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Abstract—Person re-identification (re-id) is a promising topic
in computer vision, which concentrates on similarity learning of
individuals across different camera views. It remains challenging
due to the unpredictable orientation variations, the partial occlu-
sions, and the inaccurate detections. To solve these problems, we
present an orientation-guided similarity learning architecture to
learn discriminative feature representations and define similarity
metric for person re-id. Our proposed architecture explicitly
leverages pedestrian orientation and body part cues to enhance
the generalization ability. In the architecture, an orientation-
guided loss function that pulls the positive samples with the
same orientations closer is designed to alleviate the orientation
variations. Meanwhile, an aligned dense network with pose
estimation is presented to extract robust global-local fusion rep-
resentations, which effectively exploits local features to overcome
partial occlusions. In the end, we introduce a two-stage Top-k re-
ranking strategy to optimize initial re-id results by min-hash and
weighted distance. Extensive experimental results demonstrate
that our proposed approach significantly outperforms state-of-
the-art re-id methods on the popular CUHK03, Market1501, and
DukeMTMC-reID datasets.

I. INTRODUCTION

Person re-identification (re-id) refers to the retrieval of
specific probe images from large-scale gallery images or
surveillance videos [1], [2]. It recently attracted increasing
attentions since it has many possible applications in such
areas as inter-camera tracking and anti-terrorism. However,
the appearances displayed in detected images are apt to
change with the pedestrian orientation, posture, occlusion,
and monitoring environments. This significantly increases the
difficulty of the person re-id problem. To mitigate the effects
of these disturbing factors, various methods are proposed [3],
[4], [5], [6], and recent deep learning based approaches exhibit
promising performance and potentials [7], [8]. These deep
learning based approaches treat person re-id as a classification
problem and depend on the loss functions to train network pa-
rameters. Existing loss functions guide the network parameters
learning the inter-class and intra-class similarity constraints
for classification, while ignoring the influence of pedestrian
orientation on these similarity constraints. It weakens the
generalization capacity of the networks. Taking the original
triplet loss function as an example [4], the trained inter-class
similarity constraint with the function fails on the testing sets
with unseen data distribution, especially on the gallery images
with the same orientation as the probe images (see Fig. 1(a)).

Fig. 1. A contrastive illustration between original triplet loss funtion and
orientation-guided similarity loss function. Colors denote to identities, and
shapes refer to orientations. A represents the anchor images, P denotes the
probe images, the dotted lines represent the inter-class similarity constraint
Csim, and the blue solid lines represent the orientation-guided similarity
constraint Cpose. What is more, the classifications guided by our proposed
loss function are surrounded by the bold lines. (Best viewed in color)

To solve the problem, we propose the orientation-guided
similarity learning architecture, which consists of a similarity
learning module and a feature extraction module. In the simi-
larity learning module, we introduce the pedestrian orientation-
s to design an orientation-guided similarity loss function. It can
pull the positive samples with the same orientations closer and
impose the orientation-guided similarity constraint to alleviate
the orientation variations and improve the generalization of the
proposed architecture. As shown in Fig. 1(b), the model trained
by the orientation-guided similarity loss function makes the
positive samples with the same orientations closer and min-
imize misclassifications caused by the lack of orientation-
guided similarity constraint. In the feature extraction module,
we modify and design an aligned dense framework to extract
discriminative representations. The discriminative representa-
tions are generated with the combination of global features and
three major local features, which are conducive to improving
the feature resistance to partial occlusions and inaccurate
detections. Compared with existing methods exploiting fixed
ratio horizontal stripes or body part models to infer partial
regions of interest (ROIs) for local feature extraction [4],



[9], our aligned dense framework can achieve more accurate
body part ROIs since we introduce 2D joint points from pose
estimation [10]. Different from other methods of using pose
estimation to infer body parts [1], [11], our feature extraction
framework adopt the dense connection used in DenseNet. It
can strengthen feature propagation and support feature reuse.
These differences and improvements enable our proposed
framework to take full advantage of local features and realize
feature alignment. Since the appearance features extracted
from the single image is not comprehensive enough to achieve
the best similarity metric, we develop a two-stage Top-k re-
ranking strategy to further optimize feature matching by min-
hash and weighted distance. Extensive experimental results on
three popular public datasets show that our proposed approach
significantly outperforms state-of-the-art re-id methods.

II. RELATED WORKS

Most existing methods can be classified into two important
components of feature extraction and metric learning. There-
fore, we elaborate on reviewing existing works concerning
feature extraction [5], [6], [7], [8], [11], [12], [13], [14], [15]
and metric learning [4], [9], [10], [16], [17], [18], [19], [20]
in this section.

A. Feautre Extraction

In the traditional person re-id approaches without deep
learning, the color features and hand-crafted features are often
employed as feature descriptors [9]. Extracting these features
is simple and efficient, whereas the discrimination of these
features will be weakened when pedestrian orientations or
monitoring environments change among different cameras. To
enhance the robustness of appearance features, deep learning
structures [21], [22] are introduced in person re-id. Xiao et
al. propose a CNN framework with domain guided dropout
to improve the feature representation [5]. It achieves signif-
icant improvement compared to the traditional approaches.
Since then, other deep learning based re-id methods such
as Deepreid [6], Gated Network [23], SVDNet [7], and
Spindle Net [11] have been put forward to further improve
the performance of person re-id. To increase data volume
and prevent the overfitting, numerous large-scale datasets like
CUHK03 [6], Market1501 [24], and DukeMTMC-reID [7]
have been released successively. Zheng et al. also exploit
generative adversarial networks (GANs) to generate unlabeled
data for data augmentation [8]. The method enhances the
generalization ability of the trained model by expanding the
training sets. Although the above-mentioned approaches have
proposed multifarious contributions, most of them neglect the
crucial orientation factor. In this paper, we shed a new light on
the exploiting of the orientation, and propose an orientation-
guided similarity learning architecture by taking account of
the orientation factor.

B. Metric Learning

Many metric learning algorithms have been proposed to
optimize the distance metric, for instance, cross-view quadratic

discriminant analysis (XQDA) [9] and Discriminative Null
Space [25]. Most of them depend on complex mathematical
formulas and are independent of the feature extraction. With
the advent of end-to-end person re-id architectures based on
deep learning, there are some subtle changes in the metric
learning algorithms. In addition to calculating the similarity
distances between images or sequences in the test phase,
training the network model has also become their respon-
sibility. Hence, the metric learning begins to pay attention
to the design of loss functions. Zheng et al. propose the
joint training strategy of double loss functions [18], which
gives inspiration to our training methods. Compared with the
network models trained only with one loss function, the joint
training strategy of multiple loss functions can significant-
ly improve the performance of deep learning architectures.
Moreover, there are two methods which focus on designing
loss functions [4], [19] worth studying. They aim to train
a larger inter-class similarity constraint and a smaller intra-
class similarity constraint compared to the original triplet
loss function. Different from them, we not only introduce
pedestrian orientations to add orientation-guided similarity
constraint, but also introduce body part cues to achieve more
accurate body part ROIs for local feature extraction. These
improvements help our proposed architecture to make better
use of local features and loss functions. To our best knowledge,
this is the first reported effort to take orientation cues into
consideration and design the similarity loss function.

III. THE PROPOSED PERSON RE-IDENTIFICATION
APPROACH

In this section, we describe the overall outline of the
proposed person re-id approach (see Fig. 2) , where we mainly
introduce the similarity learning based on orientation-guided
similarity loss function, aligned dense framework, and two-
stage Top-k re-ranking strategy.

A. Outline

Fig. 2 shows the outline of our proposed person re-id
method, which consists of quintuple inputs, orientation-guided
similarity learning architecture, and re-ranking strategy. For
any given image, we first employ 2D pose estimation to detect
the joint points, and then infer the pedestrian orientations
and calculate the body part ROIs. The orientations are the
major basis for dividing the images as quintuple inputs for
training, and the body part ROIs will be transformed into
ROI Pooling layer for local feature extraction. Secondly, we
train the orientation-guided similarity learning architecture
to simultaneously extract discriminative global features and
robust local features. In the training phase, we exploit the
softmax loss function and the proposed orientation-guided
similarity loss function to jointly train the network parameters.
The fusion of features and the joint training strategy are
beneficial to alleviate the influences of orientation variations
and occlusions. At last, we introduce a two-stage Top-k re-
ranking strategy which automatically adjusts the order of re-id



Fig. 2. Outline of our proposed method. A denotes an anchor image, P represents the positive sample, N indicates the negative sample, Ps refers to the
positive samples that have the same orientation with the anchor images and Pd shows the different orientation ones. In Fig.2 (b), the thickness of lines means
the weights among feature distances (Best viewed in color).

results to further improve the generalization and accuracy of
person re-id. Specific methods and details are described below.

B. Orientation-Guided Similarity Learning Architecture

1) Orientation Estimation and Body Parts Localization:
Orientation Estimation. In our proposed architecture, the
orientation-guided similarity loss function requires datasets
to be divided into three subsets of the front, back and side
to constitute quintuple inputs. To meet this demand, we first
calculate the clockwise angles between the pedestrian shoulder
vector Vi and the vertical vector Vvertical (from top to bottom)
to estimate the orientation and classify the training images (see
Fig. 3). The clockwise angle is defined as:

Vi = prsho − plsho = {xrsho − xlsho, yrsho − xlsho} = {xv , yv} (1)

θi =



0◦ , where xv = 0, yv < 0

180◦ , where xv = 0, yv > 0

arccos
Vi · Vvetical

‖Vi‖ × ‖Vvetical‖
, where xv > 0

360− arccos
Vi · Vvetical

‖Vi‖ × ‖Vvetical‖
, where xv < 0

(2)

where the shoulder vector Vi is started from left shoulder and
ended at right shoulder, the shoulder joint points are detected
from Part Affinity Fields (PAFs) [10], ‖ ‖ represents L2-norm.

According to the angles calculated by Eq.2, all images in
the datasets can be divided into three subsets by Eq.3. Each
subset covers120◦, and then the front images are labeled to 1,
the side group is labeled to 2, and the backs are labeled to 3.

ci =


1,where θi ∈ [210◦, 330◦]

2,where θi ∈ (150◦, 210◦) ∪ [0◦, 30◦) ∪ (330◦, 360◦]

3,where θi ∈ [30◦, 150◦]

(3)

where ci indicates the orientation label of the i-th image. If
the left or right shoulder joint point is lost, the ci will be
marked as 2 directly. During the training, the samples that
fail to achieve joint points are discarded. It will effectively
eliminate the low-quality training samples, which helps to
improve network convergence and robustness.

(a) (b) (c)

Fig. 3. Examples of orientation estimation. The red arrow indicates the
pedestrian shoulder vector Vi and the blue arrow represents the vertical vector
Vvertical.

Body Parts Localization. To deal with the occlusion, the
idea of combining local features with global features has been
studied in many person re-id studies [4], [9]. They generally
use fixed ratio horizontal stripes or body part models to
infer the locations of ROIs for local feature extraction (see
Fig. 4(b)). While handling the images with misalignment or
orientation variations, mandatory ROIs will bring noises and
weaken the effect of local features.

The phenomenon stimulates us to consider accurate ROIs so
as to give full play to local features. Therefore, we introduce
pose estimation to detect joint points and then calculate the
locations of body part ROIs based on these joint points. Con-
sidering the fact that arms are easily obscured and have inferior
discrimination, we select head, torso and legs as major ROIs.
The head Shead is determined by the joint points index Seta



(a) (b)

Fig. 4. The comparison of ROIs generated by different methods. Fig.4 (a)
is the division generated by joint points, Fig.4(b) shows the results from
horizontal stripes. Obviously, the accurate ROIs generated by the joint points
can be used to extract the correct local features from the non-aligned persons,
which is very beneficial for feature alignment in the phase of similarity metric.

=[1,2,17,18], the torso Storso and the legs Sleg are depended on
Setb =[3,4,5,6,7,8,9,12], Setc =[9,10,11,12,13,14], respectively.
The eighteen joint points detected by PAFs are sequentially
represented as follows: nose, neck, right shoulder, right elbow,
right wrist, left shoulder, left elbow, left wrist, right hip, right
knee, right ankle, left hip, left knee, left ankle, left eye, right
eye, left ear, right ear. For each ROI index set, we calculate
the tightest horizontal bounding box that can cover all joint
points in the as the corresponding ROI. As shown in Fig. 4(a),
the body part ROIs inferred by joint points are not only more
accurate, but also can effectively cope with the misalignment
of pedestrian images.

2) Orientation-Guided Similarity Loss Function: To intro-
duce the orientation cues, we design an orientation-guided
similarity loss function for the large-scale person re-id. It
stems from two important rules that summarized through a
large number of experiments: 1) the feature distances between
positive sample pairs are smaller than the feature distances be-
tween negative sample pairs; 2) the feature distances between
positive sample pairs with same orientation are also smaller
than the feature distances between positive sample pairs with
different orientation. The first rule can be formulated as inter-
class similarity constraint and can be included in the original
triplet loss function. It is defined as follow:

Did(I
a
i , I

p
i , I

n
i ) = [d(f(Iai ), f(I

p
i ))− d(f(I

a
i ), f(I

n
i )) + α]+ (4)

d(x, y) = ‖x− y‖22 (5)

[x]+ = max(x, 0) (6)

where Did(I
a
i , I

p
i , I

n
i ) represents inter-class similarity constraint

that the feature distances between all positive samples are
smaller than the feature distances between negative samples.
Iai represents the anchor image in a triplet input, Ipi denotes
the positive sample of anchor image, Ini expresses the negative
sample of the anchor image. d(x, y) represents the L2-norm
distance between x and y. α is a limit margin between positive
and negative samples, N is the number of triples. To meet
the second rule, we introduce the orientation-guided similarity

constraint Dpose(Iai , I
ps
i , Ipdi ) based on the inter-class similarity

constraint and define it as follow:

Dpose(I
a
i , I

ps
i , Ipdi ) = [d(f(Iai ), f(I

ps
i ))− d(f(Iai ), f(I

pd
i ))+β]+ (7)

where Ipsi indicates positive sample of Iai with the same
posture, Ipdi refer to the positive sample of Iai with different
postures. β is a threshold of orientation-guided similarity
constraint which is used to pull the positive samples with the
same orientations. N is the number of inputs. The constraints
defined by Eq.4 and Eq.7 are then be employed to derive the
orientation-guided similarity loss function. It is summarized
as Eq.8:

Lquin(I, w) =
1

N

N∑
i=1

(Did(I
a
i , I

p
i , I

n
i ) + λDpose(I

a
i , I

ps
i , Ipdi )) (8)

where λ is a weight of balancing the two similarity constraints,
and w represents the current network parameters.

C. Aligned Dense Framework.

Comparing with the most outstanding the ResNet [21] with
the DenseNet [22], we find that the DenseNet which reuses
low-level semantic features at the latter layers by the skip-
connection is more suitable for the fine-grained person re-
id than the ResNet which focuses on solving the gradient
vanishing problem. We thus modify and design an aligned
dense framework based on DenseNet, as shown in Table I.

TABLE I
DETAILED STRUCTURE OF THE ALIGNED DENSELY

FRAMEWORK

Layers Backbone
(k × k/s/p) × (num)

Head
(k × k/s/p) × (num)

Torso/Legs
(k × k/s/p) × (num)

Conv1 (7× 7/2/3)× 1 – –
Max Pool (3× 3/2/1)× 1 – –

Den1
(
1× 1/− /−
3× 3/− /1

)
× 6 – –

Den2
(
1× 1/− /−
3× 3/− /1

)
× 12

(
1× 1/− /−
3× 3/− /1

)
× 4

(
1× 1/− /−
3× 3/− /1

)
× 6

Den3
(
1× 1/− /−
3× 3/− /1

)
× 24

(
1× 1/− /−
3× 3/− /1

)
× 8

(
1× 1/− /−
3× 3/− /1

)
× 12

Den4
(
1× 1/− /−
3× 3/− /1

)
× 16

(
1× 1/− /−
3× 3/− /1

)
× 4

(
1× 1/− /−
3× 3/− /1

)
× 8

Ave Pool (8× 8/− /−)× 1 (8× 8/− /−)× 1 (8× 8/− /−)× 1
FC 512 128 256

As illustrated in Table I, the feature extraction framework
includes a backbone network (growth rate k = 32) and three
branch networks (growth rate k = 64). They share the weights
from Conv1 to Den1. Due to the sizes of the inferred ROIs
are not fixed, we add a ROI Pooling layer behind the Den1
to connect the shared feature maps and branch networks. The
branch structure of torso is the same with the legs, but they
are different from the branch of head. In the three branch
networks, we also set different output size for each fully
connected layer to adjust the proportion of global features and
local features. To accelerate the convergence and alleviate the
impact of unseen data, BN layers and ReLUs are also inserted
behind each CNN layer in the aligned dense framework.



After extracting features, we first use the Euclidean distance
to achieve the initial re-id results. Considering the feature
distances between single image pairs are not comprehensive,
we present a two-stage re-ranking method to further optimize
the results. We define the initial Top-k results of probe image p
as N(p, k) = r1, r2, . . . , rk. The similar images of i−th result
ri are defined as N(ri, k). It means the re-id results that the
result ri is regarded as a probe image. In the first phase of re-
ranking, we replace the Euclidean distances between the probe
image and the current Top-k results with the minhash values
between N(p, k) and N(ri, k), and then adjust the order of
results to improve the accuracy. In the second phase, we first
assume that the first m results achieved from the first phase
are completely correct. And then we require that subsequent
results not only are similar to the probe images but also
similar to the first m results. The feature distances between
the probe image and the current results are updated again with
the weighted distance, which is calculated as follows:

dre =

m∑
i=1

ρi · d(ri, rj) + ρp · d(p, rj) m < j < k (9)

where dre(∗, ∗) denotes the weighted distance, ρp and ρi are
the weights of feature distances, whose specific values can be
determined empirically. In this paper, ρp and ρi are set to 0.6,
0.1, respectively. m is empirically set to 4.

IV. EXPERIMENTAL RESULTS

In this section, we conduct the following experiments to
analyze the effectiveness of contributions and evaluate the
proposed person re-id algorithm by comparing with the state-
of-the-art methods. These experiments are run on the server
with GTX TITAN XP and Xeon E5 CPU.

A. Analysis of Contribution Effectiveness

To verify that the effectiveness of contributions described in
this paper, we design the following analysis experiments which
are implemented on the Caffe platform. The experimental
results from different optimization are shown in Table II.

TABLE II
ANALYSIS RESULTS OF CONTRIBUTIONS ON

DUKEMTMC-REID

Setting DukeMTMC-reID
Rank-1 mAP

baseline 67.95 47.49
Global+Local 69.88 48.96

Softmax+Triplet 71.23 50.00
Softmax+Orientation 73.56 53.46

Our Method (O) 76.12 58.05
Our Method (R) 76.35 63.69

In Table II, the baseline results are generated from the
backbone network, and the double loss results don‘t consider
of local features. O represents original results from orientation-
guided similarity learning architecture and R represents the
results of our whole architecture with re-ranking strategy. As
illustrated in Table II, the local feature and the proposed loss
function improve the rank-1 accuracy by 1.93% and 5.61%

compared with the baseline, respectively. Meanwhile, Table
II also shows that our proposed re-ranking strategy further
improves the algorithm performance, especially the mAP. The
effectiveness of contributions can also be seen in retrieval
results of person re-id (see Fig. 5).

(a)

(b)

Fig. 5. Retrieval Results of our method on different datasets. The first column
represents probe images, and each row demonstrates corresponding retrieval
results. The green bounding boxes indicate the results which identities are
same with the probe images, the red images are different ones.

As shown in Fig. 5(a), some images with partial occlusion
can be retrieved correctly, which further proves that the aligned
dense framework can alleviate the occlusion and misalignment.
And Fig. 5(b) displays the adaptability of our method to
orientation variations, owing to the proposed loss function and
the introduction of orientation cues.

B. Performance Comparison on Public Datasets

The proposed method is compared with some recent state-
of-the-art algorithms on three large-scale public datasets.
These experiments are repeated for 10 times and the average
performances are demonstrated in Table III and IV.

TABLE III
COMPARISON WITH STATE-OF-THE-ART APPROACHES ON

MARKET1501 AND DUKEMTMC-REID

Market1501 Rank-1 mAP Duke-reID Rank-1 mAP
Gated[23] 65.88 39.55 ResN50[17] 65.22 22.99
ResN50[17] 73.90 47.78 GAN[7] 67.68 47.13
Re-rank[16] 77.11 63.63 OIM[26] 68.1 –
Siamese[18] 79.51 59.87 Siamese[18] 68.9 49.3
ACRN[12] 83.61 62.60 APR[13] 70.69 51.88
PDC[1] 84.14 63.41 PAN[14] 71.59 51.51
APR[13] 84.29 64.67 ACRN[12] 72.58 51.96
Our Method 87.11 70.23 Our Method 76.35 63.69



TABLE IV
COMPARISON WITH STATE-OF-THE-ART APPROACHES ON

CUHK03

CUHK03 Labeled Detected
Rank-1 Rank-5 Rank-1 Rank-5

LOMO+XQDA[9] 52.20 82.23 46.25 78.90
NSFT[25] 62.55 90.05 54.70 84.75
GOG[15] 67.30 91.00 65.50 88.40
EDM[20] 61.32 88.90 52.09 82.87
Context-aware[2] 74.21 94.33 67.99 91.04
PDC[1] 88.70 98.61 78.29 94.83
Our Method 89.29 97.50 83.31 96.93

In the Table III and IV, the bold fonts represent the best
results. Experimental results demonstrate that our proposed
method has achieved excellent performance on both Rank-
1 and mAP. Especially, PDC and our method which both
introduce pose estimation into person re-id achieve better per-
formance than others, which further demonstrates the validity
of orientation-guided similarity loss function.

V. CONCLUSION

In this paper, we present an orientation-guided similarity
learning architecture and a two-stage Top-k re-ranking strat-
egy for person re-id. The proposed architecture specifically
leverages the pedestrian orientations and body part ROIs to
learn discriminative feature representations. The re-ranking
strategy effectively employs the feature distances between sim-
ilar image groups to optimize the similarity metric. Extensive
experimental results on three popular datasets demonstrate that
our proposed approach is superior to many state-of-the-art
methods. In our future work, we will extend this work to
the video-based person re-id and explore the multiple query
strategy.
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