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Figure 1: Mixed Reality Video fusion. Bottom: Four input videos with wide baselines, while the blue frustm indicates the
cameras’ locations and orientations; Top: Our 3D stitching result based on our modeling method.
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ABSTRACT
A major challenge facing camera networks today is how to effec-
tively organizing and visualizing videos in the presence of compli-
cated network connection and overwhelming and even increasing
amount of data. Previous works focus on 2D stitching or dynamic
projection to 3D models, such as panorama and Augmented Vir-
tual Environment (AVE), and haven’t given an ideal solution. We
present a novel method of multiple video fusion in 3D environ-
ment, which produces a highly comprehensive imagery and yields
a spatio-temporal consistent scene. User initially interact with a
newly designed background model named video model to regis-
ter and stitch videos’ background frames offline.The method then
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fuses the offline results to render videos in a real time manner. We
demonstrate our system on 3 real scenes, each of which contains
dozens of wide-baseline videos. The experimental results show that,
our 3D modeling interface developed with the our presented model
and method can efficiently assist the users to seamlessly integrate
videos by comparing to commercial-off-the-shelf software with
less operating complexity and more accurate 3D environment. The
stitching method proposed by us is much more robust against the
position, orientation, attribute differences among videos than the
start-of-the-art methods. More importantly, this study sheds light
on how to use the 3D techniques to solve 2D problems in realistic
and we validate its feasibility.
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1 INTRODUCTION
Internet of cameras and large-scale monitoring has been one of
the most important and rapid growing revolutions in recent years,
changing traditional ways of surveillance, traffic monitoring and
controlling, home security, as well as crime investigation. In fact,
the rapid increase of complicated camera networks and video data
is posing unprecedent challenges to organize and visualize video
imagery from fixed cameras effectively. Image-based rendering
methods have provided a view synthesis technique to fuse videos
collected from ordered cameras in the same location and generate
a panorama mosaic, however, it still remains unclear how to stitch
and navigate them in a single screen given theirs various positions,
orientations, and field of view.

Indeed, virtual environment has offered a feasible way for us to
integrate videos into a same 3D background. Such as [28, 38], they
both conduct a wide range of virtual scenes for videos and project
videos into a model surface as dynamic textures. However, their
models are either created from LiDAR or from Google Earth, which
brings origin errors if they directly use them as a background for
2D-3D registration. Their projection method will cause distorted
textures due to un-accurate depth correspondence.

In this paper, we present a fusion system for a large number of
videos, which offers highly comprehensive imagery and supports
a spatio-temporal consistent scene. With our system, the relation-
ships between cameras, such as relative position, is well explained,
and the user do not have cognitive difficulties. The results demon-
strate that our system can be used to effectively display complex

scenes, such as square, junction, street, and provide a better user
experience in both vision and interaction.

Our approach is based on an interactive image-based modeling,
which allows users to rapidly draw the main parts of image scene,
turn a 2D video into a 3D video model, and register them into a
virtual scene. And based on modeling results, our method allows
users to manually stitch overlapped planes, and generate a complete
video imagery. After modeling and stitching, we provide the user
capability to seamlessly browse videos from different virtual loca-
tions and smoothly transit from one to another, using our rendering
method.

We show a typical video fusion scene in Figure 1 . This scene
contains 4 videos whose real viewpoints belong to wide baselines
catalog. These videos are well-stitched and rendered in real-times
to a 3D scene. Such fusion offers users an immersive view, called
“Mixed Reality Video Fusion” in this study.

The main contributions of our system are concluded as:

• A robust interactive modeling method for a single uncali-
brated image, which fully uses the geometric information to
build its 3D structure.

• A novel thought for video registration that converts 2D-3D
registration to a 3D-3D registration and solves the unreason-
able fusion of direct texture projective mapping.

• A novel 3D stitching method based on cameras’ 3D pose and
modeling result, and allows users to skim the result through
any view.

• An opening platform for video visualizationwhich integrates
computer vision, graphics and user interface techniques, and
quite easy to integrate video analysis method in the future.

2 RELATEDWORK
In this section, we introduce three main categories of work related
to ours: multiple video visualization, interactive modeling from
multiple images and image/video stitching.

2.1 Video Visualization in Virtual
Environments

The requirement of multiple video visualization is raised mainly
due to the cognitive burden for users when given a number of video
thumbnails or cameras. The majority of methods focus on giving
the videos context information to help the user understand. There
are two main methods: one is to display synchronized multi-camera
recordings alongside an interactive map of the recorded space in
order to aid understanding [1, 2, 18, 21, 36], while another one is to
project videos onto 3Dmodels or a reference map which creates one
single context for all the videos [10, 20, 28, 30, 31]. The authors [31]
argued that, if the video is projected from the actual camera location
with the correct camera parameters, the walls and floors in the video
can seamlessly match the model. Their Video Flashlight system
demonstrates texture projection’s feasibility and gives an immersive
walkthough experience for users. DeCamp et al. [30] apply video
projection to fisheye cameras and build an indoor immersive system-
HouseFly. Kim et al. [20] extend video projection to augment static
aerial earth by designing four particular scenarios. Chen et al. [10]
achieve dual-resolution for a video projection system.

https://doi.org/10.1145/3281505.3281513
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Figure 2: Overview of the proposed system. The entire process consists of two parts, offline and online. The whole process
is divided into offline and online, the former includes automatic pre-processing, interactive modeling, and 3D stitching. The
latter combines real-time rendering technology to achieve multi-video fusion (Limited by space, there is no illustration here).

However, there are problems for video projection. For example,
if the viewpoint is far away from the captured location, severe dis-
tortion [26] and image fragmentary will arise due to the missing
correspondence between image regions and the 3D model, leading
to the result that video projection may not be selected by users in
some tasks [41]. On the other hand, the method of video projection
commonly needs accurate 3D models to register videos [28, 30]. But
for these pre-established model, it is hard to guarantee its precision
responding to 2D images and has a negative effect on visualiza-
tion. We use a post-established method which gets a background
model (called video model) from video frames. It not only keeps
correspondences between models and images, but also reduces se-
vere distortion and image fragmentary through manual modeling
operations with an adjustable precision.

2.2 Interactive Modeling from Multiple Images
The problem of 3D modeling from images and videos has been
studied for years. Many automatic methods [6, 8, 11, 40] have been
proposed to reconstruct a complete scene from a single image.
However, either of them has limitations, such as the view of images
captured [11] (e.g., street side view), the type of modeling subject
[6, 8, 40] (e.g., façade, symmetry object) or other limitations. What’s
more, these results need post-process to repair, and if we directly
use the point cloud or the reconstructed mesh from point cloud
as the model, the skew, tear extrusion and other distortions will
appear in the models. The complexity is quite high and the way of
data representation and visualization is not favorable by users. It
turns out that for a single image captured from a common scene,
interactive modeling is always the first choice.

For multiple images, the researchers use multi-view stereo (MVS)
[12, 17, 32] or structure from motion (SFM) reconstruction [16, 33–
35]. These methods extract and match feature points (or pixels)
[12, 17, 32] , lines [16, 33, 35] and planes [34] from neighboring

images under the narrow baseline condition. Although they can
produce accurate, and even photo-realistic models, they also need
serious overlapping. For sparsely distributed video capturing, only
a low (and even no) overlapping appears, as shown in [20, 28]’s
demo videos. It turns to be the main difficulty for multiple video
visualization. Aimed at this difficulty, we propose an interactive
method to rapidly model single video with its frame and then extend
to multiple videos. What we rely on are the robust pre-geometric
structure analysis and wide baseline line matching.

Particularly, we notice Sinha’s interactive modeling in the field
of architecture [35]. Without point clouds from SFM, this method
cannot realize its following procedures. We borrow the speed-up
idea of snapping from this method, and make our method more
convenient for users. The commercial software, SketchUp1, pro-
vides an interactive 3D reconstruction tool from multiple photos.
This is similar to the Sinha’s method, but it does not use the SFM
to create point clouds and use any speed-up method, just manual
vanishing point alignment for photo registration to 3D coordinates.
This tool should be one reasonable comparison for our method.

2.3 Image/Video Stitching
Image stitching technique mainly focus on wide baseline images
from cameras with great position difference, orientation differ-
ence or other attribute differences. Recent studies have achieved
a good stitched result. These methods can be divided into two
main categories. The former one, spatial-varying method, uses
spatial-varying multi-model with local parameters instead of basic
single-model with global parameters. For example, Lin et al. [24]
employed a smooth varying affine model to align images, which
works fairly well with moderate parallax. Zaragoza et al. [42] pro-
posed an APAP warping method. This method divided images into

1SketchUp, http://www.sketchup.com/.
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hundreds of grids, each of which is aligned by smooth varying
homography, and combined with bundle adjustment method to
eliminate cumulative error between multiple images. The latter
local-warping method converts image stitching into energy mini-
mizing by adding constraint terms, and each term keeps an original
characteristic of input images. Chang et al. [7] proposed a SPHP
warping, which smoothly transforms homography of overlapping
region into similarity of non-overlapping regions. Lin et al. [23] pro-
posed an AANAPwarping, which combines linearized homography
and global similarity to generate nature panorama. Chen et al. [9]
proposed a GSP warping, which optimizes naturalness of panorama
by combining global similarity and local similarity. Zhang et al.
[43] studied street view, and raised a multi-view stitching method
tolerating wide baseline.

Compared with image stitching, there are fewer prior works
on video stitching. Different approaches have been proposed for
different camera settings. For example, earlier researchers aimed at
static cameras, He et al. [15] put forward panoramic video stitching
in multi-camera surveillance system. While recent works pay more
attention to fixed camera arrays, such as Surround 360 system raised
by Facebook, and R2, R5 and R7 camera heads used in Google
StreetView [3]. To stitch videos captured by these cameras, the
pose relationships between cameras can be pre-calibrated to stitch
frames globally, followed by some local warping procedures [19,
22, 29] to eliminate small deviations. However, for independently
moved cameras, shakiness must be removed, since the relative
position between cameras varies every moment. Guo et al. [14]
and Su et al. [37] both take video stabilization into consideration
to optimize stitching result. Wang al. [39] present a novel method
to create bigger selfie video, called BiggerSelfie, combining a selfie
video clip and an environment video without relying on specific
hardwares. What is more, Nie et al. [27] optimized stitching and
stabilization together to generate a unified optimization framework,
which achieved state-of-the-art performance.

However, image/video stitching has its inherent limits. First of
all, it cannot deal with image sets without a large overlapping
region, which is really common in surveillance systems. Secondly,
when the parallax is too large, the quality of stitching result is too
poor, and cannot keep good visual experience in a 2D space. Last
but not least, even though the panorama is stitched up well, the
perspective relationships of stuffs in images are dilapidated due
to image deformation, which means that we cannot create a well-
structured model with this kind of panorama. We propose a novel
3D stitching method by using our modeling results. This method
keeps the nature structure of video imagery, and has no limitation
of baselines’ length.

3 OVERVIEW
In this section, we provide an overview and motivation for the
specific features of our system. For better comprehension of these
features, we suggest the readers to browse the supplement videos
first.

Our work is based on the idea of using camera pose (location,
orientation, and field of view), compact video 3D models and 3D
scene information to create new interfaces for browsing hundreds
of videos concentrated in key regions. Given the camera pose and

compact 3D models of videos, we can simply place the “video” into
a common 3D environment which contains a dozen of complex 3D
scene model. And it allows the user to virtually browse syncretic
videos with a free viewport and smoothly transit from one video to
another using our interface. The 3D models of videos are compact
but effective bond to link the 2D images with 3D scene information,
and the 3D scene enhances the comprehension of spatial geometric
relationship between different cameras.

The core part of our system is an interactive modeling approach
for rapidly constructing and stitching the 3D models of video’s
background. Using our modeling approach, the user can conve-
niently draw main parts of image scenes in both 2D and 3D views
and observe a textured modeling result in real time. After modeling
a video, the user can register the model into 3D scene by simply
drawing a line in both views and continue model the parts whose
depth cannot be estimated on 2D images. Meanwhile, we provide
the ability to extend single-view modeling to multiple videos by
a novel 3D stitching method, to gain a more competitive and de-
terminate model of videos. Figure 2 illustrates the pipeline of our
video fusion system.

4 PRE-ANALYSIS ON IMAGE GEOMETRIC
STRUCTURE

Although our modeling method is interactive, it relies on accurate
knowledge of the vanishing point and surface orientation estimated
from observed scene. Our system starts by preprocessing the video
frames using computer vision techniques for (a) extracting a back-
ground framewith little occlusion to features we used(such as lines),
(b) estimating an accurate vanishing point from the background
frame and (c) subsequently generating a surface orientation. These
procedures are necessary steps before modeling, which decide the
efficient and performance of modeling results.

Video background extraction. For a video of multiple frames, not
all frames is suitable for modeling since moving objects exist in
video. These objects occlude the static building and bring in other
mistakes, so we need to select a background frame contains as little
as dynamic objects for modeling. We use a classic background ex-
traction method ViBe [4], which separates from foreground objects
and offers a clean background with little noise. And then we fill the
blank by simply performing mean filter across the N neighboring
frames (in practice, N is 10). At last, the user may choose one of
background frames to the following procedure.

Vanishing point-based calibration. Parallel lines are common
in architectural scenes containing man-made structures. Under
perspective projection, parallel lines appear to meet at a point
in the image called the vanishing point (VP). Vanishing points
have been extensively studied along with the geometry of image
formation and have been found useful for camera calibration and
3D reconstruction from a single un-calibrated image. The details
of the approach for vanishing point estimation and camera pose
calculation can be found in Appendix.

Surface orientation estimation. "Orientation of a surface" is de-
fined as the normal orientation of the surface in the world and “pixel
orientation” as the orientation of the surface projected to the pixel.
To obtain this per-pixel value, we employ the method from [5]. This
method depends on accuracy grouping of line segments and we
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guarantee this though our vanishing point estimation approach.
We do not use this per-pixel orientation for direct modeling, but a
guided modeling detailed in section 5.3.

5 INTERACTIVE MODELING FROM SINGLE
IMAGE

In this section, we first introduce the scene graph representation
for our models. And then we describe the image registration step.
Lastly, we present several accelerating strategies for convenient
constructing.

5.1 Primitives and Scene Graph Representation
The key difficulty of modeling is how to constrain the 3D positions
of primitives (e.g. point, line, faces and circles) in different parts.
For better organization, we adopt a scene graph to represent the
geometric relation. This graph contains three kinds of primitives:
point, line and face, and then subdivided into six classes of basic
primitives according to the relationship of starting-ending point
and the type of user operation, the generating relationship is shown
in Figure 3. The point-to-face operation will create a new connect
region if the user starts modeling from an isolated point, while the
line-to-face and face-to-extraction will update its corresponding
connect region.

To create a new face, the user interactively start to draw a point
P0 on the image. If P0 is on the model, its 3D position can be calcu-
lated through the intersection of the view ray andmodel. Otherwise,
it will give P0 a random depth value z and create a new connected
region respect to a local 3D orthogonal coordinate system. We treat
P0 as a reference primitive in this connected regions and the primi-
tives created from P0 is decided by it. For modeling multiple parts,
user can simply point out the contact points or shared lines. An
example of connecting two separated-built cuboids is showed in
Figure 4.

5.2 Image Registration with 3D Environment
Before modeling, we register the image to the 3D environment,
which is one of the most important operation in our modeling tool.
The 3D environment mainly refers pre-built models with CADs.
And it can reduce to a single base map, for example, a ground
picture for outdoor scenes, such as satellite imagery, a floor plan for
indoor scenes. Features on these base maps are useful evidences for
image registration. However, the captured image fromfixed cameras
commonly keeps a large angle with based map, and the base map
may be texture-lacking map. It is hard to implement a wide-baseline
feature matching between the base map and the image. So we use
a simple assumption for images that objects in image is vertical-
standing and the world’s Z direction is parallel to vertical direction
of camera coordinate. The 6-DOF registration problem degenerates
into a XY-plane alignment question. By assigning two ground lines
from each view, we describe the axis alignment method as below.

Considering a pair of 2D line l i , 3D lines lw from the image
coordinate system of image plane and the world coordinate system
in 3D environment, and two pairs of point correspondences (X i

1,X
i
2)

and (Xw
1 ,Xw

2 ). From l i , we can build a local world coordinate system
and a corresponding 3D line lc ,in this world[13], where lc is along
X axis and its endpoints is (X c

1 ,X
c
2 ). They satisfyX

c
i =sMXw

i (i=1,2),

(a) starting point (b) point on the line (c) point on the face

(d) line segment (e) Reference polygon (f) Face polygon

Figure 3: basic primitives and their classification.

Point-

root

Point Point Line

Face

Face

Line

Starting point

3D model

Figure 4: An example of scene graph.

where s is a scalar factor andM is a rigid transformation. We also
compute the rotation angle θ from the X axis of 3D environment to
lw . We can simply solve s by setting s=∥lc ∥/∥lw ∥, andM by setting
M= [R(lc ,θ )Xw

1 ] where R(lc ,θ ) is the rotation matrix along the lc
, and ∥ · ∥ denotes the mold of vector. So for all the primitives in
video models, if s andM is known, we can transfer them into 3D
environment.

Using registration, we can see a stitched imagerywhich combines
the based map with the target image in the 2D image editor view.
After registration, the user can start modeling in one window of
the 2D image editor and the 3D model editor and simultaneously
display the model results in another one. The base map is also a
main different part from other traditional modeling tools.

5.3 Modeling Principle and User Interface
Based on the registration, we further to solve the problem of how
to unproject 2D points to 3D points by the following modeling
principle. Through vanish point analysis[13], we can get the unit
axis vector of image space Dimaдeplane : [uv q] and the unit axis
vector of camera space Dcamera : [U V Q].

If we know the relationship λAB between any point B and its
reference point A in scene graph, we can calculate B′ position
from A′ position. Given the coordinate XA of the reference point
A in image space and the coordinate X c

A in camera space, then the
coordinate XB of the point B in image space can be represented by
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XA and Dimaдeplane :

XB = XA + λABDimaдeplane = XA + [λu λv λq ]


u
v
q

 , (1)

where λAB = [λu λv λq ] is the linear coefficient forDimaдeplane to
represent the relationship AB. Then then the coordinate X c

B of the
point B in camera space can be represented by X c

A and Dcamera :

X c
B = X c

A + λABDcamera = X c
A + [λu λv λq ]


U
V
Q

 , (2)

Now the 3D world position of any 2D point B in virtual scene is

Xw
B = s

−1M−1X c
B = s

−1M−1(X c
A + λABDcamera ). (3)

We provide two basic modes of operation in the form of user in-
terface, a 2D image editor with a sketch-based drawing interface
and a 3D model editor with standard modeling operations for re-
construction.

The 2D image editor allows user to select an input image to
sketch over. In this mode, we define several easy-to-understand
interfaces for novice users, which has three basic operations includ-
ing point-to-face, line-to-face and face-to-extraction. The former
one is often used to create a new face without connecting to exist-
ing model, while the latter two are used to extend existing model
rapidly. The user is able to model the main parts of 3D scenes on
2D images with these basic operations.

Our mesh generation is not done after the completion of the
whole sketching, but realized after every operation. So we can use a
convenient way to conduct a reference 3D view by using projection
texture mapping. For 2D image parts with severe foreshortening, it
is hard for users to recognize and locate the object from such a long
distance. By using our tools, the user can see a relative good-quality
patch which has a same unit of length with the axis in orthographic
projection.

The 3D model view is not only used for visualization, but also
for creating auxiliary primitives and modeling occluded parts, such
as a distant building occluded by trees. We have bring a ground
map into 3D view for assistance modeling. And the user can mod-
eling, for example, a 3D building through a comparison between
2D image and the ground map. The ground map offers a constraint
for the parts on the ground which share no contact cues. In the
3D model view, the capacity of modification is provided for users.
So the auxiliary primitives can be created to offer an extra step
for more complex modeling. After completing modeling, the auxil-
iary primitives may be deleted and will do not disturb the texture
mapping result.

5.4 Accelerating Strategy
In order to make the drawing process easier and improve the speed
of modeling, our user interface provides three forms of snapping:
(a) the start point of a reference plane is asked to snap to preexisting
plane, (b) the end point of a line is asked to snap to VP directions
and (c) face normal is asked to snap to the preprocessed orientation
map.

Attachment point snapping. To draw a reference plane always
starts from a point on the image plane, and we need to know

�� ���

��� ���

Figure 5: The proportion of positive pixels for the rectan-
gle in the last image(NF3) is larger than other two possible
rectangles(NF1, NF2).

whether the projection of the start point is supported by a face
and which face the point is located on. To get supporting face, we
cast a view ray through the start point and intersect with all the
preexisting face. The first intersected point is the right face supports
the target point. With support analysis, pixels in image plane are
simply constrained to the established structure. And this snapping
reduce the number of the isolated parts.

Line segments snapping. If any of the line segments drawn by the
user almost passes through a VP(<15º), that line segment is snapped
to exactly pass through it. Snapped line segments are constrained by
the system to be parallel to one of the detected vanishing directions.
The VP snapping feature is enabled by default, but can be easily
disabled when necessary.

Plane snapping is created when the user draws the reference
faces using point-to-face operation. We use the orientation map
mentioned in Section 4 to decide the reference face’s normal. As
showed in Figure 5, three normal possibilities (NF1, NF2, NF3) re-
spectively corresponds to three different rectangles. And two sides
of drawn rectangle pass through the other two VP directions except
for the direction same as its normal. We statistically accounts for
per-pixel orientation in the rectangle and choose the best rectan-
gle i which has largest proportion of positive pixels (NFp=NFi ),
Commonly we have P=(N=NFi ) >30%.

P(N = NFi ) =
∑

pixel ∈R(i) & Npixel=N Fi

pixel/
∑

pixel ∈R(i)

pixel (4)

The occluded pixels will not be into the statistics. The plane snap-
ping is done during the drawing in real-time and also can be disabled
when necessary. When using plane snapping, the user only need
to draw the diagonal line. The system automatically decides the
plane’s orientation and snaps its two sides to VP directions.

6 MULTIPLE IMAGES REGISTRATION AND
STITCHING

In addition to model a wider scope of scene, we extend our single
image modeling method to multiple images.
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Figure 6: Local-plane-based feature matching.

6.1 Multiple Images Registration
The user may create the model of first image I as discussed above,
and then adds another image I ′ which has overlapped parts with
it. We match the lines between two images [25], and get the line-
correspondence in different views. A RANSAC-based method is
used to select the optimal line to calculate the rotation and trans-
lation, which gives the minimal reprojection error for all the SIFT
points located in built image regions. The rotation matrix is cal-
culated by the angle between two optimal matching lines and the
translation vector is decided by the matching feature points. After
connecting I and I ′, the user can continue operate the original
model on the later-coming images.

6.2 View-Based 3D Stitching
Since our interactive modeling method only builds the simplified
structure of input frame, the modeling result still exists difference
with real 3D scene, and isn’t aligned well in overlapped region.
Therefore, we propose a 3D model stitching method based on the
2D image stitching and above image modeling result. We use cali-
brated camera pose and 2D image matching information to align
the neighboring 3D models.

Our method consists of three steps, including local plane feature
matching (in 2D space), mesh-based warping (in 3D space) and
seam pair generation (in 3D space).

Firstly, we choose several local modeled plane from above mod-
eling result, such as the signed plane with red rectangle in Fig-
ure 6. Then we only use these local plane to extract and match
features in source 2D image. Due to our non-global matching strat-
egy, the matching error has a perceptible reduction. Finally, the
local matches are used to register source images with APAP method
[42]. A pre-matched mesh will be generated by this method, and
its dense uniform distributed corners will be treated as constrained
points for image warping.

Given one constrained point pair (p1, p2) in source image, we
compute the projection locations (P1,P2) on 3D model, and interpo-
late one final point P with a defined weightw . This final point P is
projected back to source images, and generate new point pair(p′1,p

′
2).

The (p1,p′1) and (p2,p′2) compose a pair of control points, and can be
used for common 2D mesh alignment. Finally, we use local planes’
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Figure 7: Virtual camera in seam pair generation.

Figure 8: Seampair generation. First line transformed image.
Middle line seams in transformed view, last line seam pair
in source image.

boundaries, normal and invariant points in 3D models to define
warping constrain terms, and use a mesh optimization method to
produce the optimized alignment result.

After warping, we need to generate seam for aligned image. A
virtual view is chosen as a reference view for assisting seam pair
generation, as shown in Figure 7. Then the whole content of two
warped images can be projected into the image space of reference
view with the camera pose parameters. We solve the optimal seam
of reference image through minimizing the alignment error and
color error. Finally, the seam of reference image is projected back
to source images, which results a pair of source seam. The middle
results of seam pair generation are shown in Figure 8.

Please notice that, our method need camera pose parameters
and modeling result for constrained point pairs to project and
back-project, this is obvious different with previous 2D image or
video stitching. Our method is quite simple but work well in real
applications.
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Figure 9: The fade in and fade out performance in Demo
video. Left: fade in when stepping in the camera view, mid-
dle: stay in camera view, right: fade out when leaving the
camera view.
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Figure 10: Fusion result comparison for the Square scene. (a)
Before stitching (b) After stitching.

7 EXPERIMENTS
Our image modeling technique has been implemented in C++. And
the rendering client is done with OSG and GLSL. All the tests are
executed on a PC workstation with a NVIDIA GTX 1070 graphics
card, 4-core Intel Core(R) I7 7700 at 3.70GHz, 16GB memory, and a
1000Mbps Ethernet connection to the campus network. Our exper-
imental dataset comes from 3 real surveillance system, including
two wide scene overlooked from a high building, and a long nar-
row streetside scene viewed from light poles. In total, 41 fixed HD
cameras or virtual videos are used. The baseline of neighboring
cameras is extreme wide, and images from those cameras are hard
to be modeled by Multi-View Stereo(MVS). The scene used in this
section is summarized in Table 1.

Real-time rendering technology. We use projective texture map-
ping to fusion images and videos into a 3D environment. This
approach produces an accuracy and zero distorted texture at the
captured view. By combining with shadow mapping rendering tech-
niques, the system supports real-time visibility calculation. On the
other hand, the user not only wants to observe stitched or fused
videos but complete imagery without culling. So we use an alpha
transform strategy as a supplement to render the video. When the
viewpoint is close to the camera, the observer can see the whole

Table 1: Experiment setup

Scene Video size Video resolution Average baseline Overlap rate
length (mean/max/min)

Square 4 1080P 46.2meters 23.7/33/17%
Junction 4 1080P 48.9meters 25.5/48/7%
Street 33 960P 21.6meters 23.0/44/16%

imagery, and when the user left the view, the stitched result is
shown, the standby plane and un-stitched parts will be faded. This
kind of visualization performance is shown in Figure 9.

Modeling and stitching performance. Our modeling tool pro-
vides a 2D image editor with a sketch-based drawing interface and
a 3D model editor with standard modeling operations for recon-
struction. The user can choose operations using a button or key
shortcut. The system also provides conventional menu selection,
view control, texture deformation and other operations. Our stitch-
ing operation is also integrated in our modeling tool, and during
this operation, the user is only asked to appoint several constraint
matching points in both images and invariable points in each image.
After warping and seam generation, a seamless 3Dmodel is stitched
by above video models. The technique is tested and evaluated on
real surveillance videos as we demonstrate in this section. As shown
in the accompanying video, most of the examples were modeled
and stitched in a few minutes or less.

Photographs themselves often have some distortions from an
ideal perspective projection, especially if an object is close to the
camera or taken with a wide angle lens. In this case, fisheye correc-
tion should be applied before modeling, we currently provide it by
integrating a method [25].

We describe the performance figures in detail. Figure 11 shows
a fusion result of Junction with 4 videos. In the left column, we
show the input frame for modeling and draw our modeling lines on
the input frame. In the second column, these frames are separately
transformed to a 3D model with a new view. The third column gives
a culled model with alpha blending. The rightmost column shows
the comparison between our fusion result with 3D stitching and
without 3D stitching.

Figure 10 shows the fusion result comparison for Square scene,
while its modeling result is shown in overview figure. Note that
although the left two image are crudely modeled with just one fold-
ing, and the standing planes has depth difference, but our stitching
method can still work under this condition and results in a desirable
seam. In Figure 12(a), we show a complete rendered fusion view
of Street scene, where 33 videos are used to model and stitch. The
cameras used for capturing these videos are randomly mounted on
one side of the street, which only make sure that they can cover
the pedestrian street without any dead corner. Our method models
and stitches all the case successfully, and the close-up view of one
scene piece is shown is Figure 12(b), while three further close-up
views of Figure 12(b) are shown in the rest of sub figures.

Comparison with 2D stitching methods. We compare our 3D
stitching method with three 2D stitching method, including APAP
[42], GSP [9] , WB [43]. For a fair comparison, we give those com-
pared methods same manual correspondences as our method. One
typical result of successful stitched cases for all the three compared
methods is shown Figure 13. The GSP method results “ghost” errors,
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Figure 11:Modeling and stitching videos performance of Junction. (a) Input frameswith line drawings (b) Interactivemodeling
result. (c) Culling result after stitching of close frames (d) Top, the whole modeling result before 3D stitching, and bottom, the
entire modeling result after 3D stitching.

(a)

(b)

(c) (d) (e)

Figure 12: (a) The entire fusion result for the Street scene with 33 videos. (b) A close-up view of Street scene using 7 videos
(c)(d)(e) Details of Fig. 12(b) are visible in a further close-up of the new view. The blue frustum in the scene indicates the camera
pose of source videos, while the videos’ name are shown with white words.
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(a) (b) (c) (d) (e)

Figure 13: Comparison on stitching results. (a) Our 3D stitching result(view A). (b) Our 3D stitching result(view B). (c) GSP’s
result [9]. (d) WB’s result[43]. (e) APAP’s result [42].

(a)

(b)

Figure 14: Failures. (a) Since the left camera’s orientation
nearly opposite to the right camera’s orientation, the local
plane-based matching fails. (b) Due to perspective projec-
tion, the resolution of image pieces projected on the ground
is inconsistent and the local blurring occurs.

while the WB and APAP methods both make a highly distorted
warp. Only our method aligns the two images with few artifacts.
The root cause of this phenomenon is that a proper virtual view
is used in our method, which is generated with projecting the 3D
modeling result, and makes that the warp operation is done un-
der the constraint of 3D geometric structure. So the 3D stitching
method is not only more effective than 2D stitching methods, but
keeps the nature of 3D scene, which allows users to skim the result
through any view.

We conducted a user study to evaluate the usability and efficiency
of our tool. Seven novice users of our tool and two expert users of
commercial software were asked to participate in a modeling and
stitching task involving 11 different models from images, which is
divided into 2 groups. The modeling time taken was recorded, and
the models generated were evaluated by five different evaluators.
The statistics is gathered and reported. Thanks to the automatic
pre-analysis, the user of our tool skips the calibration step, and
their modeling speed is about twice faster than the commercial tool,
Google SketchUp, while achieving a comparablemodeling quality. A
more benefit of our tool is that our tool provides stitching operation
and generates a model with seamless texture, which would cost the
artist’s several hours to map. More details of the user study can be
found in the supplementary material.

8 CONCLUSION
We have presented a novel method and proof-of-concept system
of video fusion with a common 3D environment by modeling and
stitching video background frames. Specifically, beforemanual oper-
ations, automatic geometric pre-analysis is conducted for modeling

acceleration. The model is then derived by digesting and accommo-
dating a large range of video frames with complex scenes in the
real surveillance system. Its modeling speed is much faster than
all of commodity off-the-shelf software. The proposed 3D stitch
method can robustly stitch the videos in the presence of the po-
sition, orientation, attribute differences. With our method, videos
captured from different locations can be integrated into the same
scene and generated a spatio-temporal imagery.

Our work has several limitations. Firstly, the camera calibration
may fail in certain conditions where scenes have few parallel lines.
In such conditions, we allow user manually to correct the parallel
lines in images like Google SketchUp. Secondly, complex shapes
(e.g., sofa, chairs) cannot be modeled completely using our method.
We plan to create a 3D model database to rich our model primitives,
allowing the system to find the best matched one by parameterized
matching. However, this would increase the modeling time and
degrade the quality of 3D models. Thirdly, natural plants (such as
trees) appear really hard to be modeled given the unpredetermined
growth structure and appearance. For hedging camera pair, our
method cannot always find correct matching and produces an un-
satisfactory view for stitching(see Figure 14(a)). This requires that
the users keep adjusting the result carefully, making sure that the
imagery is seamless.

Additionally, our method appears less effective in dealing with
situations that image pieces projected to a certain plane has strong
resolution difference, resulting a blurring effect, as shown in Fig-
ure 14(b). This is due to that our method enforce the modeling
result to fit the 3D scene without limiting serious warping.

Our method can be enhanced in several ways. We can extend our
methods to build panorama or PTZ cameras, which are frequently
adopted for surveillance systems in recent years. This would need
us to detect lines in distortion condition, and build a complete model
for one panorama, similar to [3]. We can also study the illumination
consistency between real videos and virtual background, which is
necessary for AR applications. Since we have multiple real cameras
in only one background, it will be a challenge to make the back-
ground keep the same exposure as all the cameras. We will build a
unified database and web interfaces for users to upload and model
their own videos. Our ultimate goal is to integrate all the cameras
from one scene to others even though they are in different cities or
countries. If the network is practicable, the user can explore a “live
Google earth” composed of real 3D videos.
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