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Abstract—Visual localization under varying conditions such as
changes in illumination, season and weather is a fundamental task
for applications such as autonomous navigation. In this paper, we
present a novel method of using semantic information for global
image retrieval. By exploiting the distribution of different classes
in a semantic scene, the discriminative features of the scene’s
structure layout is embedded into a normalized vector that can
be used for retrieval, i.e. semantic retrieval. Color image retrieval
is based on low-level visual features extracted by algorithms or
Convolutional Neural Networks (CNNs), while semantic retrieval
is based on high-level semantic features which are robust in
scene appearance variations. By combining semantic retrieval
with color image retrieval in the global retrieval step, we show
that these two methods can complement with each other and
significantly improve the localization performance. Experiments
on the challenging CMU Seasons dataset show that our method is
robust across large variations of appearance and achieves state-
of-the-art localization performance.

I. INTRODUCTION

Visual localization is a fundamental task for autonomous
driving and is especially favorable in scenarios where Global
Positioning System (GPS) is unavailable. Estimating the ac-
curate 6-Degree-of-Freedom (DoF) pose of the camera within
an existing 3D map is a basic requirement for applications
such as autonomous navigation [1], [2], Augmented Reality
(AR) [1], Structure-from-Motion (SfM) [3], and Simultaneous
Localization and Mapping (SLAM) [1], [4]. Current leading
approaches tend to exploit correspondences between 2D fea-
tures found in a query image and 3D points or structures in
a scene model [5], [6]. Image retrieval techniques are often
included in a hierarchical pipeline [5], [7], 2D-3D correspon-
dences are then established between retrieved images and the
query image. With these 2D-3D matches, the camera pose of
the query image can be estimated using an n-point-pose solver
inside a Random Sample Consensus (RANSAC) loop. The
result is heavily depending on the correctness of the retrieved
images and the stability of visual information extracted from
the environment. Since the environment is frequently changed
, maintaining the robustness of a localization system over
changing conditions is still a challenge.

In this paper, we propose to leverage recent advances
in semantic segmentation of images, and design a semantic
localization framework based on the hierarchical localization
paradigm. Existing global image retrieval only includes color
image retrieval methods that suffer from variations in light,
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weather and season. The core idea is to embed the high-
level semantic information for retrieval and allow us to handle
changes in scene appearance under different conditions. One
main challenge is the dynamic labels in semantic segmenta-
tions which have a significant impact on the understanding of
the scene. Conventional approaches mainly remove dynamic
labels or classify them as invalid information, but these meth-
ods break the scene’s structure layout and seriously hamper
the feature extraction. Instead, we propose to modify semantic
segmentations to convert the dynamic content into static, and
thus recover a static semantic layout that can be better utilized
for embedding.

In summary, the main contributions of this paper can be
presented as follows:

• Semantic Inpainting Network (SI-GAN) is proposed to
convert semantic images that have dynamic objects into
those with complete static objects. This alleviates the
impact of occlusions and provides extra information of
the scene.

• Semantic enhanced global retrieval method is proposed
which consists of Score-Map Embedding (SME) and
Interval Selection (IS). SME embeds the static semantic
segmentation of an image recovered by SI-GAN, and
generates a normalized vector for semantic retrieval. IS
is furthur conducted to refine retrieval results using the
sequential information from the dataset.

• Experiments conducted on the fashionable CMU Seasons
dataset show that our approach achieves state-of-the-
art performance with an outstanding robustness under
challenging conditions with large seasonal variations.

II. RELATED WORK

In recent years, image-based localization has been widely
studied. In this section we review other works that related to
visual localization with and without semantic segmentation of
images.

Non-semantic visual localization only uses the low-level
visual features to establish correspondences between the query
image and the scene. The relations between different cate-
gories in the current viewport are not concerned, so that it
is very sensitive to environmental and conditional change.
Some researches propose learning-based methods which di-
rectly estimate the absolute pose of a query image using a
Convolutional Neural Network (CNN) [8], [9], or indirectly
estimate the relative pose of a query image in accord with
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Fig. 1. Illustration of the semantic localization framework proposed in this paper. We divide our framework into three parts: semantic inpainting, global
retrieval and pose estimation.

images in the database with ground truth camera poses [10].
These methods rely on extensive training data and their
performance are not satisfied. Derived from Structure from
Motion (SfM), structure-based methods tend to exploit cor-
respondences between 2D pixels of a query image and 3D
points in a 3D model, and use bundle adjustment to solve and
refine the camera pose. The 2D-3D matches are established
by machine learning techniques [11], [12], or by conventional
feature mapping [13]. Image-retrieval based methods [14] tend
to represent the pose of a query image using the pose of the
best matched candidate retrieved from an image database with
known pose. These methods are scale-invariant and robust to
condition change. Hierarchical methods follow a coarse-to-
fine localization paradigm [5], [7], [15], [16]. Image retrieval
methods are used as the coarse step to find a group of candidate
images in the image database, and structure-based approaches
are applied to the retrieval result for refinement. Hierarchical
methods can greatly improve localization accuracy, but the
result is heavily relied on the performance of the retrieval
method.

Semantic visual localization focuses on the high-level
structure features found on image semantic segmentations for
localization [6], [17]–[19]. These features neglect details from
the scene and describe the image in a macro perspective.
Carl Toft, Carl Olsson and Fredrik Kahl [6] created a 3D
semantic map using the contour of different semantic labels
and projected the map to the current scene to recursivly refine
the estimated pose. Instead of projecting the 3D model to a
2D plane, Johannes L. Schonberger, Marc Pollefeys, Andreas
Geiger and Torsten Sattler [19] refined the pose estimation
by adding 3D-3D voxel match in their semantic map. Image
semantic segmentation can also be used for outlier rejection.
Some works [20], [21] use the semantic context to directly

TABLE I
CLASS CATEGORIES USED IN SEMANTIC INPAINTING.

label state
0 static unlabeled, others
1 static sidewalk
2 static building
3 static wall, fence
4 static pole, light, sign
5 static vegetation, terrain
6 static sky
7 static road
8 dynamic person, rider, car, truck, bus, caravan,

trailer, train, motorcycle, bicycle

filter the match of local features. Others [5], [17], [22] use
the Semantic Match Consistency (SMC) [17] as a soft outlier
rejection method, which projects the 3D semantic map to
the hypothesized plane according to the estimated camera
pose. The consistency ratio between the semantic labelling of
projected structures is then used for biasing sampling in the
RANSAC procedure.

Our semantic localization framework combines the hierar-
chical localization pipeline with image semantic segmentation.
In contrast to the previously discussed approaches, which
use semantics to improve local feature matching or pose
estimation, our approach focuses on the image retrieval stage.
Experiments are furthur conducted to study the importance of
retrieved images for visual localization. With the combination
of semantic features and local visual features, our approach is
robust to environmental changes and achieves state-of-the-art
performance on the CMU Seasons dataset.



III. SEMANTIC LOCALIZATION FRAMEWORK

The main purpose of our approach is to estimate the
global pose precisely and improve the robustness and accuracy
of localization by using semantic information. Our seman-
tic localization framework follows a hierarchical localization
paradigm, shown in Fig. 1. In the first step, our SI-GAN
recovers the static semantic layout of the query image. Then,
a semantic enhanced global search retrieves candidate images
and IS is applied to refine the retrieval result. Finally, a
matching-estimation process computes the pose iteratively.

A. Semantic Inpainting

Given a set of label classes C = S ∪ M , where C is the
classes in segmentation, S is the classes for static objects, and
M is the classes for dynamic objects. Given a segmentation
with labels in C, the semantic inpainting procedure converts
the dynamic labels with values in M into appropriate static
labels with values in S. Similar to [23], [24], we use a GAN
to solve this problem, which is our SI-GAN.

For the semantic information, the DeepLabv3+ [25] with
model trained on Cityscapes dataset [26] is used for image
segmentation. Cityscapes has more than 30 classes in total and
we divide them into 9 subcategories(see Table I) which con-
tains 8 static categories and 1 dynamic categorie. Clustering
together similar objects would not only balance the proportion
of each categories but also remove redundant ones.

SI-GAN. Similar to recent advances in image inpainting,
a coarse-to-fine generative pipeline consists of two steps: a
coarse encoder-decoder network recovering local information
of an image, and a refined encoder-decoder network using the
local information as a reference to generate a final result. Our
proposed model extends the EdgeConnect Network [27]: an
edge-model is included as the coarse model to recover the
full contour of the masked semantic image, then an inpaint-
model is employed as the refined model to generate more
reasonable static semantic layout guided by the preceding
full contour. The original edge-model remains unchanged, and
modifications are only applied to the inpaint-model. For the
inpaint-model, the encoding layers are replaced with Mobile
Blocks [28] and the CBAM [29] attention module is added to
the decoding layer. The modified inpaint-model is constituted
by 19 convolutional layers: 1 start h-swish layer with 6 Mobile
Block layers as the encoder, 4 atrous convolutional layers
followed by 2 standard ones as the middle, a final upsampling
block of 6 layers with CBAM attention module as the de-
coder. CBAM is only used before upsampling layers. Through
these modifications, the parameters of the inpaint-model are
reduced by 53.48%. Different from color image inpainting
that outputs continuous value to predict the color, semantic
labels are discrete in distribution, so One-Hot Encoding is
used to convert the input semantic data to a 9-dimensional
tensor, the inpaint-model will output an 8-dimensional tensor.
Additionally, the original pixel-wise reconstruction loss, style
loss and perceptual loss are replaced by softmax cross-entropy
loss, which casts the problem from a regression task to a
classification one.

The incomplete One-Hot encoded semantic data S̃gt condi-
tioned by a composite edge map Ccomp is used as the input
for our inpaint-model. Ccomp is the composite edge map get
from edge-model [27], and S̃gt can be computed by

S̃gt = epd(Sgt)⊙ (1−Mk) (1)

where Sgt is the ground truth static semantic segmentation
and epd denotes the expand dim operation to add the dimen-
sion for dynamic class, Mk is the mask as a pre-condition
( 1 for dynamic labels, 0 for static labels ), and ⊙ denotes
the Hadamard product. The network G returns a semantic
segmentation Spred, with dynamic labels being replaced:

Spred = G(S̃gt, Ccomp,Mk) (2)

The inpaint-model is trained over a joint loss that consists
of a cross entropy loss Lce, adversarial loss Ladv , and feature-
matching loss Lfm [30].

min
G

max
D

LGAN = λceLce + λadvLadv + λfmLfm (3)

where λce, λadv, λfm are regularization parameters. The
adversarial loss is define as:

Ladv = E[logD(Sgt, Ccomp) + log(1−D(Spred, Ccomp))] (4)

where D is the discriminator. The feature matching loss Lfm

is defined as:

Lfm = E[

n∑
l=1

1

HlWl

∑
h,w

∥∥∥D(l)(Sgt)−D(l)(Spred)
∥∥∥
1
] (5)

where l is the feature layer of the discriminator, Hl and Wl

represent width and height respectively, and HlWl denotes
the number of elements in layer l. D(l) is the activation in the
l’th layer of the discriminator. For our experiments, we choose
λce = 1, λadv = 0.1 and λfm = 1.

The edge-model and inpaint-model are trained on our own
Semantic Inpainting dataset along with irregular mask dataset
provided by Liu et al. [31]. The Semantic Inpainting dataset
is generated using CARLA [32], and the label is adjusted to
make it suitable for our work. During the training procedure,
we randomly swap the input labels to let the network focuses
more on the structure of semantic layout.

B. Global Retrieval

The Global Retrieval step is designed to retrieve images
that are similar to the query image and provide candidate
images for pose estimation. There are two retrieval pipelines
in our framework: color image retrieval pipeline and seman-
tic retrieval pipeline. Color image retrieval is performed by
matching the query image q with database images using
global descriptors generated by NetVLAD [14], and generates
a group of candidate images RV which represent potential
places in the map. Semantic retrieval is performed by matching
the query static semantic image Spred with static semantic
database images using semantic descriptors generated by SME,
and also generates a set of candidate images RS . In both
pipelines, the normalized L2 distance of descriptors is used to
differentiate potential candidates. The retrieved images from
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Fig. 2. A score map is a discrete two-dimensional distribution for grading
each pixel of the static semantic image. The score increases from blue to red
in the map.

RV and RS are then combined by IS to provide a more robust
group of candidate images for pose estimation.

Score-Map Embedding (SME). Since the static semantic
segmentation of image Spred contains less visual information
for feature extraction, we make our decision based on the
common knowledge of spatial distribution of objects (eg. The
sky is on the top right corner, the building is on the left,
no people in the scene, etc.). This distribution represents
the discriminative layout of the scene which is useful for
localization. Motivated by this, we propose the Score-Map
Embedding method to extract this layout information. The
score map Ms is a discrete two-dimensional distribution that is
used as a map to guide the sampling process on the semantic
image. Fig. 2 is an illustration of a score map and Fig. 3 is
a brief example of how SME works. Each position p in the
score map is assigned a scorep which represents the score for
that position. For each class label c in Spred, we collect its
total score TSc by summing up scores for all related cells in
Ms. These two operations inherently contain the position and
quantity information of each label class:

TSc =
∑

p∈Ms

(Ipscorep) (6)

where Ip is the indicator function, which is 1 when the class
in position p is the same as c. These scores are then combined
into a vector with normalization, which is the embedding result
vms for the given score map. Different score maps represent
different distributions that focus on different layout features
of the static semantic image. Thus, multiple score maps can
be added together to generate a more descriptive descriptor. In
our work, we use 4 score maps to generate a 32-dimentional
descriptor as a representation of a semantic image.

Interval Selection (IS). Given two sets of images RV

and RS from the retrieval stage which represent candidates
from the color image retrieval pipeline and semantic retrieval
pipeline respectively. Since the database consists of image
sequences with consecutive camera poses, each query image
matches a sub sequence of images from the database. We first
place these candidates in an order and build a long query
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Fig. 3. A brief example of SME. The size of the semantic segmentation is
7 ∗ 5 and different colors represent different semantic classes. The number in
the grid cell represents the grade defined by the score map, the score map in
this example is simple and can be described as a 2D plane. SME caculates
the total score for each class in the semantic segmentation with a score map
and generates a normalized vector.

sequence, then we use IS to pick a sub sequence slice that
contains the query image with highest probability.

The illustration of our method is shown in Fig. 4. Each
image in the database is assigned an ID representing its rela-
tive position in the database sequence. A fixed-sized interval
window is used to slide through the query sequence to find the
interval with the minimun span calculated by subtracting left
window ID from right window ID. Candidate images within
this minimun interval will be selected for pose estimation. This
method works because similar images are most likely to be
close to each other in the sequence, and an effective retrieval
system will provide accurate result which would fall in the
same region. The value of the window size is determined by
the dataset attributes and the practical demands. Firstly, in the
sequential datasets a place can appear in several continuous
frames, and the maximum number of related frames determine
the upper bound of the window size. Secondly, large window
size contains more candidate images for pose estimation,
which means more time for computation. In our work, we
set the window size to 10.

C. Pose Estimation

The Global Retrieval step provides a group of candidate
images with the minimun interval span. We match the features
in the query image with the features in candidate images
using local feature matching methods, SuperPoint [33] and
SuperGlue [34]. The 3D model of the scene is built offline
using the database images through a SfM pipeline [3], so
each database image contains a set of 3D points in the model.
Notice that the features of candidate images only contain those
used in the SfM procedure and corresponds to a 3D point in
the 3D model, thus the correspondences between 2D keypoints
in the query image and the 3D points contained in the model
are established. We finally feed all the matches to a RANSAC
PnP solver to estimate the camera pose.
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Fig. 4. The IS uses a fixed-sized sliding window to filter candidate images with the minimun interval span. Each database image is assigned an ID so that
interval span can be calculated by subtracting window left ID from window right ID.

TABLE II
PERPIXEL ACCURACY ON THE MICC DATASET.

Method Perpixel accuracy(%)
NS [35] 63.79

LB’s Method [24] 70.58
SI-GAN(ours) 70.78

IV. EVALUATION

In this section we present experimental evaluations of the
proposed methods. We first evaluate the SI-GAN to test the
capability of our inpainting network. Then we evaluate the
localization performance of our semantic localization frame-
work to examine the applicability of SME and IS to large-
scale localization problems. Finally we conduct ablation study
on five different localization runs to furthur analysis the
contribution of SME and IS for localization.

A. SI-GAN Evaluation

Dataset. We test our model on the MICC-SRI Semantic
Road Inpatining dataset [24], a virtual dataset generated with
CARLA driving simulator. The dataset contains 11,913 pairs
of perfectly aligned frames with and without dynamic objects.

Results. The input segmentation is obtained from
Deeplabv3+ and the pixel-wise accuracy is calculated as
the criterion for performance. We compare our model with
traditional image inpainting method Navier-stokes (NS) [35]
and Lorenzo Berlincioni’s method [24]. Results in Table II
show that our method achieves the best performance. Fig. 5
shows the inpainting result for different methods. Fig. 6 shows
a sample of images generated by our model, the input image
is form real world and the colors of edge map is reversed for
visualization. Since SI-GAN considers the edge information
of the scene, it can better deal with the boundary between
different semantic classes.

B. Localization Evaluation

Dataset. Since our semantic localization framework is con-
strained to sequential datasets, we evaluate our method on
the CMU Seasons dataset [36], which is a sequential dataset
especially for long-term visual localization. The images were
captured by two front-facing cameras mounted on a car. The
dataset depicts urban, suburban, and park scenes in the area
of Pittsburgh, and is recorded over a period of one year,
which contains challenging conditions under varying seasonal
change. The whole dataset is split into 17 slices, and a 3D
reconstructed model is provided. We evaluate our semantic
localization framework with SME and IS, named SemSeq. The
color image retrieval pipeline and semantic retrieval pipeline
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Fig. 5. Inpainting results on the MICC-SRI dataset.



Fig. 6. The experimental result of SI-GAN on real world scenes. (Left to Right) Original image, original semantic segmentation, input mask, generated edge,
semantic inpainting result.

TABLE III
EVALUATION OF THE LOCALIZATION ON THE CMU SEASONS DATASETS.
WE LIST THE RECALL [%] AT DIFFERENT DISTANCE AND ORIENTATION

THRESHOLDS, THE BEST RESULT IS HIGHLIGHTED.

CMU Seasons
urban suburban park

distance [m] .25/.50/5.0 .25/.50/5.0 .25/.50/5.0
orient. [deg] 2/5/10 2/5/10 2/5/10

AS [37] 68.9 / 75.7 / 83.4 36.2 / 44.4 / 56.0 24.8 / 31.1 / 41.5
CSL [13] 36.7 / 42.0 / 53.1 8.6 / 11.7 / 21.1 7.0 / 9.6 / 17.0
DenseVLAD [38] 22.2 / 48.6 / 92.8 9.8 / 26.6 / 85.2 10.3 / 27.1 / 77.0
NetVLAD [14] 17.4 / 40.3 / 93.2 7.6 / 21.0 / 80.5 5.6 / 15.7 / 65.8
SMC [17] 75.0 / 82.1 / 87.8 44.0 / 53.6 / 63.7 30.0 / 37.9 / 48.2
NV+SP [7] 91.7 / 94.6 / 97.7 74.5 / 81.5 / 91.3 54.3 / 62.5 / 79.0
SemSeq(ours) 96.4 / 97.5 / 98.4 90.1 / 92.9 / 95.7 77.4 / 82.3 / 87.5

both contribute 10 candidate images in the global retrieval
step, and these 20 candidates are filtered by IS with a window
size of 10. The results are reported as the percentage of query
images which were localized within three given translation
and rotation thresholds, as defined by the benchmark [36]. We
compare our method against several localization approaches.
More concretely, we compare against ActiveSearch (AS) [37]
and the City-Scale Localization (CSL) [13] which are 2D-
3D direct matching methods. In addition, we compare against
DenseVLAD [38] and NetVLAD [14] which are image re-
trieval methods. We also consider some recently introduced
methods. The Semantic Match Consistency (SMC) [17] relies
on a 3D semantic map, and use semantic match score to weight
the point selection in the RANSAC procedure. Hierarchical
Localization [7] is a robust localization architecture that repre-
senting the current state-of-the-art in terms of accuracy. Other
recent works are not concerned because they either need a
trainable dataset [15] or rely on the stability of the scene [16]
which is contradicted with the basis of CMU seasons dataset.
Table III shows the localization result for different methods
in different scenes. Fig. 7 shows the Localization result under
different conditions at threshold 0.25m, 2◦.

Results. As can be seen, our proposed method leads to
significant improvement in localization performance for all
scenes and all conditions on the CMU Seasons dataset. In
the most challenging park scene, our localization accuracy

emSeq(ours)

Fig. 7. Localization recall[%] on the CMU Seasons dataset under different
conditions at threshold 0.25m, 2◦.

increased by 23.1% than NV+SP under the 0.25m and 2◦

threshold. Overall, SemSeq sets a new state-of-the-art on the
CMU Seasons dataset and shows that our approach is both
more accurate and more robust.

Ablation Study. In Table IV, we present an ablation study
of our approach on the CMU Seasons dataset. We test the
performance of localization on five different runs with 10
candidate images from different methods:

• Candidate images from retrieval result of NetVLAD,
named NV.

• Candidate images from semantic retrieval, named SEM.
• Candidate images from 20 coarse candidates from

NetVLAD filtered by IS with a window size of 10, named
NV-IS.

• Candidate images from 20 coarse candidates from se-
mantic retrieval filtered by IS with a window size of 10,
named SEM-IS.

• Candidate images from 10 NetVLAD retrieval candidates
mixed with 10 semantic retrieval candidates filtered by
IS, named NV-SEM-IS, which is the same condition as
SemSeq.

From SEM, we note that only with semantic retrieval
pipeline, our localization framework can still work, which
proves the effectiveness of SME. Comparing NV with NV-
IS and SEM with SEM-IS, we can see the power of IS which
leads to significant improvement in localization performance
for all conditions. IS uses the sequential information from the
dataset to refine the retrieval results, thus we can collect a



Fig. 8. Candidate images from three localization runs. NV represents localization with NetVLAD retrieval, SEM represents localization with semantic retrieval,
and NV-SEM-IS combines the results of NV and SEM by IS. The number in the image is the ID representing its relative position in the database sequence.
Improper candidates are filtered out after IS, for example 215, 134.

TABLE IV
ABLATION STUDY ON THE CMU SEASONS DATASET. WE COMPARE THE

RECALL[%] OF LOCALIZATION FOR DIFFERENT METHODS.

Distance[m] / NV-SEM-IS
Orient.[deg] NV SEM NV-IS SEM-IS (SemSeq)

Urban
0.25 / 2 93.5 73.2 95.7 75.5 96.4
0.5 / 5 94.8 75.4 96.8 77.7 97.5

5 / 10 96.0 78.3 97.7 80.3 98.4

Suburban
0.25 / 2 83.1 52.5 88.5 56.2 90.1
0.5 / 5 86.1 55.9 91.6 59.6 92.9

5 / 10 89.0 60.9 94.5 64.5 95.7

Park
0.25 / 2 66.9 45.6 75.9 48.4 77.4
0.5 / 5 72.0 50.2 80.9 53.0 82.3

5 / 10 78.1 56.7 86.1 59.3 87.5

set of images that contains more accurate and robust 2D-3D
matches. NV-IS performs better than SEM-IS, beacuse in most
cases visual information is more accurate and more abundant
than semantic layout information. However, in some cases it
does not perform well as expected. Fig. 8 shows some counter-
examples of candidate images from different localization runs
that semantic retrieval performs better than NetVLAD re-
trieval. The first example is mainly because lacking strong
visual features, the scene is full of trees under changes in
season and lighting which makes it harder for robust feature
extraction. The second example is mainly because dynamic
occlusions, dynamic objects can affect the features extracted
from the scene thus influence the retrieval result. However, in
both conditions, the static semantic layout is stable which leads
to more reasonable retrieval results for the semantic retrieval
pipeline. So IS fuses the retrieval results from these two
retrieval pipelines and improves the performance of NetVLAD
retrieval in hard cases using semantic retrieval. This proves that
visual information and layout information can complement
with each other, and that is why NV-SEM-IS performs better
than NV-IS and SEM-IS.

We also provide extra information from NV-SEM-IS that
can show the effectiveness of SME. The 10 candidates from
IS are a mix of two retrieval pipelines, so we calculate the
ratio of candidates from semantic retrieval pipeline. The ratio
is used as a brief indication for the contribution of semantic
retrieval, and we get an average result of 43.48%.

V. CONCLUSION

In this paper, we have presented a robust and accurate
method for long-term visual localization. Our method outper-
forms state-of-the-art localization approaches on the challeng-
ing CMU Seasons dataset that contains substantial appear-
ance variations across weather conditions and seasons. Our
semantic localization framework can leverage correspondences
between candidate images to provide robust 2D-3D matches.
We demonstrate the enhancement of retrieval pipeline that
utilizes structured spatial information from semantic image
segmentations, combined with the color-image-based pipeline.
Experimental results show that the proposed method achieves
remarkable improvement over existing approaches in terms of
camera pose estimation.

Even though the final results are accurate, there are still
some constraints need to be concerned. First, our IS can only
be applied to sequential datasets. Second, the dimension of
semantic descriptor is determined by the scene specifically,
which means that the amount of score maps is relative to
the scale of dataset. In the future work, we expect to extend
our IS method with spatial information so that our semantic
localization framework can apply to non-sequential datasets.

ACKNOWLEDGEMENT

This work is supported by the National Key R&D Pro-
gram of China under Grant No.2018YFB2100603, the Natural
Science Foundation of China under Grant No. 61872024 and
the Strategic Consulting Research Project of Henan Research



Institute of China Engineering Science and Technology De-
velopment Strategy under Grant No.2021HENZDA03.

REFERENCES

[1] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[2] M. Bürki, L. Schaupp, M. Dymczyk, R. Dubé, C. Cadena, R. Siegwart,
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