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Abstract. In multiple camera networks, the correlation of multiple cam-
eras can provide us with a richer information than a single camera. In
order to make full use of the association information between multiple
cameras. We propose a novel approach to estimate a camera topolo-
gy relationship in a multi-camera surveillance network, which is unsu-
pervised and gradually refined from coarse to fine. First, an improved
cross-correlation function is used to get a preliminary result, then a time
constraint feature matching model is used to reduce the error caused by
external environment and noise, which can increase the accuracy of our
results. Finally, we test the proposed method on several different dataset-
s, and its result indicates that our approach perform well on recovering
the topology of the camera and can improve the accuracy on over camera
tracking.
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1 Introduction

As an important part of the security technology system, video surveillance sys-
tem is always a good studied topic and research hotspot. The need of practical
application on this kind of system has being rising rapidly. However, nowa-
days, most of the traditional surveillance systems rely on human cooperation
and brings burden for operators. For example, if a car needs to be found in
a city area, the operator has to search every surveillance video in the area by
orders. Even he can find the right car, the operator spend too much time to
understand the order relationship of occurrence during the different cameras.
It is often ineffective and obtain inaccurate result. Therefore, many intelligent
surveillance systems have been presented to inference the relationship between
multiple videos automatically.

Unlike single camera, a multi-camera surveillance network has a wider field
of view. So, it is hard for us to associate cameras at different positions. Over the
past few decades, camera topology relationship is presented to determine the
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relationship between the cameras. Makris et al. [1] proposed a method to esti-
mate the camera topology relationship in a camera network based on the simple
occurrence correlation between entering and exiting events. Kinh Tieu [2] pre-
sented an approach to estimate the topology of a camera network by measuring
the degree and nature of statistical dependence between observations in different
cameras. Unlike previous work, Kinh explicitly considered the correspondence
problem and handles general types of statistical dependence by using mutu-
al information and non-parametric density estimates. Niu [3]proposed a model
constructed by the combination of normalized color and overall model size to
measure the moving objects appearance similarity across the non-overlapping
views, their method combines appearance information and statistics informa-
tion of the observed trajectories, which can overcome the disadvantages of the
approaches that only use one of them. Then, based on Kinhs method, Zehavit [4]
proposed a method which divides the camera frame into blocks, and refines the
relationship between camera into block level. Chen [5] focuses on decreasing the
large variance of transition time of true correspondences, which can compensate
for the influence caused by large-scale false correspondences to a certain degree.

The methods mentioned above mainly dependent on the relevance of time,
and do not take into account the target speed of movement. Their method gen-
erally relies on long term videos to reduce the error. To solve those problem,
we propose a novel multi-camera network topology estimation method in this
paper.

The main contributions of this paper are concluded as follows:

• A coarse-to-fine framework to estimate an accuracy camera topology in the
multi-camera surveillance system.

• The proposed approach has good scalability, which can be applied in vari-
ous field such as over camera tracking which can improve the accuracy and
efficiency of existing methods.

2 Our Approach

Our coarse-to-fine multi-camera network topology estimation approach is di-
vided into two main procedures. Firstly, given input entries in videos, we use
cross-correlation function model to calculate the transition time and improve it
with neighbor accumulate method and peak detection. Then, a time constraint
based on feature matching method is used to get a more accuracy transition
time distribution. Through the above steps, we can obtain accurate correlation
between cameras.

2.1 Improved Cross-Correlation Function Model

As the input of our method, entries in the videos are detected by clustering
foreground where objects moving into or leaving from the camera. We consider
that objects are directly corresponding to entry. So we uses Faster-RCNN [6],
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a constructive work of recent years, to detect the (such as human) location of
objects in the camera view. Then the entry zones can been easily clustered by
the K-means method [7]. Three examples are shown in Fig.1.

Fig. 1. A example of entries division in cameras (on DukeMTMC[8]).

According to moving direction, the objects are added into corresponding de-
parture sequence and arrival sequence. As for the entry i in camera c1 and entry j
in camera c2 , if there is a strong transition relationship between them, the object
leaves from i at time t1 will move into entry j at time t2, t2 ∈ [t1 − τ0, t1 + τ0],
where τ0 is a parameter that defines the transition time window. We assume that
the transition time obeys the Gaussian distribution. The origin cross-correlation
function is defined as Rij

0 (τ) = E [Di (t) ·Aj (t+ τ0)], where Di (t) is the depar-
ture time sequence at entry i, Aj (t+ τ0) is the arrival time sequence at entry

j. τ0 is the transition time. Rij
0 (τ) will have obvious peak which represent that

there is a transition relationship between the two entries.

However, the origin cross-correlation function uses only temporal informa-
tion, the state of the cross-correlation function is unstable. In order to get a
clear and steady peak, an improved cross-correlation function is introduced to
calculate the transition time window. We use an n-neighbor accumulated method
[5] to improve the stability of the cross-correlation function:

Rij (τ) =

τn+5∑
τ0=τn−5

Rij
0 (τ0)

=

τn+5∑
τ0=τn−5

E [Di (t) ·Aj (t+ τ0)]

=

τn+5∑
τ0=τn−5

+∞∑
t=−∞

Di (t) ·Aj (t+ τ0) , τn > 5

(1)

The n is set to 5 empirically, which can solve the problem of excessive accumu-
lation in [5].

Intuitively, at different entries, only those objects which look similar in ap-
pearance can be counted to derive the spatio-temporal relation. The E (, ) can
be transformed to Eqs(2):
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E [Di (t) ·Aj (t+ τ0)] =
∑

Oi∈Di(t)

∑
Oj∈Aj(t+τ0)

similiarity (Oi, Oj) (2)

similiarity (, ) denotes the similarity between two objects (Oi, Oj) in correspond-
ing sequences.

A threshold is empirically set to detect the peak interval of the Rij (τ) from
the mean and variance of the transition time.

threshold = avg
(
Rij (τ)

)
+ ω · std

(
Rij (τ)

)
(3)

The value below the threshold is considered to be the noise. After that, we search
for a peak interval in the Rij (τ), tk is identified as a candidate if it satisfies the
formula Rij (tk − 1) 6 Rij (tk) 6 Rij (tk + 1), W ij (tk) represent the interval
width of tkwhich is extended until threshold > Rij (tp) or R

ij (tp) > Rij (tk). In
this work, we assume there is only one popular transition time if there is a link
between entry i and entry j. If there is more than one candidate tm and tn, a
threshold α is set to merge them (α is the width of the candidate, empirically
set to 0.2W).

W ij (tm) = W ij (tm) +W ij (tn) , if tm − tn < α (4)

Through the repeated iteration, tk is the final transition time when there is only
one interval. And the transition time window W ij

0 approximates to its interval
width:

T ij = tk,W
ij
0 = W ij (tk) (5)

Otherwise, there is no direct correlation between two entries. Then, a coarse
results is obtained. Fig.2(a) is the cross-correlation function without any process,
though the accumulation and the peak detection, the peak is much more clear
and smooth and its much easier to be recognized (Fig.2(b)).

2.2 Time Constraint Feature Matching Model

The improved cross-correlation function helps us to get a preliminary transition
relationship between entries, but it still has a possibility of making error: the
speed of the object and some noise such as wrong detection are not taken into
account that will make the result unreliable and imprecise. For example, there
are three sequences: sequence1 is (0, 0, 0, 1, 2, 3, 4, 5, 6.), sequence2 is (1,
2, 3, 4, 5, 6.). sequence 3 is (1, 2, 4, 3, 5, 6.). When calculate the correlation
relationship between sequence1 and sequence2, the transition time is 3 and the
cross-correlation function has a clear peak. Due of the reverse of the number 3
and number 4, the transition time between sequence1 and sequence3 is 0.

To solve these problem, we proposed a time constraint feature matching mod-
el. First, domain guided dropout algorithm [9] is used to extract the appearance
feature of the object in departure sequence and arrival sequence. For entry i and
entry j, which already get the transition time T ij and the width W ij

0 preliminary
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Fig. 2. The coarse result by the proposed method. The dotted line is the threshold.
(camera2 zone0, camera1 zone1, on DukeMTMC[8]) (a)Cross-correlation function re-
sult without accumulate. (b) Peak detection result.

by the improved cross-correlation function approach mentioned before, T ij fol-
lows a normal distributionX (T ) v N

(
µ, σ2

)
.When an object leaves from entry

i at time t, search for the most similar object in the objects sequence moving into

entry j during the time transition window
[
t+ T ij − 3 ∗W ij

0 , t+ T ij + 3 ∗W ij
0

]
,

as shown in Fig.3(a). Since the coarse result is already got, it should be a great
probability to match the same object in the two sequences. Each matching pair
will have a time interval η0 between them. To calculate the mean and variance
for the time interval function T ij

0 (η0), the neighbor accumulated method is used:

T ij (η) =

ηn+5∑
η0=ηn−5

T ij
0 (η0) , ηn ≥ 5 (6)

T ij
p (η) corresponding to the accumulated time interval function. The value is

still 1 after accumulated is considered as noise and will be eliminated.

T ij
p (η) = T ij (η) ,

s.t.η ∈
{
η

′
|T ij

(
η

′
)
> 1

} (7)

The process of our method is shown in Fig.3. The Fig.3(b) represents the cross-
correlation function without any process. Fig.3(c) is the result by using the im-
proved cross-correlation function. The Fig.3(d) shows the time interval T ij

0 (η0)
before accumulate, the Fig.3(e) shows that T ij

p (η) is well fitted to the Gaussian
function model after processed. The transition time window is easy to get from
this figure. By using the time constraint feature matching method, our results
are more accurate than before.
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Fig. 3. A example of estimated transition distributions by different method. (a) Fea-
ture matching result. (b) Cross-correlation function. (c) Method proposed in section
4.1. (d) Time interval before accumulation. (e) Processed time interval function (on
DukeMTMC, camera5 zone0, camera3 zone0).

3 Experiments

To evaluate the effect of the proposed method, we test our method on public
datasets: DukeMTMC [8] and NLPR MCT [5] (including two different scenes:
NLPR MCT 1 includes street and indoor scene, NLPR MCT 2 is campus mon-
itoring video), which are time synchronously and applicable to the proposed
approach. We conduct multiple experiments to give a performance test of the
proposed method. After using color transfer as a preprocessing, we test our
method on camera topology recovery time and over camera tracking across non-
overlapping experiments.

Data Preprocessing. Actually, due to the difference in both lighting condi-
tions and camera parameters, the same object in different camera would have
completely different hues, which will result in mistakes on cross-correlation func-
tion and lead to failure of feature matching. To make them have consistency in
color style, we use a normalization appearance feature model to transfer the col-
or from target camera view to source camera view. The color transfer consists of
two parts: the transfer for the luminance and the transfer for the chrominance,
which is proposed in our previous work [12]. We use this method to transfer the
color style of the object in departure sequences and arrival sequences. As shown
in Fig.4, the color style of objects in different cameras turn to be the same.
The luminance distribution of the target and source images become consistent.
Through this method, the accuracy of the object matching has been remark-
ably improved (the accuracy of finding the same object in the corresponding
sequences increases from 31.4% to 35.0%, on DukeMTMC, camera3 zone1, cam-
era4 zone0).
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Fig. 4. Color transfer result and luminance cumulative histogram.

Fig. 5. The camera topology graph by our approach (on DukeMTMC).

Camera Topology Recovery. We estimate the performance of the proposed
method on recovering the topology structure and calculate the transition time
between entries, we use our method to detect the links between the entries in
cameras. Table.1 summarizes the results of the inter-camera correspondence for
all the cameras and zones in the camera network on DukeMTMC[8] (the camera
topology is shown in Fig.5). µ and σ is expectation and variance of the transition
time. In order to simplify the calculation, we extract one key frame for every
20 frames (original video@ 59.940059 fps). All the link between cameras are
detected and consistent with the ground truth.

We also compare our approach with previous method. As shown in Fig.6. In
Makris’s [1] method, the peak is not obvious and difficult to adapt to complex
scenes. In Chen’s [5] method, a lot of manual parameters is needed and it’s
difficult to adjust these parameter, furthermore the cross-correlation function is
continuously accumulated and excessive accumulation can cause small transition
times missing. The previous methods show unclear and noisy distributions for
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Table 1. Transition time between cameras

Departure Zone Arrival Zone µ σ

C5,Z0 C3,Z0 19.9 5.6
C5,Z1 C2,Z3 35.2 6.5
C5,Z3 C7,Z0 25.2 5.2
C3,Z1 C4,Z0 54.8 10.0
C3,Z2 C2,Z2 26.2 5.7
C2,Z0 C1,Z1 77.5 14.2
C7,Z1 C6,Z0 24.1 7.4
C1,Z1 C2,Z4 159.8 13.7
C2,Z4 C7,Z0 97.3 8.1

both valid and invalid. As illustrate in Fig.6(c). The transition time by our
approach is much more accuracy and does not need extensive tuning experience.

Fig. 6. Performance comparison with other methods. First row: Valid link (camer-
a1 zone1, camera2 zone0). Second row: Invalid link (camera3 zone1, camera5 zone3)

We also validate our approach on other datasets. The result is illustrated
in Table.2. The association number represents the count of all the certain link
between entries (over camera). The correct detection represents the number of
current link number detected by our approach. We have applied the proposed
method for each pair of entries. As the result shows, our method performs gen-
erally well on various kind of scene but have some error detection. The reason is
that although there is a real path between some entries, it fails to be detected
as there are too few object moving between these two entries, and there might
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Table 2. Result on public datasets.

Dataset \ param camera entry zone number association number correct detection

DukeMTMC 7 20 18 18
NLPR MCT 1 3 9 4 4
NLPR MCT 2 5 11 10 6

have a fork in the blind area between cameras that the crowed is too disperse to
have a strong correlation.

Over Camera Tracking. We notices that building topological relationships on
multiple cameras can help us to correlate targets in different cameras. The tran-
sition time between cameras can also help us on over camera tracking between
cameras with disjoint views. We compare the accuracy between using the transi-
tion distributions information and not using. The result is illustrate in Table.3.
By using our approach, when the target object departures from a camera, we
are no longer need to search all the cameras. The highly reliable transition dis-

Table 3. Performance comparison with full camera search in over camera tracking

Method/Dataset Duke MTMC NLPR MCT 1 NLPR MCT 2

full camera 40.9% 24.7% 28.1%
our method 87.6% 72.6% 84.2%

tributions information can help us to find the neighboring cameras. Clearly, this
method narrows the retrieval scope and plays a key role in finding out the object
accurately and effectively. Meanwhile, the time of matching the independent ob-
ject is shortened. The data in the table represents the accuracy of the finding the
same object in the next camera when the target object leaving from a camera.

4 Conclusion

In this paper, a coarse-to-fine multi-camera network topology estimation method
is proposed. We learn both the topological and temporal transition characteris-
tics in the multi-camera network. Our approach does not require manual calibra-
tion and can automatically learn the transition relationship between the cameras.
We test our method on several dataset. The experiments results demonstrate
that our method can recovery the camera topology and the transition time be-
tween entries in multi-cameras surveillance video accurately than previous meth-
ods. And we also demonstrate that, in the over camera tracking application, our
method can narrows the retrieval scope and plays a key role in finding out the
object accurately and effectively.
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