearest neighborhood of one 3D point and |Nj(-)| its size,
and Irdy(-) is the reciprocal of the average distance from one point to all its
neighbors.

When LOF(P;) > 1, it means that the local point set around P; is sparser

than its neighbor points, and P; can be regarded as a candidate outlier.

5 Global Dense Mapping with Egomotion Constraints

It is worth noting that the unsupervised deep neural network [8] uses pairs of
rectified stereo images that have the known camera baseline for training. Thus,
the predicted depth contains implied scale constraint from the camera baseline,
which encourages us to use the Iterative Closest Point (ICP) algorithm to align
adjacent submaps and generate the global dense map.

To guarantee a consistent global map, we refine contiguous submaps accord-
ing to the ego-motion estimation of corresponding keyframes from the SLAM
system. On the one hand, the ego-motion obtained by SLAM is continuously
optimized, and the deep prediction network will only produce the result once.



Fig. 3. Qualitative result of the dense mapping on the KITTI sequence 13. The details
of the regions labeled at green and blue wireframes are also shown in the zoom-in
patches (right).

On the other hand, the loop closing thread of the SLAM system can help to
address the scale drift.

Inspired by [23], we propose a simple scale factor f = tsjam/ticp t0 guarantee
a consistent scale, which is the ratio between the translational motion of the
SLAM system tgjqm and ICP ¢;.,. In contrast to [23] which refines the ego-motion
and the depth map alternately, the continuously optimized camera poses of the
SLAM system rather than the constant depth prediction from the deep neural
network are trusted in our work. Another benefit is that, when local optimization
or loop closure occurs, submaps corresponding to adjusted keyframes can be
updated just simply by multiplying the updated matrix calculated from the
SLAM system.

Thus, we use the scale factor to refine the depth estimation. More specifically,
the scale factor is used to update the initial ICP transformation matrix T5+1
estimated between two adjacent submaps:

cern_ (RS fE
Terl — < p f ; > (4)

Then T5! can be used to refine the depth maps. Please refer to [23] for more
technical details.

6 Evaluation

In this section, we conduct experiments to verify the effectiveness of our method
on the KITTI dataset [7]. The proposed method is based on the monocular mode



Fig. 4. Qualitative comparisons on dense mapping results of the KITTI sequence 00
using (a) Surfel-Mapping [21] (b) GEM [17] and (c) our method.

of ORB-SLAM2 [14], which is used to track camera poses, detect keyframes, and
close loops. We use an unsupervised deep neural network [8] to obtain dense
depth maps. Since the network performs amazingly on the KITTI dataset, it is
only fine-tuned on the KITTI training set. All the experiments are carried out
on a standard desktop PC with Intel Xeon CPU at 3.5GHz, 32GB of RAM, and
NVIDIA GeForce GTX 1080 GPU.

6.1 Qualitative Results

Here we discuss the completeness of the final 3D map. Fig. 2 (c) shows the
recovered dense map on the KITTI sequence 06 datasets using our method.
The global map shown on the top is quite dense, and the zoom-in patches on the
bottom perform well in fine details while keeping consistent scene structure, such
as the traffic sign and the road surface. Please note that as explained in Section
4.1, the depth predictions near the image boundaries have been discarded, thus
areas on both sides of the road are mostly incomplete.

Similarly, Fig. 3 demonstrates the recovered dense point cloud of the KITTI
sequence 13 using our method, where the zoomed-in areas verify the density and
consistency of the global map.

Qualitative comparisons are demonstrated in Fig. 4, where reconstructed
dense maps are built by Surfel-Mapping [21] using stereo cameras, GEM [17]
using LiDAR, and our work using a monocular camera, respectively. Our method
shows significant superiority for dense mapping over previous work. Moreover,
the top row shows the details of a loop closure region and our method can
generate smoother local maps.

Our method also has some shortcomings. Fig. 5 shows the dense mapping
result generated on the KITTI sequence 16 by our method. The details of the
region labeled at green wireframes show the performance of our work when
dealing with static scenes, i.e., the sign on the road could be clearly identified.
However, when dealing with dynamic objects, submaps may not be aligned well
in these regions. For example, in the failure case marked by red wireframes,
the moving white car could not be registration successfully, which leads to 3D
ghosting in the global map. In future work, we will try to introduce semantic
information or object detection to deal with this problem.



Fig. 5. Qualitative results on the KITTI sequence 16, including successful and failed
cases. The global dense map generated from our work is shown on the top, while the
details together with two corresponding example frames of the regions labeled at green
and red wireframes are also shown in the zoom-in patches (bottom).

6.2 Quantitative Results

Table 1 shows the quantitative results on the KITTI sequence 00. Since the
ground-truth point cloud is not available, we mainly report the density, com-
pleteness, and running time in this section. Note that the number of points is
calculated from the final global map, while the completeness is the average ratio
of pixels with valid depth estimation (the discarded ones will not be counted) for
all keyframes. It demonstrates that the proposed method can generate denser
maps.

Table 2 displays the average computational cost for each step. Specifically,
the submap optimization takes the majority of the time, i.e. almost 3 seconds
per keyframe, while the other processes could perform in real-time. Since one
new keyframe will be generated when more than 20 frames have passed in the
SLAM system, our work could run in near real-time (6-7 fps). Moreover, we can
further reduce the number of selected keyframes to improve the efficiency of the
dense mapping thread.

7 Conclusion

In this paper, we present a novel dense mapping approach for monocular SLAM
that fuses both the monocular depth prediction and the camera ego-motion
estimation, bridging the classic feature-based SLAM system and the deep neural
network. Submaps are generated according to the refined depth prediction of



Table 1. Number of Points (K) and Average Keyframe Completeness (%).

methods ORB-SLAM?2 [14] Surfel-Mapping [21] Ours
points 50.6 1422.968 18563
completeness 0.05 2.2 19.85

Table 2. Average computational cost of each step for per keyframe (ms)

SLAM  Depth Submap  Global
Tracking Prediction Optimization Fusion
23 30 3000 35

keyframes, and the fusion is realized simply by aligning contiguous submaps
with ego-motion constraints. Experiments on the KITTI dataset demonstrate
that our method could obtain dense maps on large-scale outdoor scenes in near
real-time. In the future, we plan to further refine the global point clouds and
focus on dealing with dynamic objects using more semantic information.
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