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ABSTRACT

Illumination consistency has applications to modeling and render-
ing in virtual reality. In 3D reconstruction and Mixed Reality(MR)
fusion, the appearance of a large-scale outdoor scene may change
in response to lighting and seasons, for example. Since 3D recon-
struction from scratch is costly, it is helpful to be able to update
existing models with recently captured photographs. However, the
illumination conditions of the captured photograph can be arbitrary,
making it challenging to fit to the existing model. To tackle this
problem, this paper proposes a novel approach that can precisely
estimate the illumination of the input image. Our Deep Shadow
Network (DSNet) collaboratively utilizes illumination-based data
augmentation for sun position estimation, along with a dataset of
illumination-based augmented renderings. Our run-time rendering
and optimization strategy is also discussed. We show that accurate
simulation of illumination can improve the performance of visual
applications including place recognition and long-term localization.
Experimental results validate the effectiveness of the proposed ap-
proach, and show its superiority over the state-of-the-art.

Index Terms: Computing methodologies—Modeling and
simulation—Model development and analysis—Modeling method-
ologies; Artificial intelligence—Computer vision—Computer vision
problems—Reconstruction

1 INTRODUCTION

Ilumination consistency of large-scale outdoor scenes has been
widely studied in modeling and rendering, with diverse applica-
tions such as virtual Olympics, traffic simulations and immersive
telepresence. In all-element virtual scenarios, video streams with
different illumination conditions are blended to produce a MR world.
For visual mobile navigation, localizing outdoor photographs for
augmented reality (AR) display is a basic need. In such applica-
tions, illumination in-consistency remains a long-standing problem.
To accurately estimate and simulate illumination in real-time, a
high quality 3D model is vitally important. In large-scale 3D re-
construction, urban appearance changes frequently, and its digital
representation requires frequently updating. However, traditional
structure from motion (SfM) methods bundle all inputs and perform
global modeling. The same illumination conditions can rarely be
achieved, due to changes of season, weather, time of day, vegetation
and terrain appearance. Inconsistency of illumination causes defects
in model fusion. Furthermore, illumination simulation plays an im-
portant role in MR rendering, in which the visual experience should
be consistent with the user’s environment. Thus, a novel framework
is needed which can accurately estimate the primary illumination
from user inputs. Existing illumination estimation methods discover
solar parameters from multiple cues. Traditional methods directly
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calculate solar position in Earth coordinates but require an accurate
geolocation and timestamp as additional inputs. Machine learning
methods predict relative solar positions in query pictures, and are
robust under challenging illumination conditions. Mainstream re-
construction methods [3, 19] create large-scale 3D models but dilute
illumination cues after global color fusion during texture blending.
To dynamically combine geometric information from the 3D model
with learned features from deep neural networks, a renderer based
on a GPU pipeline is required. In contrast to traditional shadow
detection and structure of light approaches, this paper considers a
more general scenario, in which unordered photographs are sampled
randomly without viewport limitations. We present a deep learning
based illumination estimation network; an overview of our pipeline
is depicted in Fig. 1. We also consider enhancement of modeling
applications using illumination-based data augmentation.
In summary, this paper makes the following contributions:

* DSNet, providing state-of-the-art illumination estimation with
outstanding robustness and high precision under challenging
conditions,

¢ illumination augmented datasets with free-viewport and ran-
dom solar simulation, including 240K+ images with pixel-wise
depth, shadow label and camera pose,

» experiments which demonstrate the usefulness of illumination-
based data augmentation and an analysis of its enhancements
to camera localization methods.

We believe we are the first to address the complete scope of illumina-
tion estimation using large-scale augmented 3D datasets. Extensive
evaluations quantify resultant improvements to image retrieval and
long-term localization.

2 RELATED WORK
2.1 Shadow detection

Detecting shadows in natural images has been widely investigated,
using methods for extracting the scene geometry and light direction.
Early works [7,21] achieved high accuracy for cast shadows but
failed in the presence of multiple light sources and soft shadows.
Deep learning based shadow detection methods [9,26,28] are less
sensitive to rich textures, and can extract indirect shadows. BEDSR-
Net [13] is able to detect and remove shadows using a deep learning
based network, but is limited to document images. Liu’s method [14]
places virtual 3D objects in the virtual scene for shadow comparison,
but only works for a limited range of objects such as cars. Existing
works still struggle with cases where the boundaries of the cast shad-
ows are hard to find. Using them for sunlight direction estimation
is far from their original purpose, where the gradient of shading
information and the integral understanding of the illumination en-
vironment is more favorable. Direct shadow casting approaches
perform poorly in special cases such as shadows with large area,
shadows at sunset and shadows covered by specular reflections.
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Figure 1: Coarse-to-fine framework of DSNet, our deep learning based illumination neural network for solar position estimation, trained on shadow
datasets. Unlike other approaches which only predict imprecise results, our method has significantly increased precision of around 1°. Each major

component can be trained and examined separately.

2.2

Unlike direct cast shadow estimation approaches, indirect methods
try to recover the illumination from implicit visual cues. Some
methods reconstruct the shape of a 3D object under unknown illumi-
nation [22,23,25]. Such shading-based surface reconstruction can
hardly be applied to large-scale outdoor scenes with complex details
and irregular surfaces.

Indirect illumination estimation

2.3 Deep learning based illumination estimation

Deep learning based approaches achieve better performance on
datasets with ambiguous texture patterns. Sun-CNN [16] learns rela-
tive solar orientation from shadow cues using a deep AlexNet [12]
framework trained on an embedded dataset. SunOriNet [10] slightly
outperforms Sun-CNN by adding a branch layout focusing on pat-
terns of intermediate size. Yannick [8] trains his network on a
panorama dataset and removed pooling steps in his network for fast
convergence. [llumination based approaches play helpful roles in
assisting visual tasks like long-term localization. However, indirect
deep learning based methods suffer from the problem of insufficient
data. Both KITTI Sun [6] and Sun360 [24] provide only street view
photographs with limited sun positions.

2.4 Machine learning localization

Machine learning based long-term localization approaches recover
the pose of a query image based on machine learning models trained
on datasets. Some end-to-end methods can directly predict camera
translation and rotation for 2D to 3D registration. PoseNet [11] can
acquire camera pose directly from an image input. SuperGlue [18]
with SuperPoints [4] and HF-NET [17] achieve better robustness
using deep learning based descriptors. Before localization, usually
images with overlapping regions are retrieved for feature mapping,
as in the NetVLAD [1] network for place recognition. This paper
focuses on improved performance over these methods by using
augmented datasets with illumination simulation.

3 DEEP ILLUMINATION ESTIMATION

In our scenario, given an existing 3D model, and few pictures of a
new scene, we aim to determine illumination parameters for model
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update and blended rendering tasks. Unlike other reconstruction
approaches with global color fusion for all photographs, we choose
a primary photograph with robust features, in which we can es-
timate and simulate the illumination, to better process the other
photographs.

3.1 Solar Position Estimation

When GPS, date and time are all accessible, the direction of the
sun can readily be calculated. Without such prior knowledge, solar
orientation can only be estimated from visual cues. Since earth
orbits the sun at an average of about 1.5 x 108 km, the sun can be
treated as a parallel light source. We combine both indirect analysis
in structured light methods and direct shadow detection methods in
our deep learning framework: see Fig. 1. Three major sub-networks
collaborate to provide coarse to fine estimates of solar position. A
rendering-based optimizer is responsible for final adjustment of sun
parameters. In this Section, the approach is described in detail.

3.1.1

Unlike Sun-CNN [16] which uses only color information from the
image, we include another channel representing the shadow with
shading in our network. We use the deeper VGG [20] network in-
stead of AlexNet [12] because it can handle large scale images with
high-level semantic features; in our case, these are the structured
light information. It makes an important improvement over AlexNet
by replacing large kernel-sized filters with smaller kernel-sized fil-
ters, partially solving the problem of overfitting on certain patterns.
Traditional VGG networks have been shown to be efficient for clas-
sification and segmentation. However, in our scenario, we use them
for parameter regression. Instead of using pre-trained models for
classification, we train different models on our own datasets, which
are generated by a virtual sampler randomly taking snapshots in
a virtual environment. Unlike Sun-CNN which uses two angles
to represent the solar position, we use a normalized vector in 3D
Euclidean space. This is mainly because relative solar azimuth and
altitude as used in Sun-CNN do not converge around 0°, 180°and
360°. For free viewport solar estimation, this is a common issue
because no street-view style input is guaranteed and the sun can be
located anywhere relative to the camera. We remove the softmax

Sun-VGG sub-network for coarse estimation
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layer at the end for regression purposes. The input to the first layer
is a 224 x 224 x 4 RGBS image, where the S channel contains the
shadow rendering. The purpose of adding this channel is to leverage
existing shadow renderings reflecting structured 3D information of
the scene without biased fitting to texture patterns. During train-
ing and evaluation steps, we include virtual shadows rendered by
shaders. However, while testing, we can only extract shadows from
the image. As a result, we are motivated to design a pre-trained
shadow extraction network, as described in the next section. Each
layer of data in a convolution group is a four-dimensional tensor
of size b x w x h x d, where b is the batch size, w and & are spatial
resolutions, and d is the number of convolutional filters or channels
listed in the figure. All convolution groups use 3 x 3 kernel filters
with 1-pixel padding and stride, followed by 2 x 2 max pooling with
stride 2. We use the standard ReLU activation function. The output
vector represents the normalized direction of the sun, relative to the
viewport. To measure squared Euclidean distance in the tensor-based
machine learning framework, we employ the equivalent MSELoss
function. The three channels of the output vector give the solar
position, with normalized coordinates (x,y,z) defined by:

x =sin(6)cos(¢),
y=cos(0)cos(¢), —
z=sin(9),

where ¢ is the relative elevation angle and 6 is the relative azimuth
angle, as shown at the upper right corner of Fig. 1. Unlike in the
KITTI dataset [6] in which the sun is always overhead, the scenario
in this paper is more general, and the relative solar angles ¢, 6 can
be negative, depending on the yaw, pitch and roll of the observer.
Since no open source dataset provides such data, we created our
own with the help of the MR snapshot sampler, a virtual camera
randomly taking snapshots in a virtual 3D world.

<¢<7%,

S|

3.1.2 Shadow-VGG sub-network for shadow extraction

The basic flow of our Shadow-VGG sub-network is illustrated in
Fig. 1(left). Two major parts, the encoder and the decoder, are
illustrated. The encoder has 13 convolutional layers in five groups;
its role is to extract features from the input image. The decoder has
a symmetric architecture and is responsible for assembling feature
fragments into the output. We use an indexed unpooling and de-
convolution strategy similar to those in SegNet [2] and FCN [15].
Most of the network convolutional groups are similar to those in the
VGG network, with the same dimensions, layers, kernel size and
activation function. The fully connected layers after the encoder to
allow connection to the decoder. The output image has the same
resolution as the input, and is a prediction of a grayscale shadow
rendering with proper shading. To minimize pixel-wise differences,
we use the 2D MSELoss function. Our novel contribution lies in
the training step, where virtual snapshots with random shadows are
dynamically generated from different scenes. The shadow images
are rendered by shaders which project random sunlight onto coarse
grayscale models. We aim to reduce the negative impact of textures
so that the real structured light information can be extracted. The 2D
MSELoss function is applied to compute the pixel-wise difference
between the labeled shadow and the output prediction, to maximize
their difference. As shown in Fig. 2, the predicted shadow retains
primary shading information and removes ambiguous patterns that
are harmful to solar direction estimation, including but not limited
to textures on windows, cars, stairs, trees and playgrounds. Com-
pared with a visualization of CNN layers used in Sun-CNN [16], our
output shadow renderings contain more detailed information with
higher resolution. Our experiments show that the additional shadow
channel created this way and added to the input of the Sun-VGG
network significantly improved its performance, more so than any
other means of adjusting network parameters and layouts. See the
experimental results in Fig. 8.
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Figure 2: Shadow extraction result. Despite the appearance change,
we predict a grayscale shadow appearance (d) from the given pho-
tograph (a). The ground-truth rendering and shadow (b,c) are gener-
ated by the shadow map rendering program using geolocation and
timestamp. The depth information included by the shader is used for
masking out pixels in unmodeled areas(black).

3.1.3 Shadow-Rank re-ranking sub-network

To further optimize the solar position estimate by verification of
the rendering result, the Shadow-Rank sub-network compares the
current image with multiple rendered shadows. The structure of the
Shadow-Rank sub-network is given in Fig. 1(lower right). It has
the same convolutional layers as other VGG networks. Inspired by
NetVLAD [1], we designed the Shadow-Rank network for ranking
and recommendation. Differing from the scenario in NetVLAD, our
shadow images are selected and rendered in real-time according to
the camera pose. As a result, feature vectorization, indexing and
retrieval steps are skipped. For training, we include negative samples
so that the model can distinguish between likely and unlikely pairs.
For each query image with free-viewport camera pose, we set the
sampling interval to 5° and render 12 x 72 = 864 shadows, where
12 is the number of elevation angles in the range [15°, 70°], and 72
is the number of azimuth angles in the range [-180°,180°). These
daytime ranges work for most places on Earth regardless of date.
For places close to the ecliptic plane, the solar elevation angle may
exceed 70° at noon, and for some northern cities, it may below 15°
in the morning or evening. In these cases, the proposed method is
inapplicable. For each training epoch, we use an undersampling
strategy by assembling one positive pair and k randomly chosen
negative pairs respectively. To make the model trainable and the
result reasonable, we assign cosine loss between the predicted solar
position and the ground-truth to the labels. The loss function is:

(Z(q".q7)— ZL(p,q;))*

-

L =B(L(p.g")*+ @)

i=1

where p is the predicted solar position, g™ is the positive pair, g;°
is the ith negative pair, k is the undersampling factor for picking
negative samples, usually set to 50 for training, and f is the com-
pensation factor for positive learning, usually set to 10. The cosine
loss function . is defined as:

ZL(pg)=(1— L1y,

Ipllgl

The cosine loss is used as we want the network to learn the angular
difference between different samples, especially when they are or-
ganized in 3D coordinates. We do not follow Yannick’s [8] method
of using Kullback-Leibler (KL) divergence loss, because we treat
each negative sample differently according to its relative solar po-
sition. In our generalized scenario, the distribution of relative solar
positions is static and isotropic, and the KL divergence loss does not
meet our requirements. The equation .£* = 0 has a unique solution
p = q". Notice that there is a learnable constant term in Eq.(3) rep-
resenting the cosine loss between the negative solar position and the
positive solar position. Using this loss function and undersampling
strategy, our model converges rapidly, so that we can use a smaller
undersampling factor £ and larger batch size.

3
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We include the direct output of the Sun-VGG sub-network as a
filter to re-rank the Shadow-Rank result, using the aggregated score:

=L (q)+(L(p.ai))? )

where S; is the new score of the ith enumerated solar position g;.
It adds the output loss in Eq. 3 to a filter term, the square of the
cosine loss between ¢; and the coarse prediction p. We use the total
loss to re-rank the enumerated solar positions in ascending order.
In Fig. 3 we show an example of such re-ranking; here, a mask
determined by the model boundary is included. Prior knowledge
of the geolocation and knowledge that it is afternoon are applied to
optimize the enumeration interval.

S;

Abs: -85°/25°
Rel: -16.58/-22.73 °
3rd - error: 6.94 ©

Abs: -77.90°/27.14°
Rel: -9.48°/-20.58°
Query Photo

Abs: -80°/25°
Rel: -11.58°/-22.73 ©
15t - error:2.90 ©

Abs: -80°/20°
Rel: -11.58°/-27.73°
2nd - error: 7.40 °

Figure 3: Example of Shadow-Rank re-ranking. The top 3 recom-
mended shadow enumerations are presented and the ground-truth is
highlighted in green. Angular errors, absolute and relative sun angles
are provided for reference. Besides the top result, other recommenda-
tions are also acceptable for using in shadow alignment.

3.1.4 Shadow Alignment

Having obtained the coarse prediction from the Sun-VGG and the
re-ranked result from Shadow-Rank, we can further improve the
solar orientation determination with the shadow alignment opti-
mizer, which iteratively maximizes the total length of corresponding
shadow boundaries between snapshots and shadow masks: see Fig.
4. The shadow mask is a binarized image generated by a shader
which compares the pixel-wise distance to the sun with the raster-
ized depth of the virtual solar projector. The shadow boundary can
be extracted by line segment detection (LSD). For each line seg-
ment in the input image, we look for a corresponding match in the
shadow mask with minimum distance, and similar orientation, in
a certain range. We enumerate every possible solar azimuth and
elevation angle to find the best estimate, the one with the largest
total length of corresponding shadow boundaries. In the first round
of enumeration, we try different solar angles at an interval of 5°,
starting from recommended results of Shadow-rank and the predic-
tion of Sun-VGG, and decrease this to 0.5° in the second round,
starting from the best result previously found. We apply an early
stop if a pair of solar angles is better than others within 30°, and
start a new round of enumeration if the current guess is close to
the boundary of the enumeration interval. As a result, the initial
guess determined by previous predictions is vitally important: it not
only can speed up enumeration, but also reduce the chance of failure
caused by wrong shadow cues. The number of recommendation
adopted from Shadow-rank is determined by the performance of the
primary photo. Without prior distribution knowledge of the dataset,
it can be arbitrarly set to 20.

3.2 Rendering and Optimization

To simulate the real-world illumination in virtual scenarios com-
prising 3D meshes, textures, geographical information, registered
videos and other formatted semantic data, we implemented our own
rendering engine using OpenGL. As shown in Fig. 5, we integrated
shader programs, textures, and buffers in our rendering engine. For
shadow rendering, we use a shadow mapping strategy, storing the
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Figure 4: Final solar position estimation with automatic shadow align-
ment optimization. Above: snapshot and shadow masks before
shadow alignment. Below: results after shadow alignment. Yellow:
LSD features of images. Green: LSD features of shadow masks. Pur-
ple: matched LSD features. The shadow alignment optimizer reuses
solar position estimations from previous layers and calls the renderer
to dynamically generate shadows. The shadow with strongest shadow
edge correspondence is recorded.
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& Shadow mask
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Figure 5: For real-time performance, we implement GLSL shaders
for 3D model rendering. Left: a fused rendering of an illumination
augmented 3D scene. Right: decomposed shader outputs stored in
GPU buffers. We combine different shaders for different rendering
tasks. Texture and frame buffers are used for data exchange.

depth buffer of a sunlight projector into an 8K texture for shadow
detection. After placement of the sun as a directional light source,
we use shaders to optimize other shading parameters, and iteratively
render and evaluate snapshots. We use a modified reflective Blinn-
Phong model for shading, in which objects are made of intermediate
materials between perfectly diffuse and mirror-like surfaces. Ambi-
ent color and attenuation are ignored. For each fragment, the output
color is computed by:

C = co(csun(n-14(n-h)*) 4 coky)

_ (l4v)
h= [1+v]

(&)
6

where c, is the object color obtained from the model texture. We
only consider colors from two light sources, the sunlight color cgyn
and the skylight color cgy. The surface normal n, sunlight direction /,
viewing direction v and specular exponent s are also used for shading;
the negative dot product between them being ignored. We assume
that the model scatters incident skylight equally in all directions,
and the color of the sky is globally unique. To further optimize the
illumination, we minimize the mean squared error of pixels in a
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least—square sense:

argmin Z (C(p)_C/(P7Cskyacsums))2

CskysCsunsS peQ)
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where C and C’ are RGB colors for each pixel p in image coordinates
Q. We use C in the inpute images and C’ in the augmented snapshots
from the renderer, constrained by parameters including ¢y, csun and
the specular exponent s. [llumination parameters can be optimized
by standard gradient descent iteratively evaluating the difference
between the photograph and the rendered image.

3.3 Augmented Dataset

Our datasets come with 3D meshes, textures and pixel-wise depth
captured from the MR. With the help of an SfM pipeline and
multiview-stereo methods, we are able to reconstruct models us-
ing images from oblique photography, sampled from the camera on
a DJI Phantom 4 RTK (84° FOV, mechanical shutter, 1 inch CMOS
with resolution 4000 x 3000 for photography and 1080P for video).
[lumination ground-truth is labeled dynamically by the MR renderer
in the virtual sub dataset. Real photographs and video frames are
manually labeled. We currently provide 10 urban scenes sampled
from 4 cities. In each dataset, we provide 24,000 renderings for
training, 3,000 for validation and 3,000 for testing. We also provide
labeled real photographs and videos for additional testing. Each test
case contains pixel-wise depth and shadow which could also be of
use in other virtual reality applications. Unlike the KITTI [6] and
Sun360 [24] datasets, our dataset is not restricted in terms of camera
pose and solar position. A detailed comparison is shown in Table 1.

Table 1: Dataset comparison.

Features KITTI-Sun [6]| Sun360 [24] DSNet
Photographs 3314 38814 6417
Simulations 0 0 240K+
Viewport street view panorama free
Scene highway urban urban
Sun positions limited limited unlimited
6-DOF Camera no no yes
Depth sparse no dense
Video yes no yes
3D Mesh no no yes
Pixel-wise shadow no no yes

3.4 lllumination Enhancement

While illumination estimation benefits from accurate camera pose in
terms of rendering-based optimization, it can also enhance camera
pose estimation through data augmentation.

3.4.1

NetVLAD tackles large scale visual recognition by accurately rec-
ognizing a query photograph using a deep neural network. Although
we do not apply NetVLAD [1] during shadow ranking, we use it
during model updating to perform global retrieval of images similar
to the query image is a necessary precursor to localization, so that
feature mapping can be deployed, inspired by [17].

We enhance NetVLAD by augmenting the training datasets with
illumination-based data. Augmented shadows can not only provide
robust local features, but can also guide clustering according to the
sunlight direction. We note that the 2D convolution kernels used
by NetVLAD are not perspective invariant. However, the simulated
illumination provides approximately perspective invariant patterns
like edges, shading on eaves and pole shadows. Experimental verifi-
cation of this assertion is given later.

Place recognition
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3.4.2 Long-term localization

In model updating and MR rendering, accurate localization of the
input images is extremely important. However, due to significant
appearance change and illumination inconsistency, localization al-
gorithms like SuperGlue [18], which is based on SuperPoint [4]
deep features, can no longer achieve the desired performance. The
reasons are mostly similar to those in place recognition, with respect
to features, limitation of convolution receptive field, datasets and
evaluation metrics. SuperGlue has different characteristics from
NetVLAD. First, SuperGlue uses a synthetic shape dataset for pre-
training; it consists of rendered patterns that are integrated into
the MagicPoint-base detector. Illumination simulation here plays
a similar role, by feeding more augmented features into the net-
work. In extreme cases where the majority of the scene is covered
by shadows, like Fig. 6(d), augmented ground patterns can still be
reliably matched. SuperGlue establishes pointwise correspondence
with a graph neural network. With accurate illumination-based data
augmentation, we can strengthen such bundled correspondences by
providing more illumination consistent keypoints.

4 EXPERIMENTS

This section expounds on detailed experiments of our framework.
We present experimental evaluations on illumination estimation and
data augmentation. We aim to prove that our approach can handle
large-scale illumination estimation tasks with flexible applicability,
and its enhancement of localization is remarkable. Our self-collected
datasets with free-viewports and random sun positions are presented.
All experiments are deployed on a personal workstation with 6 cores
3.2 GHz processors, 32 GB RAM and a single NVIDIA GeForce
RTX 2080Ti GPU. The MR rendering engine is working on an
OpenGL pipeline with GLSL shaders. The procedure we use to train
the deep neural network is supported by PyTorch1.6 framework with
Python 3.6 runtime environment. For sun position evaluation, the
cumulative prediction errors of relative solar angles are considered,
which is the same metric used in Sun-CNN [16]. For enhancement of
the illumination-based data augmentation, statistical and visualized
evaluation are presented.

4.1
411

For evaluation purposes, we compare the DSNet result with deep
learning based solar position estimation networks, including Sun-
CNN [16], SunOriNet [10] and Yannick’s method [8]. Prediction
errors of these different approaches is summarised in Table 2, and
visualized in Fig.8. Our method clearly outperforms others on all
metrics. In all tests, the VGG [20] network surpasses others be-
cause of its fixed kernel size and deeper convolutional layers, at
the expense of much slower convergence. After training on our
self-collected datasets with illumination-based data augmentation,
the Sun-VGG sub-network showed improved performance by lever-
aging both color and shadow information. We also demonstrate that
the re-ranking network filtered by the coarse solar position estimate
works as expected. The angular errors of the shadow ranking system
are evaluated by comparison between the top ranked prediction and
the ground-truth solar position. The recall@1 rate is 37.71%; here
the prediction error of the top ranked result is only related to the
enumeration precision, which is set to 5° in production. However,
due to the cosine loss function used in training, other top ranking
results are still close to the ground-truth, as shown in Fig. 3. The
average ranking of the ground-truth is 7.03, which means that for the
run-time shadow alignment optimization, we should search a range
of solar angles to find the globally best match. However, when the
error from the Sun-VGG filter is larger than 52.6°, the performance
of the re-ranking network suddenly drops, possibly due to failure to
pair shadow enumerations. The final optimized result after shadow

lllumination Estimation Experiments
Results

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on June 15,2021 at 01:39:34 UTC from IEEE Xplore. Restrictions apply.



licated window patterns

. Z \

(d) Snow and specular reflection (e) Low texture (f) Tree shadows

Figure 6: Examples with challenging patterns (red) for primary shadow extraction and illumination estimation. Images are cropped for better
visualization. For every input image (left), our method is able to estimate the solar position, then simulate it in a 3D MR world (right). Shading
parameters are also optimized.

alignment can be directly integrated into the MR renderer for im- comparing different combinations, we draw the conclusion that a
mediate simulation and optimization. Next, the sunlight color and better filter is more likely to remove more outliers in the ranking,
skylight color for Blinn-Phong shading are estimated by the mini- resulting in lower prediction errors. The optimal combination is
mization of the pixel-wise visual difference using the render-based our Sun-VGG filter applied to our Shadow-Rank network. We also
optimization strategy. Final estimation results are shown in Fig. 6, tested the Shadow-Rank component independently without a filter
in most cases for examples for which traditional shadow detection as a control. However, Shadow-Rank can be enhanced by prior
methods are inapplicable or give inaccurate results. Our model is knowledge of geolocation, time period and data, as shown in Fig. 3.

able to estimate accurate sun positions in these hard cases. Yan-
nick’s method [8] fits a panorama dataset with fixed camera height,

because it looks for cues from the sky and sun directly in the image. Table 3: Ablation study on DSNet components.

It generates implausible camera positions when the sun is behind the
camera. SUnCNN [1.6] anq Su.nOriNeF [IQ] can handle stree.t-view Method MAE (°)
data but lose the sun in a bird view, which includes many ambiguous
shadow patterns. However, after training on massive datasets created
by the MR renderer, our model is able to recognize the scene and the Sun-VGG-RGB 50.27
structured light information inside it, which is extremely beneficial Sun-CNN [16] + Shadow-Rank 50.92
to illumination estimation. Yannick’s [8] + Shadow-Rank 42.02
) - . SunOriNet [10] + Shadow-Rank 49.25
Table 2: Angular errors in solar position prediction. Shadow-Rank(no filter) 67.1
Ours(Sun-VGG + Shadow-Rank) 3291
Method Min (°) | Max (°) | MAE (%)
Sun-CNN [16] 1.07 | 176.57 52.69
Yannick’s [8] 1.90 | 173.73 51.57 4.2 Illlumination Enhancement Experiments
SunOriNet [10] 047 | 166.81 52.92 . o .
DSNet-coarse 127 | 158.02 43.81 ‘We next tested how our illumination-based data augmentation can
DSNet-reranked 0.18 | 141.12 32.91 enhance two major applications related to modeling and fused ren-
DSNet-aligned 0.03 8.81 1.21 dering: place recognition and camera localization. We used our own

datasets, and organized them according to solar position used for
illumination simulation. We first collected a query group with 240
images from different viewports, then rendered 12 x 7 = 84 search

4.1.2 Ablation study groups using different relative solar elevation and azimuth angles.

To evaluate our design decisions and examine performance of each The interval of elevation angle was set to 5° and azimuth angle, 20°,
sub-network, we designed a group of ablation experiments, with within different ranges accordingly. This setup was based on real
results in Table 3. We first examined the improvement provided by geolocation of the query photographs, taken in cities in the northern
the Shadow-VGG sub-network by removing the shadow channel hemisphere. In each search group representing different illumination,
from the input to the Sun-VGG sub-network, denoted Sun-VGG- we randomly sampled 2400 snapshots from random viewports, with
RGB. Its result is slightly better than Yannick’s, because of its color, shadow, depth and pose information given. We queried 240
use of a deeper VGG network. We then tested the performance images from 204K candidates to determine which group performs
of different filters; these provide the majority of the gains. By better by evaluation of the recall rate and localization accuracy.
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Figure 7: Enhancement of SuperGlue, showing how query photographs (a) can be better localized by illumination simulation. Due to the significant
difference between viewport and appearance, SuperGilue fails to find acceptable matches in original renderings (d). To solve this problem, we
estimate the global illumination and simulate it in augmented renderings (c). SuperGlue successfully discovers more robust features with higher

confidence (e). Red highlights: regions with obvious improvement.
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Figure 8: Cumulative angular error from solar position estimation
methods. Our final result after shadow alignment (red) far exceeds
the prior state-of-the-art: 99.5% prediction errors are smaller than 6°.

4.2.1

The first enhancement experiment tested the NetVLAD network’s
recognition ability for query images. Photographs in the test group
were not part of the training or evaluation data. We used 10-fold
cross-validation for training. To label the ground-truth in each
illumination group, for each query photo, we inserted a virtual
rendering with the same camera pose. In all test groups, NetVLAD
is able to recognize the insertions with a different recall rate. The
result is shown as a heatmap in Fig.10. We see that the group with
most similar illumination as the query photographs performs best,
especially on recall@5 metrics: see Fig. 10. An example can be
seen in Fig. 11, in which we show how varying data augmentation
can effect NetVLAD retrieval. From these results we conclude that
performance of NetVLAD is linearly related to illumination change,
emphasising the need for inconsistent illumination to be avoided
in place recognition. For 3D model reconstruction, in most cases,
it desirable to have little or no illumination change between the
original group of photographs and the update group.

NetVLAD place recognition
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Azimuth difference in degree

Figure 9: Enhancement heatmap for SuperGlue and different illumi-
nation groups. Each cell represents average localization error for a
certain illumination dataset. The lowest average localization error is
in group (0, 0) without illumination difference. The similar heatmap
reflecting the rotation error is omitted.

4.2.2 SuperGlue localization

The second enhancement experiment tested the SuperGlue network’s
camera pose estimation. By giving query images, we first applied
NetVLAD to retrieval images. Then we looked for matching Su-
perPoint keypoints and found the SuperGlue mapping. With the
pixel-wise depth information extracted from the render buffer, we
registered each 2D keypoint to the virtual 3D world through the
coordinate transformation. Finally we used RANSAC PnP [27] to
acquire the 6-DOF camera pose. To eliminate the influence brought
by NetVLAD and test SuperGlue individually, we use the same re-
trieval result for all groups. Results are shown as a heatmap in Fig.9.
It clearly demonstrates that correct illumination simulation enhances
the representation power of the network by reducing the localization
error to a global minimum (in purple). However, we do not find a
linear trend like that in the NetVLAD experiment. In circumstances
with specific illumination, the performance of SuperGlue drops
significantly: SuperGlue can be misguided by ambiguous shadow
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Figure 10: A heatmap showing the enhancement of the NetVLAD in
different control groups rendered using different illumination. Each grid
represents an average recall rate(the higher the better) of NetVLAD
retrieval. The best performance is achieved by the rendering group (0,
0) without illumination difference. On other heatmaps using different
recall metrics, a similar linear trend is observed.

patterns with a systematic shift. However, in datasets with illumina-
tion differences larger than 60°, SuperGlue is observed to have the
ability to filter out wrong augmented patterns. SuperGlue achieves
best performance on the dataset without illumination differences be-
tween the query images and the test group. An intuitive visualization
of the result is presented in Fig. 7. With accurate solar parameters
acquired from DSNet, the run-time renderer can augment the entire
3D scene using the optimized illumination simulation. SuperGlue
applied to the augmented data is able to increase the number of
correct matches with higher confidence. It also improved the spacial
distribution of keypoints, especially on none-planar objects. Hence,
the diversity of the data is improved. As a result, the following
PnP algorithm can predict more accurate camera parameters with
stronger epipolar constrain.

In production, we first arbitrarily choose a primary photograph
from the NetVLAD retrieval set for long-term localization. Without
illumination-based data augmentation, SuperGlue can still predict
a coarse camera pose. We then acquire the solar parameters from
DSNet, and apply SuperGlue iteratively. This recursive optimization
can be repeated until the angular change in the solar position is less
than 1°. The final result is that both the camera pose and the solar
parameters can be accurately acquired. Then the solar parameters
can be fixed for other photographs in the same batch.

4.3 Discussion

Experimental results for illumination estimation and its improve-
ment to camera localization have both been given. They indicate
that both benefit from each other in different ways. However, their
tolerances to systematic errors are different. In DSNet, solar po-
sition estimations are sensitive to camera pose errors. NetVLAD
is sensitive to illumination and its performance depends linearly
on illumination consistency. SuperGlue is more robust but can be
misled by certain shadow patterns, depending on terrain appearance.
Both achieve best performance on the dataset without solar angle
errors.

For real production cases, systematic illumination differences
between the photograph and the original scene should be avoided.
For the first run of retrieval and localization without data augmenta-
tion, it is recommended to approximately estimate the recall rate and
error distribution. Then, it is suggested to iteratively use localization
networks and DSNet to obtain both accurate camera poses and solar
parameters, from coarse to fine. Once the primary photograph is
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Figure 11: Enhancement of NetVLAD. For a given query photograph,
we look for matches from control groups with illumination augmented
renderings, in the form of relative elevation/azimuth angles. Green:
ground-truth images with closest camera poses in each group. The
group without systematic illumination errors provides the best retrieval
performance. Camera pose and depth information are not available
in the retrieval step. Query photographs are directly indexed and
compared with virtual renderings without masking.

fully calibrated, we can fix the solar parameters for the rest of the
photographs in the same batch.

5 LIMITATIONS

The proposed method relies on high quality 3D models, which can
be obtained from oblique photography. However, it is not limited to
aerial scenarios. In early work, experiments on models reconstructed
from other types of photographs were also conducted, such as the
open Lund [5] dataset. Models that already have strong shadows
are not suited to this method. This issue becomes less critical when
global illumination averaging is applied using reconstruction tools.
The initial camera pose is required, and a coarse estimation of the
primary photo is necessary. Our method is computationally inten-
sive. The highest rendering resolution is 1920x 1080 at 60 fps for
visualization and optimization, and 224 x 224 for data augmentation
and indexing. Depending on the GPU, the default maximum number
of allowed triangles for smooth rendering is 10 million.

6 CONCLUSIONS

In this paper, we have presented an illumination estimation method
for model updating by solving the illumination inconsistency prob-
lem. Our method first extracts shadows from the image with shading
information, using them to obtain a coarse solar position estimate; it
employs a re-ranking network for optimization. The final output of
the shadow alignment optimizer provides pixel level estimates and vi-
sual accuracy. Our results surpass those of existing approaches; com-
prehensive experiments demonstrate the usefulness of our method
in virtual reality applications. We show that a well-integrated illumi-
nation simulation can enhance modeling and rendering performance.
The key contribution is the organic integration of MR rendering with
deep learning based geometry understanding. Our self-collected
dataset is available at http://nave.vr3i.com/.
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