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Abstract. Augmented Virtual Environment (AVE) fuses real-time video
streaming with virtual scenes to provide a new capability of the real-world run-
time perception. Although this technique has been developed for many years, it
still suffers from the fusion correctness, complexity and the image distortion
during flying. The image distortion could be commonly found in an AVE
system, which is decided by the viewpoint of the environment. Existing work
lacks of the evaluation of the viewpoint quality, and then failed to optimize the
fly path for AVE. In this paper, we propose a novel method of viewpoint quality
evaluation (VQE), taking texture distortion as evaluation metric. The texture
stretch and object fragment are taken as the main factors of distortion. We
visually compare our method with viewpoint entropy on campus scene,
demonstrating that our method is superior in reflecting distortion degree. Fur-
thermore, we conduct a user study, revealing that our method is suitable for the
good quality demonstration with viewpoint control for AVE.
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1 Introduction

Augmented Virtual Environment (AVE), known as one part of mixed reality (MR),
defined as a dynamic fusion of the real imagery with the 3D models [1]. Broadly
speaking, AVE is a virtual-reality environment augmented by fusing real-time,
dynamic, multiple information with virtual scenes. The technology was first introduced
in 1996 [2], and had made great progress over the last several years. Many kinds of
AVE systems have been created, such as Photo Tourism [3] and HouseFly [4], and
applied in 3D video surveillance, public security management, city planning and
construction [5].

The fusion results directly rely on the texture projection techniques, projecting real-
time video onto a 3D model. The 3D model is represented as sample boxes and can’t
display objects that not belong to this model, resulting unavailable texture distortion,
such as the stretch distortion of pedestrians, road facilities, cars and trees. Due to
limitation of passive modeling, the modeled depth of each image pixel is not com-
pletely accurate. Although the texture distortion, such as texture stretch and object
fragment, looks seamless when the user’s viewpoint is consistent with the camera’s
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viewpoint, it will become obvious as user viewpoint increasingly deviating from
camera viewpoint. The illustrations of distortion are shown in Fig. 1.

In this work, we propose a novel viewpoint quality evaluation approach, using
texture distortion as the metric of viewpoint quality for AVE. This approach includes
stretch distortion and object fragment. We formulate the stretch distortion as accu-
mulated relative error between model depth and “real depth” from depth estimation
method, and object fragment as cumulative distance between semantic objects edge to
the fragment model boundary. We combine these distortions in a weighted form for
VQE. The main contributions of this work include: (1) we propose a new VQE method
based on texture distortion. (2) We make a theoretical analysis of distortion phe-
nomenon and the problem is mathematized. (3) We consider the effect of object
semantic information on the metric of object fragment.

2 Related Work

Augmented Virtual Environment. AVE system displays still images onto scene
models, and observers view them from arbitrary viewpoint. Neumann et al. [1] firstly
introduced AVE concept and integrated it into a prototype system, supporting dynamic
information extraction and complex scenes analysis through scene models recon-
struction, real-time imagery collection and dynamic texture fusion. Sebe et al. [6] made

Fig. 1. Distortions of images/videos in AVE. (a) (c) Image model from camera’s viewpoint.
(b) (d) are respectively stretch distortion and object fragment, where the viewpoint deviate from
camera’s viewpoint.
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Neumann’s technical extension to AVE, by proposing a novel virtualization system to
make observers have an accurate comprehension and perception of dynamic events
from arbitrary viewpoints. The Photo Tourism [3] was an end-to-end photo explorer
used to interactively browsing 3D photos of popular scenic and historic sites. The
HouseFly [4] was developed to project high-resolution videos onto 3D model, and
generated the multi-modal virtualization of domestic and retail scene. However, the
principle of this system, “directly project”, brought insurmountable problems, such as
hard to align real with virtual, unexpected video frames distortion. Zhou et al. [7]
presented a new AVE video fusion technology based on active image-model tech-
nology, extracting video structure to generate image background model of the virtual
scene, and projecting the real-time imagery onto model to enable users browse 3D
videos from different viewpoint.

Viewpoint quality evaluation. Viewpoint quality is used to describe visual effect
from viewpoint, and the higher the score, the better the viewpoint obtaining more
detailed visual information in AVE. Generally, viewpoint quality is quantified through
the information of 3D scene, such as geometry and texture. Previous methods [8–11]
were mostly based on scene geometric information, which are difficult to evaluate high-
quality viewpoints in complex scenes with multiple models. Relevant researchers
performed the method of VQE based on user’s visual perception [12–16], the typical
methods include curvature entropy [13] and mesh saliency [14]. The results of these
methods are not satisfied for the lack of model geometric information. In order to
heighten the user’s visual experience to some extent, Christie and Normand [17]
investigated VQE method based on semantic information through the basic analysis of
geometric and visual information. However, these methods, which are restricted by
semantics understanding level of current scene are not suitable for multi-model
scenarios.

Single image depth estimation. We compute the degree of stretch distortion through
the accumulated relative error between model depth and “real depth”, obtained from
image depth estimation. Traditional methods of depth estimation were mostly based on
geometric priors [18, 19]. Under the rapid development of machine learning, Liu et al.
[20, 21] utilized the conditional random fields (CRF) to improve the accuracy of depth
estimation for single image. Then Roy and Todorovic [22] adopted neural-random
forest for depth estimation of single image, acquiring the same excellent depth esti-
mation result as the above methods. Godard et al. [23] proposed a novel unsupervised
depth estimation method, utilizing the unsupervised deep neural network to achieve
more accurate results of depth estimation.

Image semantic segmentation. We take the semantic information of object into
consideration when measure the degree of object fragment. Previously, the methods of
semantic segmentation were mostly classified pixel-wise based on geometric infor-
mation [24] and statistical methods [25]. The DeepLab [26–28] combined deep-
convolutional neural networks (DCNNs) with probability map models without
increasing network parameters. The RefineNet [29] aggregated low-level semantic
features and high-level semantic classification, to further refine segmentation results
with long-range residual links. Zhao et al. [30] proposed PSPNet, extracting multi-scale
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information through the introduction of pyramid pooling module and achieving more
accurate results of semantic segmentation.

Through the analysis of the above work, we extract two main factors that are related
to the measurement of VQE, including stretch distortion and object fragment. Taking
these distortions into VQE is necessary for improving the roaming experience in AVE.
When measuring the stretch distortion, the “real depth” of single image is obtained by
Godard’s method. And the metric of object fragment is based on the results of semantic
image segmentation by Zhao’s network structure.

3 Proposed Approach

3.1 Problem Formulation

The key for getting better visual effects lies in how to reduce the visual distortions of
AVE. In our scenario, we analyze the following two distortions, stretch distortion and
object fragment, to evaluate the viewpoint quality.

Stretch Distortion. The generation schematic diagram of stretch distortion is shown in
Fig. 2(a). Suppose we have a source image I for texture projection, captured from a
camera viewpoint vcam. When user observes the built image model (or projected image)
from a virtual viewpoint vusr, the texture distortion will occur, including stretch dis-
tortion Dstretch and object fragment Dfragment. Assuming that the established image
model R has a corresponding 3D model C based on true depth, and the spatial point set
of C and R is separately denoted as S and S′. The process of projection transformation is
defined as

t ¼ M � S pið Þ
t0 ¼ M � S0 pið Þ

�
; ð1Þ

where t and t′ respectively denote the screen position of S(pi) and S′(pi) for pixel i. M is
perspective transformation matrix, defined as M = Mw � Mp � Mv � Mm. The four
matrixes respectively indicate viewport matrix, projection matrix, view matrix, and
model matrix.

The projection offsets of P pixels cause distortion phenomenon, such as pedestrians
and vehicles are stretched. Denoting L (pi, v) as the distance error of each pixel
projected onto screen, and the overall stretch distortion of scene is formulated as

Dstretch v;Rð Þ ¼
XP
i¼1

L pi; vð Þ; ð2Þ

where v2vusr and vcam2vusr. And L (pi, v) = |t − t′|, if v 6¼ vcam, then t 6¼ t′, indicating
that the space coordinates projected on the screen are inconsistent, defined as pixel
offset, resulting in stretch distortion. Otherwise, L (pi, v) = 0 represents they are pro-
jected to the same screen position, revealing that stretch distortion does not exist.
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Object fragment. The generation schematic diagram of object fragment is shown in
Fig. 2(b). Each R consists of a group of triangle patches represented as triangle-patch
set TR. The boundary set of R is defined as ER. The left and right sides of each ei2ER are
uniformly sampled, generating pair-wise space coordinates (Vl, Vr), where Vl2TR and
Vl 62 ER, Vr2TR and Vr 62 ER. If Vl 6¼ Vr and there is no common boundary between
them, ei is defined as fragment boundary, dividing the object into two parts. The
projection transformation of each fragment boundary is calculated as

w1 ¼ M � V1

w2 ¼ M � V2

�
; ð3Þ

where w1, w2 respectively represent the screen position of space coordinate V12ER and
V22ER.

The projection errors of H pixels of each fragment boundary cause object fragment.
Denoting B (pj, v) as distance error of fragment boundary ei from v projected onto
screen. The overall fragment of image model is formulated as

Dfragment v; eið Þ ¼
XH
j¼1

B pj; v
� �

; ð4Þ

where B (pj, v) = |w1-w2|, if v 6¼ vcam, then w1 6¼ w2 and B (pj, v) 6¼ 0, indicating that
the fragment boundary is projected to different positions on the screen, resulting in
object fragment. Otherwise, the fragment boundary is projected to the same screen
coordinates, w1 = w2, and B (pj, v) = 0, symbolizing no object fragment occurs.

In summary, these two distortions are caused by the inconsistent depth, reflecting in
screen when vusr deviates from vcam. The essential reason of stretch distortion is the
offset of all pixels in the image, and it is inversely proportional to modeling accuracy.
However, object fragment is caused by the offset of fragment boundary in the model,
and it is proportional to modeling accuracy.

Fig. 2. Generation schematic diagram of distortion. (a) Stretch distortion. (b) Object fragment.
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3.2 VQE Method for Stretch Distortion

Under the analysis of stretch distortion, we utilize the accumulated relative error of
pixels projection as the metric of view quality evaluation. Using [23] to calculate the
real depth of image, compared with image model depth to obtain projection error.
Sampling the image model R to get the sampled pixel set W(R), and the visible sampled
pixels from v are denoted as N(v,W(R)). The degree of stretch distortion is computed as

Lstretch v;Rð Þ ¼
P

pi2N v;W Rð Þð Þ M � S pið Þ �M � S0 pið Þj j
N v;W Rð Þð Þj j ; ð5Þ

where S(pi) = l(R) + f (pi, R) � d, l(R) represents the location of vcam, f (pi, R) is the unit
vector indicating the orientation looking at pi of image model, and d is the depth of
mapped pi.

The VQE method based on stretch distortion for single image model is denoted as

Estretch v;Rð Þ ¼ 1�max
Lstretch v;Rð Þ

L
; 1

� �� �
� Vis v;Rð Þ

r
; ð6Þ

where Vis(v, R) denotes projection area of image model, r is screen resolution, and L is
a fixed value, representing the acceptable maximum distance of pixel deviation, we
take one-fifth of the screen diagonal as L.

3.3 VQE Method for Object Fragment

Analyzing the phenomena of object fragment above, we further propose a method of
VQE based on object fragment. Using the cumulative error of fragment boundary
projection to measure the degree of object fragment. The fragment degree of each
fragment boundary is calculated using equation

Lfragment v; eið Þ ¼
P

pi2N v;T eið Þð Þ M � V1 �M � V2j j
N v; T eið Þð Þj j ; ð7Þ

where Lfragment(v, ei) represents the fragment distance of ith fragment boundary. T(ei) is
sampled pixel set of ei and N(v, T(ei)) is the visible sampled pixels of T(ei).

Different positions of fragment boundary in the object, causing various degree of
object fragment. The greatest fragment occurs when the fragment boundary is in the
middle of the object. We utilize the distance difference from fragment boundary to the
two sides of object to measure the degree of object fragment. This paper obtains the
results of semantic image segmentation by PSPNet [30], to get a more accurate distance
difference, named as semantic weight k. Therefore, the above-mentioned calculation
function in Eq. (7) is extended into

Lweight v; eið Þ ¼
P

pi2N v;T eið Þð Þ k � M � V1 �M � V2j j
N v; T eið Þð Þj j ; ð8Þ
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where k ¼ 1� d1 � d2j jj j, d1 and d2 respectively represent the distance of ith pixel
from fragment edge to both segmentation edges of object, normalized to [0–1]. If the
fragment boundary is in the middle of object, that is k � 1, indicating that the fragment
degree is most serious. Otherwise, the fragment edge is close to one of the object’s
segmentation edges, d1 � 1 or d2 � 1, revealing the fragment degree is not serious and
can be ignored.

When determining how distortions affect the viewpoint quality, the score of VQE is
in a weighted form, the computational formula is

Edistortion v;Rð Þ ¼ a � Estretch v;Rð Þþ b �
XN
i¼1

Lweight v; eið Þ ð9Þ

where the hyper-parameters a and b are weight factors which control the contributions
of the two terms, and we set a = b = 0.5 empirically. N is the total number of fragment
boundary of single image model R.

4 Experiments

4.1 Experimental Setups

We compare our method with viewpoint entropy with four campus scenes. We sample
bounding sphere of each scene, getting a viewpoint set with 722 viewpoints. For a
better visualization of our results, we utilize 7/8 view sphere with normalized heat map,
same as [31], to illustrate viewpoints quality score. The view sphere’s center is the
source captured location of image, and its radius is the length of the vector from the
sphere’s center to the built image model’s center. The sphere’s north-east side is
manually removed to make sure the visibility of inside section planes visible.

4.2 Experimental Results and Analysis

The results of VQE based on texture distortion are shown in Fig. 3. We select four
image models and the blue cone is field of view (FOV), shown in Fig. 3(b). The red
lines of Fig. 3(c) indicate the fragment boundaries.

Each view sphere demonstrates that the optimal viewpoint is the camera viewpoint,
locating in the center of view sphere, where the distortion degree is 0. The back view
from Fig. 3(d) shows that the more the viewpoint moves towards the rear of camera
viewpoint, the larger the spatial range with higher viewpoint quality. The front view
from Fig. 3(e) indicates that the viewpoint quality in front of camera viewpoint is
deteriorating, that is the distance from viewpoint to image model is inversely pro-
portional to the viewpoint quality.
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The comparisons of four VQE methods are shown in Fig. 4.

The Fig. 4(b) shows that the distribution of viewpoint quality varies slightly over
the section of view sphere, where the quality of viewpoint is poor. This is because the
stretch distortion exists in entire image. The Fig. 4(c) indicates that viewpoint quality
from section drops rapidly when the viewpoint moves upward, due to the degree of
object fragment is more severe from the top. While the viewpoint moves in the left and

Fig. 3. Results of VQE based on texture distortion. Color values range of each view sphere from
blue (good viewpoint) to red (bad viewpoint). (Color figure online)

Fig. 4. The results of four VQE methods. The last columns (b) (c) (d) (e) respectively denote our
VQE method based on stretch distortion, our VQE method based on object, our VQE method
based on texture distortion and the representative viewpoint entropy.
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right direction, the viewpoint quality deteriorates slowly, this is owing to the small
fragment area and partial fragment being obscured by the foreground. We weight
stretch distortion and object fragment equally, and the results are shown in Fig. 4(d).
The last column (e) reveals that the viewpoint quality in the center of viewpoint sphere
is lower than the outer edge viewpoint. The above results indicate that the VQE method
based on texture distortion can better reflect viewpoint quality than geometric-based
method.

In Fig. 5 we list the corresponding scenes from different viewpoints, intuitively
displaying the good viewpoint and bad viewpoint by the distortion score of viewpoint.

To quantitatively evaluate the effectiveness of our methods, we conduct a user
study in AVE. Comparing our method with viewpoint entropy, and each image model
is evaluated by 20 participants. Each participant has normal vision and gives a score
based on the perceived comfort level. For each method we select five viewpoints to
compare the score of user’s evaluation and VQE methods (see Fig. 6).

As shown in Fig. 6, the differences of evaluation score between user and VQE
method are not significant in the first three methods. However, the results of the fourth

Fig. 5. The corresponding scenes and distortion degree from different viewpoints. 0 represents
the best viewpoint, the closer the score to 1 the worse the viewpoint.

Fig. 6. Results of our user study. The charts report for each method the pair-wise scores of each
viewpoint evaluated by user and VQE method.
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method have significant differences. Our method is better than Viewpoint Entropy for
the evaluation of distortion in AVE. We select Bhattacharyya Distance (BC) [32] to
measure the similarity of participant evaluation and each method, the similarity value,
abbreviated as BC, is shown in Table 1. The closer the user’s score is to the score of
our method, the greater the BC value is. Obviously, the similarity value of our method
is higher than viewpoint entropy, which demonstrates that our method is more suitable
for user’s virtual perception.

5 Conclusion and Discussion

With the growth of the size and complexity of AVE, identifying good viewpoints
automatically is an important requirement for good visual experience. Our method
provides an elegant solution to achieve VQE. Comparing our method with other
existing VQE methods, the main contribution of our method is the texture distortion
metric for AVE. Experiments illustrated the effectiveness of the quality evaluation of
the viewpoints.
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