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Abstract—This paper presents a novel stitching approach
for wide-baseline images with low texture. Firstly, a three-
phase feature matching model is applied to extract rich and
reliable feature matching, in the case of low texture, our line
matching and contour matching will compensate for the
poor quality of point matching. Then, a structure-preserving
warping is performed, by defining several constraints and
minimizing the objective function to solve the optimal mesh,
with which we obtain multiple affine matrices to warp
images. Furthermore, we synthetically consider alignment
error, color difference and saliency difference to find the
optimal seam for image blending. Experiments both on
common data sets and challenging surveillance scenes
illustrate the effectiveness of the proposed method, and our
approach has outstanding performance when compared with
other state-of-the-art methods.
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I. INTRODUCTION

Traditional image stitching assumes that the camera is at
a fixed viewpoint or the scene is roughly planar, these two
assumptions both require that there is no great depth
change in the image. Violation of above assumptions, it is
obviously inadequate to use only one global homography
matrix for image alignment. Since the content of the image
varies in depth, there will be noticeable artifacts in the
final panorama. The misalignment between the target
image and the reference image is usually called parallax.

However, for surveillance images, the situation is
usually more challenging. In daily life, camera position,
orientation, and other attributes vary much, thus the quality
is rather poor, even the camera is affected by the
surrounding environment, causing problems such as
pollution, sheltering, blurring, etc. For this kind of images
with wide-baseline, large parallax, and low texture,
existing stitching algorithms cannot achieve satisfactory
result, even some commercial softwares directly say that
these videos cannot be stitched together.

In this paper, to overcome the problems mentioned
above, we propose a novel framework which combines the
advantages of several advanced approaches: firstly, a local
homography model based on super pixel segmentation is
applied to obtain rich and reliable feature matching, in the
case of low texture, we add line matching and contour
matching to compensate for the poor quality of point
matching; then we perform a structure-preserving warping
by combining several constraints and minimizing the
objective function to solve the optimal mesh, with which
we obtain multiple affine matrices to warp images; Finally,
we synthetically consider alignment error, color difference
and saliency difference to find the optimal seam for image
blending.

II. RELATED WORK

In this section, we will briefly review the related work
and the latest progress, the specific content can be referred
to the literature review of image stitching [1].

A. Image alignment
Traditional method aligns images with one global

homography matrix, which work well when the scene is
planar and camera undergoes only rotation. But for images
with large parallax, it will cause noticeable artifacts. Gao
et al. [2] divided the image into distant plane and close
plane, each was aligned with one homography matrix,
which works well when the scene contains mainly two
planes. Lin et al. [3] proposed to employ a smoothly
varying affine model to align images, which works well
with moderate parallax. Zaragoza et al. [4] divided images
into hundreds of grids, each grid using smoothly varying
homography to align images. In this paper, a local
homography model is used to filter feature points on
different planes, which works even better.

B. Image blending
Now mainstream approaches are based on the graph-cut,

while only taking color difference as the quantitative
standard will cause obvious structural fracture and
seriously affect the quality of panoramic image. Zhang et
al. [5] combined alignment error and color difference to
make the seam across areas with good alignment. Lin et al.
[6] combined color difference and saliency information to
define the difference map so that the seam will not break
significant structure. Our method is the combination of
them, also has the advantages of both.

C. Image naturalness
Traditional global homography model usually sets an

image as the reference plane, so images away from the
reference view will suffer obvious distortion. Change et al.
[7] proposed a SPHP warp, which smoothly transforms the
homography of overlapping region into the similarity of
non-overlapping region. Lin et al. [8] proposed an AANAP
warp, which combines linearized homography and global
similarity to generate nature panorama. Chen et al. [9]
proposed a GSP warp, which optimizes naturalness of
panorama by adding global similarity constraint. Unlike
previous methods, reference plane is not set in our method,
but solved with scale-preserving constraint, so the final
panorama suffers less distortion.

D. Mesh optimization
Mesh optimization is widely used in image retargeting

[10], [11], image resizing [12], [13], image rectangling
[14], video stabilization [15], [16] and so on. Recently,
mesh optimization has been tried for local warping in
image stitching and has a good effect.



III. THREE-PHASE FEATURE MATCHING

In the feature matching part, a three-phase matching
strategy is adopted, namely, point matching based on local
homography, line matching based on neighboring feature
points and contour matching based on neighboring pixels.
Point matching is the first and most important matching
method. Considering the clarity and texture characteristics
of surveillance scene, line matching and contour matching
can be introduced as a supplement to a certain extent.

A. Point matching based on local homography
Like many previous method, we use SIFT [17] to detect

feature points, for challenging data, ASIFT [18] can be
adopted, and then we use K-D tree to perform initial
matching of feature points. As for outlier rejection, we
combine Zhang’s [5] plane hypothesis and Lin’s [6]
method of super pixel segmentation. First, we use SLIC
[19] to perform super pixel segmentation on image pair (Ii,
Ij), and the number of super pixels is set to 50. Next, we
take Ii as reference, for each super pixel of Ij, we use DLT
[20] to estimate a homography H for all feature points
within this super pixel, if residual error γ is less than 5
pixels, we take it as an inlier, after enumerating all feature
points in Ij, we obtain the inlier set S1. Then, we swap Ii
and Ij to get the inlier set S2. Finally, the inlier set for (Ii, Ij)
is S1ՈS2.

B. Line matching based on neighboring feature points
Just like [21], our line matching is based on the result of

point matching. First, we use the LSD [22] algorithm to
detect lines; then, we divide neighboring feature points set
for each line according to the distance, if the distance
between the feature point and the line is less than 30 pixels,
the feature point will be included in neighboring set of the
line; finally, we match each line and its neighboring set
together as a line-points variants to generate the voting
matrix, if there are some feature points not used, we can
generate some candidates from the already matched pairs,
and the final results are selected from the voting matrix.

Figure 1. Point matching. (a) The result of our local homography; (b)
The result of traditional global homography.

C. Contour matching based on neighboring pixels
Contour matching is similar to region-based matching.

First, we use the SOBEL operator to obtain the contour
map of the image; then, we extract the branch nodes of
contour as feature points, for each feature point, we take its
10*10 neighboring pixels as feature descriptors; finally,
the normalized cross correlation (NCC) is used to measure
similarity, the pairs with the highest similarity are selected
as the final result.

IV. STRUCTURE-PRESERVING WARPING

In this section, we create initial mesh on all images and
define objective function with the mesh as the independent
variable, by minimizing the objective function to obtain
the optimal mesh. In accordance with the corresponding
relationship between the initial mesh and the optimal mesh,
the image deformation can be performed.

A. Definition of objective function
We propose a structure-preserving warping, which is

formulated as an optimization problem of energy function
including several constraint terms.
1) Alignment term: The alignment term constraints

each feature points pair to be transformed to the same
location to ensure the alignment of overlapping regions
between images. Each feature point is expressed as form of
a bilinear interpolation of the vertex coordinates, because
the mesh is finally affine transformed, it can be derived
that the form of bilinear interpolation is unchanged. The
alignment term can be calculated as follows:
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where N is the number of feature points, Pi*, Pj* is the
transformed positions of Pi and Pj.
2) Regular term: The regular term constraints adjacent

mesh vertices to do similar transformation, according to
the characteristics of similar transformation, it can be
derived that the position relationship between adjacent
mesh vertices is unchanged.

As shown in Fig.2, we use the coordinate system
constructed by Vb and Vc to calculate the position of Va,
since the location relationship remains unchanged after
transformation, the error value of a single triangle can be
expressed as:
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The final regular term can be expressed as follows:
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3) Scale-preserving term: The scale-preserving term
constraints no large scale changes after transform, however,
simply requires that all images are close to the original size
is illogical, we hope that the image with rich feature
information is relatively large, vice versa.

First, we calculate the relative scale factor between
matched images. Specifically, for a image pair (Ii,Ij), we
build a convex polygon Pi on the feature points from Ii and
find its corresponding polygon Pj on image Ij. The relative
scaling factor is defined as the perimeter ratio of Pi and Pj.



Figure 2. Regular term.

Then, we calculate the absolute scale factor for each
image, and solve the problem by minimizing the global
scale change and maintaining the relative scaling
relationship between the matched images:
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Finally, the error value can be expressed as the sum of
the deviation between the ideal scale and the true scale of
each image:
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where S(Ii) is the scale vector of the original image Ii, and
S(Ii*) is the scale vector of the warped image Ii*.
4) Line-preserving term: The line-preserving term

constraints that the lines in the image remain linear after
transformation. In section 3.2, we have detected all the
lines in the image, first we sample some discrete points on
the line as {P1, P2, ..., Pn}, the coordinates of each point
can be calculated using bilinear interpolation, for the
convenience of later optimization, it is required here that
sampling points are in different grid. Then, the orthogonal
vector [al, bl] ⊥ is calculated according to P1* and Pn*.
Finally, the line-preserving term can be expressed as sum
of the deviation of all sub line segment and line :
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5) Contour-preserving term: The contour-preserving
term constraints that significant structures in the image do
not distort much after transformation, similar to of regular
term, we construct a series of triangles on image contour,
contour-preserving term can be expressed as the sum error
of all triangles. As shown in Fig.3, the contour-preserving
term can be calculated as follows:
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Figure 3. Contour-preserving term.

B. Optimization of objective function
We combine the above five constraint terms into the

following energy minimization problem:
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where λR, λS, λL, λC are the weights of each term, in our
experiments, they are all set to 1. The above minimization
problem is mostly quadratic and is solved by linear
approximation and sparse linear solver. Once we obtain
the optimal mesh, in accordance with the corresponding
relationship between the initial mesh and the optimal mesh,
the image deformation can be performed.

V. SEAMLESS BLENDING

After warping images, we need to blend warped images.
The blending strategy we employ is multi-band blending
[23] based on the optimal seam. To ensure the quality of
the optimal seam under different cases, we synthetically
consider alignment error, color difference and saliency
difference to define the difference map.
1) Alignment error : Just like [5], given the image pair

(Ii, Ij), we compute the alignment errors for each image:
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where (p,q) is a pair of matched feature points,
respectively in Ii and Ij. sp,q is the alignment error of (p,q),
ωp,x is the weight coefficient. ψi and ψj are transform
functions of Ii and Ij. The final alignment error value is:
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2) Color difference : For the image pair (Ii, Ij), the
color difference is expressed as the Euclidean distance of
of pixel’s RGB in the overlapping region , and the value is

Figure 4. Panoramas of different object functions. (a) Two input images.
(b) The panorama of object function E=EA+ER+ES; (b) The panorama of
object function E=EA+ER+ES+EL+EC.



mapped to the [0,1] interval via the Gauss function:
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where ψi and ψj are transform functions of Ii and Ij. μ is the
mean value of pixel distance in overlapping region, while
σ is the standard deviation.
3) Saliency difference : We take the contour in the

image as the saliency features, and ensure that ideal seam
does not cross the contour, avoiding obvious structural
fracture in the final panorama.
4) Specific combination : Firstly, we combine the

alignment error with the color difference and constrain the
numerical to [0,1]:
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Secondly, we extract the contour and extend the contour
to both sides to generate image mask.

Then, we apply the mask to the difference map, that is,
only the difference value of the contour is preserved, and
the difference value of the other region is set to 0.

Finally, we use the graph-cut algorithm to solve the
optimal seam on the basis of the difference map.

VI. EXPERIMENT EVALUATION

We experiment the proposed approach both on common
data sets and a variety of challenging images captured
from surveillance cameras in urban scenes.

A. Experiments on common data sets
First we verify whether our feature matching method

can obtain rich and reliable matching information. Line
matching and contour matching are introduced to make up
for the insufficient of point matching. As shown in Fig.1,
our local homography model can provide more matching
than traditional global homography model.

Then, we verify whether the structure-preserving model
can achieve enough ideal reference plane and image
deformation effect. We do not set one of the images as
reference plane, but add mesh for all images, and solve the
optimal reference plane by calculating the optimal mesh.

Finally, we verify whether the blending algorithm can
obtain the ideal seam under different alignment conditions.
As shown in Fig.5, our seam crosses areas with good
alignment and strictly converges to the contour of the
image. We propose a ZNCC score for the final seam, and
evaluate the applicability of the blending algorithm by
monitoring the score of the seam under various data sets.
After a large number of experimental results statistics, our
blending algorithm can achieve satisfactory results in most
cases.

An example of specific comparison is shown in Fig.7.

B. Experiments on surveillance scenes
After experiments above, we can argue that our stitching

algorithm is effective on common data sets. Next, we need
to compare with other advanced algorithms to verify the
performance of our method. We compare with AutoStitch
[25], ICE, SPHP [7], WB [5] and SEAGULL [6] in

challenging surveillance scenes.
As shown in Fig.6, for AutoStitch, the first image

cannot be stitched together and there is obvious distortion
in the red box as the high building is missing directly. For
ICE, the first image cannot be stitched either, and obvious
repetition appears in two red boxes because of the
difficulty of alignment with large parallax. For SPHP , the
whole panorama is blurring and distorted, because the
SPHP is composed of interpolation from homography
transform in overlapping regions to similarity
transformation in non-overlapping regions, although there
is a certain degree of shape correction, but there is no
optimization of alignment in overlapping regions. For WB,
structure fracture appears in the red box, this is because the
WB only considers alignment error and color difference to
find the seam, the solved seam cross the misaligned
structure, causing significant structural fracture. For
SEAGULL, obvious dislocation appears in the red box,
this is because the SEAGULL only considers the pixel
information of the image contour and its surrounding to
seek the seam, but no pixel information far away from the
contour, the solved seam is not the global optimal. Finally
for our method, It can be seen that there is no obvious
distortion or artifacts in comparison with the above
algorithms.

VII. CONCLUSION

This paper presented a novel stitching method for wide-
baseline images with low texture on the basis of combining
several state-of-the-art stitching algorithms. The three-
phase feature matching method effectively compensates
for the deficiencies of the traditional matching based on
global homography, even in the case of low texture, we
can still obtain rich and reliable feature matching. The
structure-preserving warping model effectively balances
the projective distortion and the perspective distortion, and
the optimal reference plane can keeps the scale relationship
between images and the visual habit of people. In image
blending, we synthetically consider alignment error, color
difference and saliency information to find optimal seam,
the seam try pass regions with good alignment and similar
color, and not break the internal structure. Compared with
several existing top stitching algorithms, it can be proved
that our approach has outstanding performance.

Figure 5. The optimal seam. (a) Two input images. (b) The panorama
with the red optimal seam.



Figure 6. Comparisons among various methods on surveillance scenes with 6 input images.(a) The result of AutoStitch with seamless blending, the
image 1 cannot be stitched together; (b) The result of Microsoft ICE with seamless blending, the image 1 cannot be stitched together; (c) The result of
SPHP without seamless blending; (d) The result of WB without seamless blending; (e) The result of SEAGULL without seamless blending; (f) The result
of our method without seamless blending.



Figure 7. Comparisons among various methods on common data sets.
(a) The result of ICE, the line in the red box is obviously broken. (b)
The result of GHW, there is obvious artifact in the red box. (c) The
result of APAP, the content of the green box is fairly well maintained. (d)
The result of SPHP, the line in the red box is curved. (e) The result of
our method, the content of the green box maintains fairly well.
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