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We address the task of establishing visual correspondences between two images depicting main objects
of the same semantic category. This task encounters various challenges such as background clutter, intra-
class variation, and viewpoint variations. Existing works are dominated by end-to-end training methods
that rely on redundant calculation or large amounts of manual annotations, and cannot generalize to
unseen object categories. In this paper, we propose to construct a weakly supervised object-aware con-
volutional neural network architecture for semantic feature matching, while being trainable end-to-end
without the requirement for manual annotations. The main component of this architecture is a similarity
filter module containing a trainable neural nearest neighbors network. Since training data for semantic
feature matching is rather limited, we introduce a simple and effective foreground selection strategy
to produce the foreground masks. Using these masks as a form of weak supervision signal for correspon-
dence task and tackle the background clutter. Extensive experiments illustrate that the proposed
approach outperforms the state-of-the-art methods for semantic feature matching on multiple public
standard benchmark datasets.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Establishing correspondences, which is traditionally defined as
calculating the associations among multiple images depicting the
same scene or object, is one of the fundamental problems in com-
puter vision and graphics. This has been widely used in a variety of
graphics fields such as image stitching [1,5], 3D reconstruction
[3,4], and stereo matching [2]. They search for the correspondences
with different handcrafted features, typically Scale-Invariant Fea-
ture Transform (SIFT) [10], Histogram of Oriented Gradient
(HOG) [11], Speeded Up Robust Features (SURF) [36], and some
improved descriptors [49]. Some researchers have also been com-
mitted to seeking better matching techniques [51,52,54,55]. With
the breakthrough of strong representation capabilities of the Con-
volutional Neural Networks (CNNs), many excellent matching
algorithms are proposed [47,48,50,53], and semantic
understanding-based matching has been also developed in the lat-
est years [13,14]. Essentially, it is the basis for some rising fields
such as semantic object segmentation [43], object detection
[6,37], and Re-identification [7].
Semantic feature matching is concerned with estimating the
correspondences between two objects of the same semantic cate-
gory in different images, which can be roughly divided into two
branches. The first branch aims to construct a post-processor
[21,14,22]. The extracted handcrafted features [10,22] or the
learned CNN features are taken as inputs to the designed processor
[14,15]. Matching constraints are used to minimize appearance
matching cost and enforce geometric consistency between all can-
didate feature pairs. However, it generally obtains low accuracy
performance that cannot meet the requirements for further apply-
ing, resulting in rarely used for semantic feature matching. Another
branch of the methods is based on a correlation filter and CNNs. A
similarity filter is trained by encoding the spatial consistency and
semantic associations between intra-class objects. Existing meth-
ods develop different convolutional neural network architectures
for correspondence task which are trainable end-to-end to improve
the accuracy [18–20]. But they generally prefer to estimate the
parameters of the geometric transformation relating the input
images instead of the matched features, resulting in a narrower
applicability. Meanwhile, they are sensitive to the interference fac-
tors present in the images, such as background clutter, and intra-
class variation. Besides, shallow neural network and large-kernel
convolution increase the computational complexity [18]. And
[19] strongly relies on the synthetic datasets which reduces the
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generalization capabilities of the model for unseen object
categories.

In this work we establish sparse feature associations between
intra-class semantic objects, as shown in Fig. 1. It is challenging
in background clutter, intra-class variation, changes in viewpoint
and illumination, and non-overlapping of scenes or objects.
Inspired by the state-of-the-art semantic feature matching
method, i.e., NCNet [18], we construct a weakly supervised convo-
lutional matching network for correspondence task. The key is to
search for sufficient salient features and estimate the correspon-
dences between two objects by fully exploiting their similar
semantics. In contrast to the original version [18], we aim to design
an object-aware matching mechanism to alleviate the background
clutter. Essentially, our approach adopts a salient foreground selec-
tion strategy to produce the foreground masks, which provides a
form of weak supervision signal to train a re-ranking convolutional
neural network. This mechanism can effectively constrain the
nearest-neighbor searching scope, and perceive main semantic
regions. Specifically, we introduce a common 2-D re-ranking net-
work instead of a complicated 4-D neighbourhood consensus
module.

We propose a weakly supervised object-aware convolutional
neural network architecture for semantic feature matching, con-
sisting of three main modules: feature extraction, similarity mea-
surer, and similarity filter, as shown in Fig. 2. Given two input
images depicting main objects of the same semantic category, we
first adopt a very weak supervision in the form of ImageNet pre-
trained feature representations [28] for each image, which are
analogous to dense local descriptors and readily available. This
obtains the object-specific attribute representations and low-
level contexts such as colors and edges. Then we implement an
attribute transfer process to eliminate the interference caused by
the differences in color space. The purpose of this process is to
Fig. 1. The original images are passed through the proposed matching network
architecture, which is trainable end-to-end without the requirement for annota-
tions, to produce the matched semantic features. Furthermore, we locally deform
and align the original images with appearance differences using the resulting
correspondences. The keypoint pairs should be clustered in the main semantic
regions and located at the salient positions.
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simultaneously alleviate the confusion caused by the low-level
visual features, and provide normalized data for further filtering.
Further, a common correlation layer is used to match the feature
representations across images into the tentative correlation maps,
namely the initial correlation maps.

Finally, a similarity filter module is introduced to produce the
resulting correspondences. We first introduce a cycle consistency
constraint to weight the initial correlation maps. This can initially
distinguish between the inliers and outliers from the collection of
the correlated features, encourage one-to-one matching, and
reduces the computational load of the filter network. Then we
develop an object-aware matching mechanism. A neural nearest
neighbors network (3N-Network) is driven by designing a seman-
tic perception loss function. Motivated by the notion of the classi-
cal k-nearest neighbor matching strategy, this module enforces the
nearest-neighbor searching process under a confidential salient
constraint, which effectively mitigates the interference caused by
the background clutter. Specifically, the filter module is used to
accelerate calculations, and detect the positive correspondences
by fully exploiting the local associations between objects. Analo-
gously to a mutual nearest-neighbor matching process, this mod-
ule can parse more local nonrepresentational features from
images. The main contributions of this work are three-folds:

� We propose to construct a weakly supervised object-aware con-
volutional matching network architecture, while being train-
able end-to-end without the requirement for manual
annotations.
� We develop an object-aware matching mechanism. A simple
and effective foreground selection strategy is incorporated into
a semantic perception loss to enable weakly-supervised learn-
ing. This enforces the nearest-neighbor searching process in
the main semantic regions, reduces the computational load,
and enhances the capability of extracting the salient features.
� Extensive experiments thoroughly validate the effectiveness of
the proposed approach on multiple public standard benchmark
datasets, where it also outperforms state-of-the-art methods for
semantic feature matching.

2. Related work

Semantic feature matching has gained rising attention in the
last several years. Recent works are concerned with learning-
based matching, and continue to make new advances.
2.1. Flow-based methods

Early works are mainly based on the notion of flow and the
handcrafted feature descriptor [10]. The first version calculates
the displacement vectors of discrete pixel-points using a hierarchi-
cal optimization strategy. The main idea is to enforce geometric
consistency to minimize the appearance matching cost [8,9]. Fur-
ther, a spatial pyramid matching framework is presented by Kim
et al. [21]. They regularize the correspondence consistency from
an entire image, to coarse grids, to each pixel rather than only
pixel, which improves matching accuracy in the face of challenging
intra-class variations. But these are all limited to the complexity of
matching the scenes or objects with background clutter. It is diffi-
cult to effectively distinguish between the main semantic region
and background. To tackle this problem, object detection method
is introduced to narrow down the search regions [22,23]. Most of
these works rely on geometric constrains equivariance to transfor-
mations. However, since handcrafted descriptors are sensitive to
appearance variations and originally designed for the same scene
or object, they are not suitable for semantic correspondence.



Fig. 2. Overview of our approach. Given two input images IA and IB depicting main objects of the same semantic category, which are passed through two identical
convolutional networks which share parameters for feature extraction in (a). Then we propose to perform an attribute transfer process, and then introduce a correlation layer
to produce the initial plausible correlation maps SAB and SBA shown in part (b), which contain the scores of all pairwise. Further, a cycle consistency constraint is used to
weight the initial correlation maps, and encourage one-to-one matching. Finally, the resulting correspondences are established by developing a neural nearest neighbors
network (3N-Network), and a salient foreground selection strategy is adopted to produce the foreground masks, which provides a form of weak supervision signal for
correspondence task, as shown in (c). Specifically, the proposed matching network architecture aims to locate salient features and produce the matched keypoint pairs
instead of only learning the transformation parameters.
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2.2. CNN features based post-processing mechanisms

More recently, some works are concerned with determining
correspondences using the learned CNN feature representations.
They first adopt some pre-trained convolutional neural network
architectures for classification, such as AlexNet [24] and VGG-19
[25], for feature extraction. Then a post-processor is designed for
inlier detection, and to produce the dense correspondences. [14]
formulated this task as solving a sparse Markov Random Field
(MRF) model to enforce geometry consistency and appearance con-
sistency between intra-class objects. [15,16] introduced a hierar-
chical optimization strategy to further improve the
correspondences. They both generate a convolutional feature
map pyramid using a pre-trained VGG-19 model [25], and the cor-
respondences are found at each level from the top pyramid levels
to the bottom ones. [35] combined convolutional pyramid and geo-
metric consistency to perform a reverse mapping hierachical corre-
spondence process. The CNN network is only used to extract the
semantic features, and the whole process is not trainable. These
works show better performance of using the CNN features for
semantic feature matching compared to the handcrafted features,
and they also have no requirement for additional annotations.
But the utilization of deep neural networks still needs to be
improved and the accuracy performance is insufficient for further
applying.
2.3. End-to-end trainable CNNs

End-to-end trainable matching network is driven by the power-
ful information mining and fitting capabilities of deep neural net-
work architectures. Rocco et al. [20] presented a geometric
matching network which is trainable end-to-end on the hand-
crafted datasets. Their architecture performs the standard steps
of feature extraction, feature matching, and simultaneous inlier
detection and model parameter estimation. Generally, the general-
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ization capabilities of their method among different scenes is
weak, and the matching model strongly relies on the synthetic
datasets that are rather costly. To mitigate these problems, a scor-
ing mechanism is used for outlier rejection [19], and a pyramid
regression network architecture is constructed by stacking the pre-
viously mentioned matching module [39]. Similarly, an adaptive
learning model is designed to produce an effective CNN feature
descriptor [27,17]. [19,20] both focus on estimating the parameters
of the geometric transformation relating the input images, and
aligning the salient semantic regions rather than establishing pairs
of the matched features. We aim to implement semantic feature
matching which provides sparse feature pairs for a variety of
applications.

Kim et al. [40] presented a recurrent transformer matching net-
work. Their main idea is to adopt a self-supervision training mech-
anism to avoid manual annotations, whereas resulting in high
complexity. Rocco et al. [18] proposed a neighbourhood consensus
network to find sparse correspondences between a pair of images,
which is trainable end-to-end in a weakly-supervised manner.
However, they parse all possible correspondences by traversing
all the feature representations, increasing the amount of unneces-
sary calculations and the possibility of the outliers. In addition, Lee
et al. [42] constructed their matching network framework by com-
bining the notion of flow and deep neural network. They learn the
semantic flow by estimating the transformation parameters with
the need for additional foreground masks. Specifically, existing
works are concentrated on handling the intra-class variation by
designing different matching networks, and our approach aims to
alleviate the background clutter developing an object-aware
matching mechanism.
3. Proposed approach

In this section, we describe the proposed framework for seman-
tic feature matching in detail. As shown in Fig. 2, given a pair of



Fig. 3. Each initial correlation map contains the one-way scores of all pairwise from
the original image to the target image. A feature representation p may match
multiple features such as q, and n shown in part (a). A cycle consistency constraint
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images depicting main objects of the same semantic category, a
pre-trained CNNs model is first used for feature extraction. Then
we introduce a color space homogenization method to perform
an attribute transfer process, and a correlation layer is adopted
to produce the initial tentative correspondence maps aross images.
Furthermore, a cycle consistency constraint is used to enforce the
one-to-one matching constraint. Finally, a neural nearest neigh-
bors network is developed to produce the resulting correspon-
dences. The resulting pipeline can be trained in an end-to-end
manner for correspondence task.

3.1. Feature extraction

The first step of the proposed approach is feature extraction,
for which we adopt a standard CNN model without fully con-
nected layers. We formulate it as a siamese architecture such that
the two input images are passed through two identical convolu-
tional networks which share parameters. This module extracts
discriminative image features through multiple convolutional lay-
ers, and produces the corresponding feature maps for each image.
Given an image pair IA; IBð Þ, each image is taken as an input to the
ResNet-101 model [28] which has superior performance of pars-
ing high-level semantics [12,13]. Specifically, feature representa-
tions FA; FBð Þ are produced from the Conv4 layer of the CNN
model initialized on ImageNet [31] for the task of image classifi-
cation. They are H �W � d tensors, which are denoted as dense
H �W spatial grids of d-dimensional local features and a feature
map F 2 RH�W�d.

3.2. Similarity measurer

Below, a similarity measurer is designed to determine the initial
plausible correspondences for further inlier detection. Firstly we
adopt a color space homogenization method to alleviate the inter-
ference caused by the differences in color space, and normalize the
discrete feature representations. Then a correlation layer is intro-
duced to measure the similarities between the normalized CNN
features, and produce the initial correlation maps that contain
the scores of all pairwise. Analogously to the classical matching
method [10], only descriptor similarities and the corresponding
spatial positions should be considered instead of the original
descriptors themselves.

Generally, there are color differences and changes in illumina-
tion between the input images with natural scenery. Meanwhile,
the robustness of matching can be first enhanced by integrating
the regularization theory. A color space homogenization method,
which is formulated as an attribute transfer model, is introduced
to simultaneously handle these. Given the feature representations
FA; FB 2 RH�W�d, we adopt a Z-Score normalization method with
introducing additional balance factors, as detailed

bFA ¼ bAB �
FA � l FAð Þ
r FAð Þ þ cAB ð1Þ

where l �ð Þ;r �ð Þ 2 Rdrepresent the spatial mean and standard devi-
ation of the feature representations in each channel seperately,
the coefficients bAB; cAB 2 Rd are used to eliminate the interference
caused by the differences in color space between images. Please
refer to [38] for further details.

Next, a correlation layer is introduced to measure the similari-

ties between the normalized feature representations bFA and bFB.
We adopt a cosine similarity metric function to generate the initial
correlation map SAB that contains the one-way scores of all pair-
wise from the image IA to IB, denoted as

S : RH�W�d � RH�W�d ! RH�W� H�Wð Þ ð2Þ
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SAB ¼ SAB p; qð Þ ¼
bFA pð Þ bFT

B qð ÞbFA pð Þ
��� ��� � bFB qð Þ

��� ��� ð3Þ

where p and q are the positions of the two feature representations
in the input images IA and IB, respectively. �k k denotes the L2 norm.
The same method can be used for SBA.

3.3. Similarity filter

This module aims to filter out most of the outliers from the ini-
tial correlation maps SAB and SBA, and produce the resulting corre-
spondences. Firstly we adopt a cycle consistency constraint to
weight all the candidates, and preliminarily distinguish between
the inliers and outliers. Then a neural nearest neighbors network
(3N-Network) is designed for inlier detection, which is driven by
developing an object-aware matching mechanism. The details are
as follows.

Cycle consistency constraint. For our semantic correspondence
task, the resulting correspondences should agree with the one-to-
one mapping constraint. Whereas the initial similarity metric fol-
lows one-to-many rules, each feature representation corresponds
to H �W scores in the initial correlation maps. Furthermore, the
correspondences with high scores can be considered to be inliers,
and each feature may match multiple features shown in Fig. 3(a).
Thus we introduce a cycle consistency strategy to encourage one-
to-one matching. Analogously to a mutual nearest-neighbor
matching process among images [26], we estimate the association
relationship between two feature representations with each other
to enforce their one-to-one matching constraint, as well as calcu-
late the associations p! q and p q, as shown in Fig. 3(b).

To effectively filter out the outliers, a cycle consistency con-
straint is adopted to weight the initial correlation maps, which is
interpreted as the evaluation coefficients of the correlation maps.
We take SAB as the example in the following steps, and the weights
for each candidate is denoted as

wA!B ¼ SAB pi; qð Þ
max SAB pi; qð Þf g ð4Þ

wB!A ¼
SBA qj; p

� �
max SBA qj;p

� �� � ð5Þ

where the denominator, max SAB pi; qð Þf g, searches for the maximum
scores from the image IA to IB. Each feature representation pi has N
is used to encourage one-to-one matching in (b).
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scores corresponding to N feature representations q in IB. The corre-
lation map is reinterpreted as

bSAB ¼ wA!B �wB!A � SAB ð6Þ
For a candidate pair pi; qj

� �
;wA!B pi; qj

� � ¼ wB!A qj; pi

� � � 1 when
obeying the cycle consistency constraint shown in Fig. 3(b). Other-
wise, wA!B pi; qj

� � �wB!A qj; pi

� �! 0. This is equivalent to zeroing
the scores of the outliers to ensure one-to-one matching.

The same method is used for SBA, and to produce the corre-

sponding bSBA. This strategy preliminarily distinguishes between
the positive and negative correspondences, reduces the computa-
tional complexity of the filter network, and improves the fitting
and inlier selection capabilities of the matching network. Specifi-
cally, this constraint is only used to encourage one-to-one match-
ing, which can be considered as a preprocessing operation of the
filter module.

Neural nearest neighbors network. The correlation maps bSAB

and bSBA contain the scores of all pairwise, and rich contextual infor-
mation. The neighbourhood of a positive correspondence covers
other positive correspondences with high scores, because there is
a local correlation between the CNN features. In contrast, no suffi-
cient correspondences are used to support the outliers [29]. There-
fore, we further parse the context and the correlations among
features using a deep neural network. The idea presented by Rocco
et al. [18] can be used, but they horizontally increase the dimen-
sion of each convolutional layer based on a shallow convolution
framework (i.e., three layers for semantic correspondence). A key
observation that, a deeper neural network model has better mining
capabilities of the salient features [28] and can implement more
discriminately mapping, compared to the corresponding shallow
counterpart. To simultaneously reduce the computational load
and enhance the fitting capabilities of the neural network, we con-
struct our neural nearest neighbors network (3N-Network) using a
common convolutional layer based on a deeper convolution model.

We implement 2-D convolution for the correspondence filtering
task, as shown in Fig. 4. Concretely, we stack six blocks of convolu-
tional layers with 3� 3 kernels, followed by batch normalization

and ReLU non-linearity. For the weighed correlation maps bSAB

and bSBA, we use the 3N-Network to produce the improved correla-
tion maps CAB and CBA, which is driven by designing an object-
aware matching mechanism. Essentially, 3N-Network weights all
matching scores following the one-to-one mapping constraint,
which is based on a classical k-nearest neighbor algorithm [10].
Each weighed correlation map is passed through the 3N-
Network. According to the scores of matching the corresponding
neighbors, a 3� 3 kernel is used to upweight and downweight
all the candidates. A candidate pair is considered to be inliers when
establishing enough positive correspondences between its neigh-
bors, as well as obtaining high score. Finally, the output has the
same dimensions as the 2D input correspondences. A re-ranking
process for pairwise matching and the corresponding non-linear
mapping operations are iteratively implemented to exploit the glo-
bal correspondence information.

Essentially, we adopt a common 2-D re-ranking network model,
which counts the matching scores of the neighbourhood of each
correspondence through convolution, so as to re-rank the corre-
spondences. Compared to neighbourhood consensus network
[18], 3N-Network achieves improvements in performance and effi-
Fig. 4. Architecture of the neural nearest neighbors network. It consists of six convoluti
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ciency while ensuring the same size of perception field. There are
two advantages as follows. On the one hand, we adopt a common
2-D convolution module with 3� 3 kernels for the correspondence
filting task. The number of the corresponding parameters is
dropped from original 25N to 18N, compared to their complicated
4-D convolution network with 5� 5 kernels. These simplify the
matching model and contribute to the convergence of the network.
On the other hand, smaller convolution kernel facilitates the capa-
bility of extracting salient features which can be transferred into
high-level semantic information with subsequent convolution.

3.4. Semantic perception Loss

We observe that, pixels belonging to main semantic region in an
image are usually matched to some pixels in other regions (e.g.,
background) in another image. To simultaneously tackle this issue
and avoid the requirement for manual annotations such as the
ground-truth correspondences or object proposal [39,42], we
develop an object-aware matching mechanism, which designs a
semantic perception loss function to drive the training of 3N-
Network. We utilize the notion of the foreground detection method
to select the salient features, and focus matching on the candidate
objects, which approximately perceives the main semantic regions.

A salient foreground selection strategy is developed to serve the
loss function for the training of the proposed 3N-Network. Firstly a
scoring scheme is used to evaluate the CAB and CBA produced by the
similarity filter. Then a simple and effective threshold selection
strategy is introduced to select the salient features, to produce
the foreground masks. Using these masks as a form of weak super-
vision signal for correspondence task. Furthermore, a restrictive
loss is designed to maximize the scores of the positive correspon-
dences. We take CAB as the example in the following steps.

For the correlation map CAB, a normalization process is first
implemented by utilizing a soft-max function:

NAB p; qð Þ ¼ exp CAB p; qð Þð ÞP
exp CAB pi; qð Þð Þ ð7Þ

where the maximum value is determined as the resulting score of
the feature representation pj, which is denoted as

bCAB pj

� � ¼ max NAB pj; q
� �� � ð8Þ

where bCAB 2 RH�W contains the resulting scores of matching each
CNN feature in image IA to the best candidate in image IB. Further-
more, it is used as a metric to filter out the outliers and select the
salient features, which approximately focuses matching on the
main semantic objects. Concretely, we estimate the mask of the
candidate region, MaskAB 2 Rh�w,

MaskAB Pð Þ ¼ 1 if TAB Pð Þ > s
0 otherwise

�
ð9Þ

where 1 and 0 represents the main semantic region and background
separately, the threshold s is set to 0:5 in our experiments, and TAB

represents the evaluation function for the saliency of the feature
representations, which is denoted as

TAB Pð Þ ¼
bCAB Pð Þ �mini

bCAB pið Þ
n o

eþmaxi bCAB pið Þ
n o

�mini
bCAB pið Þ

n o ð10Þ
onal layers with 3� 3 kernels, followed by batch normalization and ReLU.
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where e is a constant. Further, a one-way loss function, LossAB IA; IBð Þ,
is constructed as

LossAB IA; IBð Þ ¼ 1
H �W

X
P

bCAB Pð Þ �MaskAB Pð Þ ð11Þ

where LossBA IB; IAð Þ is constructed the same as LossAB. Finally we
incorporate them to the final training loss as

LOSS ¼ Label IA; IBð Þ � LossAB þ LossBAð Þ ð12Þ
To effectively avoid the potential overfitting, we add some noise

data, typically negative image pairs containing the objects belong-
ing to different categories, into training sets.

Label IA; IBð Þ ¼ �1 if IA; IBð Þ are Positive Pairs
þ1 if IA; IBð Þ are Negative Pairs

�
ð13Þ

In the training process, we aim to maximize the confidence of
the main semantic region of the positive examples, and minimize
the corresponding confidence of the negative examples. This facil-
itates continued attention to the positive correspondences and
upweights them. In contrast, the weights of the outliers and non-
salient features are reduced. They both contribute to perceive the
candidate regions. Finally we try to enhance the capabilities of
nearest-neighbor searching by exchanging the input order of the
images IA and IB. Specifically, we introduce a empirical threshold
selection strategy to produce the foreground mask using a impor-
tant hyperparameter s. This provides a form of weak supervision
signal for correspondence task. Experiments have verified its effec-
tiveness, and the threshold selection also follows a stable rule,
shown in 7. In addition, since main semantic object occupies most
of the region in the image used for training, it is beneficial to the
implementation of our method.

Algorithm 1. Training Procedure Using Standard DataSet

Require: Image dataset DS, CNN model M
Ensure: Trained CNN model M

initial s ¼ 0:5;
for training epochs do
for I in DS do
IA; IB  I;
CAB;CBA  M IA; IBð Þ;M IB; IAð Þ;
L  LOSS IA; IBð Þ;
W  update W; dL

dW

� �
;

end For
end For
4. Implementation and evaluation

In this section, we evaluate the performance of the proposed
approach on several publicly available benchmark dat-asets for
semantic feature matching. Meanwhile, the implementation
details, results, analyses, and the comparisons to the state-of-the-
art methods are provided in details.

4.1. Implementation detail

The proposed matching network framework is impleme-nted
with PyTorch [32], and we train the network on an Intel Core
i7-7700 CPU with an NVIDIA GeForce GTX 1080Ti GPU. For fea-
ture extraction, we adopt the ResNet-101 model [28] with up to
Conv4 23 layer, whose initial parameters are analogous to the
pre-trained parameters of the ResNet-101 model on ImageNet
[31] for the task of image classification. Input images are
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resized to 250� 250 producing 16� 16 feature maps that are
passed into the matching layer. The matching network model
is trainable end-to-end in a weakly supervised manner using
the Adam optimizer [33] with learning rate 5� 10�8, and a
batch size of 4. To avoid the potential overfitting, we swap
the source and target images, and add negative image pairs into
the training datasets. Specifically, we combine the learned CNN
features themselves and a salient foreground object selection
strategy to provide weak supervision information for training
instead of manual annotations. Furthermore, the early stopping
scheme is introduced to select best parameters of the matching
network during training. The training algorithm is detailed in
Algorithm 1.

We evaluate our approach with three parts which is organized
as follows. Accuracy evaluation of the proposed approach is pro-
vided in Sections 4.2.1 and 4.2.3. Robustness evaluation is provided
in Section 4.2.2. Finally we also present the qualitative evaluation
in Section 4.2.4.

4.2. Matching results

Both of quantitative and qualitative are performed on three
publicly available benchmark datasets generally used for this task.
Accuracy evaluation of the proposed matching architecture is
implemented on the Proposal Flow-PASCAL dataset [22] and
Caltch-101 dataset [34], and robustness evaluation is on the Pro-
posal Flow-WILLOW dataset [22] containing more challenging
examples. Meanwhile, the proposed approach is comprehensively
evaluated through comparisons to state-of-the-art methods for
semantic feature ma-tching, including UCNet [17], PF-LOW [22],
SCNet-AG+ [27], CNNGeo-R [20], End-to-End [19], NCNet [18],
CAT-FCSS [45], SFNet [42], CC-DCTM [46], and MaCoSNet [41]. To
validate the effectiveness of the proposed components, we imple-
ment the ablation experiments between our approach and NCNet
[18]. Note that all the comparisons are based on the same training
and test sets.

4.2.1. Results on Proposal Flow-PASCAL dataset
We first evaluate our approach on the Proposal Flow-PASCAL

dataset [22], which contains image pairs depicting different
instances of the same category, such as persons and cars. Images
from each pair are manually selected to ensure that objects have
similar poses. This dataset contains 20 semantic categories with
totaling approximately 1300 image pairs. We utilize the data par-
titioning method used in [27]. Approximately 700 image pairs are
used for training, 300 image pairs are used as the validation set,
and the remaining 300 image pairs are used as the test set for
the proposed matching network.

Evaluation Metric. The Proposal Flow-PASCAL dataset [22] pro-
vides manual annotations in each image pair as ground-truth,
which are represented as the matched pairs of keypoints on
intra-class semantic objects. So we implement the quantitative
evaluation of the proposed approach using the standard evaluation
metric for this benchmark, i.e., the percentage of correct key-points
transfer (PCK) metric [27,30]. Specifically, the annotations are not
used for the training of the proposed matching model, but only
for testing. PCK is obtained by measuring the offset between the
ground-truth position and the real location of transferring the can-
didate keypoint. A correspondence is considered to be inliers when
the corresponding offset is less than a predefined distance thresh-

old. For a sparse set of correspondences, Pi
S; P

i
T

� 	n on

i¼1
, between the

source and target images, the annotated keypoints are warped
from source image to target image using the estimated transforma-
tion / with the resulting correspondences. The PCK is calculated as
follows:
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where d �ð Þ is the Euclidean distance function.
Distthre ¼ h �max h;wð Þ; h is a tolerance factor, and h and w is the
height and width of the bounding box, respectively.

In addition, we also measure the mean intersection over union
(mIoU) for different correspondence methods on this dataset
benchmark. This metric measures the degree of overlap between
the predicted object segmentations and ground truths. The average
inference time is also measured and includes of all the pipelines of
the matching framework.

Results. Calculating PCK relies on the density and accuracy of
pairwise matching, and the estimated transformation, we evaluate
these on the Proposal Flow-PASCAL dataset [22]. The average PCK
is calculated for various matching techniques, as shown in Table 1.
We summarize the matching accuracy for state-of-the-art match-
ing techniques, and the larger PCK corresponds to more accurate
matching and transformation. Comparisons are implemented with
h ¼ 0:05;0:10;0:15, and the corresponding tolerance error for
matching is approximately 10, 20 and 30 pixels, respectively.

As it can be observed, compared to CNN feature based post-
processing methods [22,45,46], end-to-end trainable CNNs
[17,27,20,19,18,41,42] obtain better accuracy performance even
though they do not incorporate geometric consistency into their
matching model. In addition, some existing methods
[17,27,20,19,18] aim to perform the classical matching process
using the CNNs, but do not consider the essential problems, such
as background clutter. The method of SFNet [42] manually synthe-
sizes the foreground mask as supervisory signal to enable fully
supervised learning. MaCoSNet [41] jointly trains an object seg-
mentation network to provide weak supervision signal for corre-
spondence network. In contrast to these methods, we utilize the
learned features themselves to perform an object-aware matching
mechanism without the requirement for annotations. Our
approach achieves more competitive performance on the mainly
benchmark dataset for semantic feature matching. Running time
(average time per pair) for each method is shown in the last col-
umn in Table 1. Compared to [18], it takes less time to perform
our matching framework. Besides, our mIoU value exceeds other
methods. This verify the effectiveness of the proposed object-
aware matching mechanism, which alleviates the background
clutter.

Quantitative evaluation is also performed on the Proposal Flow-
PASCAL dataset [22] with h 2 0:06;0:16½ �, as shown in Fig. 5. Com-
pared to the fully supervised learning model [20] which requires
the parameters of the ground-truth geometric transformation,
weakly supervised matching networks [18,19] provide higher
accuracy in most cases. Our approach and [41] also obtain better
performance over [42] shown in Table 1. These show that limited
Table 1
Quantitative results compared to state-of-the-art correspondence techniques on the Propo

Methods mIoU

h ¼ 0:05

UCNet [17] 0.502 0.241
PF-LOM [22] 0.511 0.242
CAT-FCSS [45] 0.591 0.270
CC-DCTM [46] 0.652 0.268
SCNet-AG+ [27] 0.534 0.362
CNNGeo-R [20] 0.579 0.403
End-to-End [19] 0.663 0.442
NCNet [18] 0.713 –
SFNet [42] 0.691 0.459
MaCoSNet [41] 0.739 0.487
Ours 0.743 0.490
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datasets are generally more suitable for weakly supervised learn-
ing model, and the generalization capabilities of the matching net-
works is stronger. It also shows that our approach achieves real
performance improvement over the other methods, which is con-
sistent with the results in Table 1. Note that we mainly implement
several representative methods previously mentioned based on the
publicly available official codes [18–20]. The other results are
achieved from corresponding literatures due to some belong to
proprietary projects as shown in Tables 1, 3 and 4.

Ablation study. To be more convincing, we provide insightful
ablation study by incorporating NCNet [18] and the proposed
framework to reconstruct two newmatching network frameworks.
We analyse the accuracy performance of all proposed modules on
the Proposal Flow-PASCAL benchmark [22]. We mainly implement
on two variants of our approach: NCNet+OurLoss combines our
semantic perception loss and the matching network used by [18],
and NCNet+Ournetwork incorporates our base matching network
and their loss function. Meanwhile, we evaluate the effectiveness
of the proposed 3N-Network by constructing different variants of
our matching network with different numbers of layers (NoL):
Ours-Fo, Ours-Fi, and Ours-S respectively contain a four-layer,
five-layer, and seven-layer convolution module. The results are
presented in Table 2. Our approach and all its variants achieve con-
sistently improvement over the NCNet [22]. This clearly shows that
our proposed two modules are effective. This might be explained
by the fact that our object-aware matching model mitigates some
essential interference factors, and deals with images with the back-
ground clutter better.

Essentially, NCNet [18] determines that each correspondence
with the maximum score is a positive match, which contains the
correspondences in the background. our approach mainly selects
the positive correspondences in the salient semantic regions using
an object-aware strategy. NCNet+OurLoss utilizes our semantic
perception loss to train their consensus network, which provides
performance improvement over the original version. This verifies
the effectiveness of the proposed object-aware matching mecha-
nism. Experimental results also show that our six-layer convolu-
tion module achieves best performance over other variants. Six-
layer structure is a critical point. Too shallow convolutional net-
work cannot produce the desired results, and the parameters
increase as the increase of the NoL and the performance cannot
be effectively improved. Finally we construct a six-layer convolu-
tion model for correspondence task.

4.2.2. Results on Proposal Flow-WILLOW dataset
We implement the robustness evaluation on the Proposal Flow-

WILLOW dataset [22]. This dataset is composed of 4 semantic cat-
egories, which is further divided into 10 subsets, for a total of
approximately 900 image pairs for testing. And 10 keypoints are
annotated as ground truth for each image. Besides, this dataset
sal Flow-PASCAL dataset [22].

Mean PCK Time (ms)

h ¼ 0:10 h ¼ 0:15

0.493 0.621 >1000
0.451 0.640 >1000
0.472 0.646 –
0.473 0.643 –
0.722 0.820 >1000
0.693 0.846 40
0.748 0.863 41
0.771 0.860 261
0.787 0.855 51
0.790 0.881 >1000
0.794 0.887 158



Table 2
Ablation study experimental results on the Proposal Flow-PASCAL dataset [22].

Methods NoL mIoU Mean PCK (h ¼ 0:1)

NCNet [18] 3 0.713 0.771

NCNet+OurLoss 3 0.729 0.784
OurModel+NCNetLoss 6 0.725 0.785
Ours 6 0.743 0.794

Ours-Fo 4 0.702 0.777
Ours-Fi 5 0.728 0.792
Ours-S 7 0.735 0.790

Table 3
Quantitative results compared to state-of-the-art correspondence techniques on the
PF-WILLOW dataset [22].

Methods Mean PCK

h ¼ 0:05 h ¼ 0:10 h ¼ 0:15

UCNet [17] 0.291 0.417 0.513
PF-LOM [22] 0.284 0.568 0.682
CAT-FCSS [45] 0.311 0.579 0.725
CC-DCTM [46] 0.386 0.621 0.730
SCNet-AG+ [27] 0.386 0.704 0.853
CNNGeo-R [20] 0.448 0.777 0.899
End-to-End [19] 0.477 0.812 0.917
NCNet [18] - 0.844 0.923
SFNet [42] 0.459 0.735 0.855
MaCoSNet [41] 0.538 0.854 0.939
Ours 0.534 0.867 0.948

Fig. 5. Quantitative results compared to state-of-the-art correspondence techniques on the Proposal Flow-PASCAL dataset [22] with different tolerance factors:
h 2 0:06;0:16½ �.
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contains more challenging examples such as intra-class variation,
background, and viewpoint variations, which are suitable to evalu-
ate the robustness of the matching methods. For the evaluation
metric, we measure the PCK value between the ground truth key-
point and the transfered keypoint [27,30].

Results. We evaluate our matching framework and calculate
the mean PCK with h ¼ 0:05;0:10;0:15. As shown in Table 3, we
provide comparisons to recent state-of-the-art methods for seman-
tic feature matching. The results illustrate that our approach out-
performs most other methods and is effective in cases of severe
appearance and viewpoint variations.

Generally, the key of semantic feature matching is to accurately
extract the salient feature representations from the main objects of
interest in the examples with background clutter, and to handle
the appearance differences to estimate the transformation model
between the examples with viewpoint variations. The proposed
matching modules exhibit superior performance. This might be
explained by the fact that our salient foreground selection strategy
narrows down the searching scope, and concentrates the candi-
dates on the main semantic objects. This mitigates the background
clutter, compared to the other methods. And, the cycle consistency
constraint ensures one-to-one matching and outliers rejection.
Overall, the proposed approach is more robust with respect to
the camera, pose and appearance variations than the other works
on semantic feature matching.

Threshold selection. A semantic perception loss function is
designed to drive the training of our matching network with the
requirement for a threshold s. We evaluate its correctness and
effectiveness on the Proposal Flow-PASCAL dataset and PF-
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WILLOW dataset [22] by measuring the mean PCK [27,30], as
shown in Fig. 7. The mean PCK has a tendency to grow first and
then flat, and finally decline. The smaller threshold leads to weaker
mining and filtering capabilities of the matching layer for the can-
didate pairs, and larger number of feature representations. Further,
more outliers are obtained and the matching tends to be redun-
dant. Obviously, the saturation tends to be saturated at around
0.5, which gives a good compromise between matching accuracy
and the number of the correspondences. The number of the feature
representations is less and less when the threshold continues to
increase, and the matched pairs are discretely distributed, which
is not conducive to the performance evaluation. Finally we select
a reasonable threshold s ¼ 0:5.
4.2.3. Results on Caltch101 dataset
Lastly, we also evaluate our matching framework on the Caltch-

101 dataset [34], which contains 101 semantic categories. We
select 15 image pairs from each category, with a total of 1515
image pairs analogously to [27] in our experiments. There are key-
point annotations that can be used for semantic object segmenta-
tion, but not the matched keypoint pairs, which is not suitable to
calculate the PCK. So we evaluate the quality of segmentation mask
alignment using the following three metrics used by [21]: a) Label
Transfer Accuracy (LT-ACC). b) Intersection-over-Union (IoU). c)
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Object Localization Error (LOC-ERR). Specifically, LT-ACC and IoU
both evaluate the accuracy performance by measuring the degree
of overlap between the warped objects using the estimated corre-
spondences. However, LT-ACC identifies all the correctly aligned
pixels, and IoU only considers the foreground region. And, the
LOC-ERR measures the relative offset between the warped key-
point and corresponding point in the target image.

Results. Table 4 presents quantitative results on the Cal-tech-
101 dataset [34]. We implement the comparisons to state-of-the-
art correspondence methods under general settings. Note that
the second and third columns indicate that the larger the value,
the higher the accuracy, whereas the LOC-ERR metric values are
the opposite. As can be seen, our approach achieves competitive
performance on this benchmark, and outperforms most other cor-
repondence methods.
4.2.4. Qualitative results
Qualitative evaluation is implemented on the Proposal Flow-

PASCAL dataset [22] and Caltch-101 dataset [34]. The details are
as follows.

Object-aware Visualization. We also implement the qualita-
tive evaluation of the proposed object-aware matching mechanism
on the Proposal Flow-PASCAL dataset [22]. In our experiments, a
key observation that the learned CNN feature representations (po-
sitions) are uniformly distributed throughout the convolutional
feature map as dense H �W grids. To effectively implement the
evaluation, we first uniformly partition the input images into a grid
of 16� 16 cells. Then the vertices of grids are determined as the
keypoints that are passed through the similarity measurer and fil-
ter network.

The qualitative results are presented in Fig. 6. As it can be
observed, most of the candidate keypoints are distributed in the
main semantic regions in Fig. 6(b), and the pairwise matching of
the salient positions is approximately accurate. The experiments
illustrate that our object-aware matching method achieves the
expected results. However, the vertices of grids are directly
matched from the source image to the target image, resulting in
coordinate mapping error.

To effectively handle it, we adopt an interpolation mapping
scheme to produce the sparse matched semantic features, as
shown in Fig. 6(c). Analogously to the grid-based interpolation
method [44], the coordinates of each keypoint are formed by linear
interpolation with the enclosed vertices. The correspondences pre-
viously mentioned are first used to interpolate the annotated key-
points. Then a transformation model can be estimated based on
these correspondences, as shown in Fig. 6(b). Further, the corre-
sponding keypoints in the source image are transferred to the tar-
get image, and the warpped positions are established, as shown in
Fig. 6(c). Compared to the recent state-of-the-art matching method
[18], our results are approximately consistent with the ground-
Table 4
Quantitative results compared to state-of-the-art correspondence techniques on the
Caltech-101 dataset [34].

Methods LT-ACC IoU LOC-ERR

UCN [17] – – –
PF-LOM [22] 0.78 0.50 0.26
CAT-FCSS [45] 0.84 0.55 0.20
CC-DCTM [46] 0.85 0.56 0.21
SCNet-AG+ [27] 0.79 0.51 0.25
CNNGeo-R [20] 0.83 0.61 0.25
End-to-End [19] 0.85 0.63 0.24
NCNet [18] 0.87 0.69 0.21
SFNet [42] 0.88 0.67 –
MaCoSNet [41] 0.86 0.74 0.19
Ours 0.90 0.73 0.17
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truth correspondences shown in Fig. 6(c) and (e), whereas visible
errors are presented as shown in the red boxes in Fig. 6(d). These
results verify the accuracy of our approach, and visualize the prin-
ciple of calculating the coefficient of PCK. In addition, we also pro-
vide some qualitative results on the Caltch-101 dataset [34], as
shown in Fig. 8. Specifically, both men and women belong to the
same semantic category (persons) in the public benchmark data-
sets [22,34], which have similar semantics such as eyes, nose,
and ears.

Image alignment. We consider that, most existing methods on
semantic correspondence estimate the parameters of the transfor-
mation, typically homography, affine, or thin-plate spline transfor-
mation, which are used to globally deform and align the objects.
However, it is sensitive to large viewpoint variations between
the images, and ignores some salient details. Thus we utilize the
notion of local deformation [44] to improve it. Analogously to the
scheme previously mentioned, we first uniformly partition the
2D domain images into dense C � C grids, and each grid corre-
sponds to an estimated transformation using the resulting corre-
spondences. Pixels within the same grid are deformed using the
same transformation. And then the original images are locally
deformed and aligned to each other.

Following the same procedure as in [27,20], we mainly evaluate
the quality of segmentation masks aligement on the Caltech-101
dataset [34] using three metrics previously mentioned: LT-ACC,
IoU, and LOC-ERR. In addition, the evaluation is also performed
on the Proposal Flow dataset [22] containing annotated matched
keypoint pairs by calculating the average endpoint error (AEE),
and mIoU. For image alignment, LT-ACC calculates the differences
between the foreground mask of transfering source image to target
image using dense correspondences and ground-truth segmenta-
tion mask, and counts the number of correctly annotated pixels.
IoU (or mIoU) mainly focuses on the correctly aligned foreground
annotations. Both of them measure the degree of overlap between
the warped objects, which is based on foreground and background
segmentation. Contrary to LT-ACC and IoU, the LOC-ERR metric
prefers to concentrate on the details, and estimates the relative off-
sets between the positions of transferring the keypoints using
dense correspondences and corresponding points in the target
image. The AEE estimates the actual matching error between the
matched keypoints, which is also considered to be a metric for
image alignment.

Table 5 summarizes the alignment accuracy compared to recent
state-of-the-art matching methods [45,46,27,20,19,18,42,41]. We
implement image alignment on two variants of our approach: glo-
bal (OursG) and local deformation (OursL) scheme. As it can be
observed, both of our models improve the overall aearage score.
Meanwhile, the local deformation model achieves good results
on several public benchmark datasets and shows a significant
improvement over most previously published results. Compared
OursG with other methods illustrates that our approach produces
best correspondences. This is because the quality of image align-
ment is mainly determined by the matching accuracy, and strongly
relies on the estimated transformation model.

In Fig. 9, we present the qualitative results on the Calte-ch-101
dataset [34]. As it can be observed, the proposed approach can pro-
duce good alignment results, which are close to the target image.
The geometric pose between intra-class objects remains approxi-
mately consistent, such as the size of bounding box, orientation,
and geometric shape.
5. Applications

Having established a sparse set of correspondences between a
pair of images depicting the main objects of the same semantic cat-



Fig. 6. Qualitative results on the Proposal Flow-PASCAL dataset [22]. (a) Original images are uniformly partitioned into a grid of 16�16 cells, and the vertices are determined
as the keypoints that are passed through the trained matching model to produce the sparse matched keypoint pairs (b). (c) The sparse correspondences are obtained by
interpolating the annotated keypoints with the dense vertices of grids. The results are obtained by using NCNet [18] (d).

Fig. 7. Evaluation results of the selected thresholds on the Proposal Flow-PASCAL and Proposal Flow-WILLOW datasets [22].

Fig. 8. Qualitative results on the Caltech-101 dataset [34].
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egory, which can be generalized to guide the alignment of two
overlapping images containing the same object, as well as to esti-
mate a dense correspondence field between the two images. Actu-
ally, high-level semantics are more robust than low-level visual
features for matching. This can facilitate a variety of graphics appli-
cations, one of which is discussed below.

Instance matching. We implement our approach on several
sets of instance images depicting the same scene or object, as
shown in Fig. 10. In our experiments, we observe that, position dis-
placement would be produced by directly mapping a point across
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the convolutional layers. The matched keyponts are inversely
mapped to the specific positions in the original images, as they
are propagated through multiple convolutional feature pyramid
layers. This further results in inaccurate locations on the low-
level features and the loss of valuable information. To mitigate it,
we take the output of our similarity filter as the input to a hierar-
chical inverse mapping process [15].

In Table 6, we compare our approach with the classical hand-
crafted feature [10] by counting the number of the matched key-
point pairs. We implement on two variants of our approach:



Table 5
Quantitative results compared to state-of-the-art correspondence techniques on the Proposal Flow dataset [22] and Caltech-101 dataset [34].

Methods Caltech-101 Proposal Flow-PASCAL Proposal Flow-WILLOW

LT-ACC IoU LOC-ERR AEE mIoU AEE

CAT-FCSS [45] 0.84 0.55 0.20 – 0.591 –
CC-DCTM [46] 0.85 0.56 0.21 – 0.652 –
SCNet-AG+ [27] 0.79 0.51 0.25 22.8 0.534 19.2
CNNGeo-R [20] 0.83 0.61 0.25 22.3 0.579 18.9
End-to-End [19] 0.85 0.63 0.24 21.0 0.663 17.1
NCNet [18] 0.87 0.69 0.21 19.3 0.713 15.6
SFNet [42] 0.88 0.67 – – 0.691 –
MaCoSNet [41] 0.86 0.74 0.19 - 0.739 –

OursG 0.88 0.70 0.20 18.9 0.733 15.2
OursL 0.90 0.73 0.17 18.4 0.743 14.8

Fig. 9. Qualitative results on the Caltech-101 dataset [34]. The input images are locally deformed and aligned to each other according to the estimated homography
transformation model.
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Direct Mapping (DM) directly maps the candidate keypoints to
original images across the convolutional layers, which is expanded
through Hierarchical Mapping (HM) [15]. As it can be observe, our
approach outperforms the method [10] in most cases. However,
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the opposite occurs in the ‘‘Park” case. As can be seen in Fig. 10
(d), no salient main objects appear across the image, which makes
it difficult to search for the correspondences using CNN-based
semantic correspondence model.



Table 6
Evaluation results on the overlapping image pairs.

Images Resolution DM HM SIFT [10]

Columbus-circle 640� 480 81 371 197
Roundabout 1533� 1022 65 345 293
Carpark 653� 490 46 255 219
Denny 480� 640 50 283 268
Park 1442� 542 41 183 318

Fig. 10. Instance dataset. (a), (b) Salient foreground objects are presented in the image pairs. (c), (d) Artificial buildings occupy most of the image scene. (e) There is no main
object of interest.
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Qualitative results on the instance image pairs are presented in
Fig. 12. The proposed approach is mainly suitable for the images
with salient objects. They generally contain abundant high-level
semantics such as edges, lines, and curves, with being robust to
low-level visual features, e.g., color and illumination. The matched
keypoints are mainly distributed throughout the objects shown in
Fig. 12(b). On the contrary, the keypoints are discretely distributed
in the image scene using the classical SIFT matching, as shown in
Fig. 12(a). Besides, we align and stitch the corresponding images
using the established correspondences, as shown in Fig. 11. Good
synthesis results without ghosting or artifacts are obtained, and
the images are aligned perfectly. This, in turn, verifies the accuracy
of the correspondences.
Fig. 11. Qualitative results o
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Discussion. Some limitations still exist even though our
approach establishes correct correspondences in many challenging
cases. Our model has strong requirements for artificial scenes or
salient foreground objects. But these still illustrate that the pro-
posed approach can be effectively extended to solve some tradi-
tional graphics issues.
6. Conclusions

We have developed a semantic feature matching network
framework, while being trainable end-to-end without the require-
ment for annotations. Our approach is based on an object-aware
convolutional neural network architecture. The framework is
n the instance images.



Fig. 12. Qualitative results on the instance images.
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simple and effective, and achieves superior performance. Experi-
ments have clearly shown that our approach outperforms most
state-of-the-art methods for semantic feature matching on several
standard benchmark datasets. Meanwhile, Extensive experiments
illustrate that the proposed approach is also suitable for instance
matching, obtaining confident results for some challenging
instance images.
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