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Abstract
due to insufficient brightness, lots of noise and lack of detail-

Nighttime images are difficult to be processed

s, so they are always removed from time-lapsed image anal-
ysis. It’s interesting that the nighttime images have a unique
and wonderful feature for buildings that has robust and salient
lighting cues of human activities. The lighting variation de-
picts both the statistics and individual habitation, and it has
inherent man-made repetitive structure from the architectural
theory. Inspired by this, we propose an automatic nighttime
facade recovery method that exploits the lattice structures of
the window lighting. Firstly, a simple but efficient classifi-
cation method is employed to get the salient bright regions
which are possibly lighten windows. Then we group win-
dows into multiple lattice proposals with respect to fagades
by patch matching, and after that, we greedily remove the
overlapped lattices. With the horizon constraint, we solve the
ambiguous proposals problem and obtain the correct orienta-
tion. At last, we complete the generated fagades by filling the
missing windows. This method is well suitable for urban en-
vironments, and its results can be used as a good single-view
compensation for daytime images or act as a semantic input
to other learning-based 3D reconstruction. The experiment
demonstrates that our method works well in the nighttime im-
age datasets, and obtain a high lattice detection rate of 82.1%
in 82 challenging images, while a low mean orientation error
of 12.1 + 4.5 degrees.

Keywords facade recovery, nighttime images, lattice de-

tection.
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1 Introduction

Analyzing the image sequences captured from surveillance
cameras has become a hot research field in modern computer
vision. The analysis of daytime images has been well studied
in the past few years. However, for the nighttime images, due
to insufficient brightness, researchers cannot use them to ex-
tract enough useful features and further information, includ-
ing 3D reconstruction [24]. In fact, nighttime images have
salient visual features which can be used to achieve many
tasks: repetitive window lights can be used to predict pla-
nar surface; the light which changes over time reflects the
laws of peoples’ work and rest; the spatial distribution of the
light can be used in the recognition and classification of the
visual places. These salient light features make nighttime im-
ages distinctly different from daytime images, and we should
fully excavate these rich data and make a wide use of them.
Furthermore, the images captured from one static camera is
nearly pixel-level aligned. The analyzed results from night-
time images can be used to verify these from daytime images
and the comprehensive analysis makes the result more reli-
able. In conclusion, the analysis of nighttime images has an
important significance in computer vision. It might expand
the scope of visual information acquisition and open up a new
door of thought for further big data analysis.

In this paper, we focus on the geometric analysis of sin-
¢gle nighttime image, and explore repetitive light structures
on facades, which form regular grids or lattice structures. We
apply this kind of light cues to parse night scenes into facade
planar surfaces in man-made scenes, and estimate surface



depth based on the consistency assumption of storey heights.

The presented method in this paper is an automatic algo-
rithm to generate discrete planar surfaces. It includes three
contributions to 3D parsing of a single-view night image in
man-made environments, which mainly include:

e The first to take advantage of the salient window lights
in a nighttime image to detect planes;

o Distinguish multiple facades of a single image effective-
ly, and calculate their floor structures;

e An orientation estimation with low error is obtained
without using any explicit geometric information, which
is essential in other extraction methods of planar struc-
tures.

2 Related work

Nighttime image is divided into lighting region and dark re-
gion. Previous works related to nighttime images mainly fo-
cus on enhancement techniques [1-6], which brighten dark
region, but keep light region. Most of traditional methods use
contrast-based techniques such as histogram equalization [1]
or tone mapping [2] to adjust the local contrast in differen-
t regions of the image and the night is improved. Raskar et
al. [4] and Cai et al. [5] combine images taken at different
times by using image fusion techniques. Dong et al. [6] finds
a simple but efficient law for night image, and use the dark
channel prior to enhance the night video in a real-time speed.

Lighting areas are both considered as visual salience. Both
gradients and intensities are important and useful informa-
tion. In their methods, they thought that lighting region is
useful information to keep, but do not consider the latent in-
formation from lighting regions. We focus on the geometric
structure from artificial lights. They all retain the high in-
tensity or high gradient pixels. Not only these pixel is clear
enough and do not need to be enhanced, lighting areas are
also considered as visual salience.

Our work is closely related to facade extraction from sin-
gle image, which includes three main categories: geometric
properties, redundancy symmetry properties and sparse dis-
tribution.

The method based on geometric properties commonly de-
tect vanishing points responding to families of lines which
define the planesaf 3D orientations. The works in [7,8] detect
obvious rectangular structures (such as windows), which con-
tain two main orthogonal parallel lines in the same plane. In
contrast, David et al. [9] decide the orientation map by group-
ing lines, which only fit Manhattan scenario, our method has
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a wider application in non-Manhattan ones. More important-
ly, their methods are built on the top of exact line detection
and merging. And they are directly not suitable for feature-
less images, such as nighttime images.

Others discover the repetitive or similar textures and use
them to infer the planar orientations [10, 11]. Even the near-
regularity structures can be understood by an iterative lattice-
finding method [12-15]. Park [13] conducts a MRF to rep-
resent the lattice, and use MSBP to improve the solve speed.
However, the number of the planar surfaces in their exper-
iment is often assumed as only one, and don’t consider the
overlapping problem between multiple lattices. Based on
his single lattice finding method, Park then [14] extends his
method to multiple lattices in urban scenes by perceptual
grouping, which first sorts the lattice proposal, iteratively
greedy adding the next-best lattice proposal with highest A-
score, and remove the overlapped proposal in the rest of pro-
posal pool. This method aims at a local optimal result and do
not make sure obtain the global optimal result. Our method
belongs to this category, and detects a global optimal non-
overlapped (or mild overlapped) multiple facades from single
nighttime image.

Additionally, the sparsity-based methods [16, 17] named
TILT has been proposed to rectify near-regular texture to its
frontal-view under the global affine /perspective transforma-
tion. These methods explored the intrinsic property of tex-
ture, and find the optimal planar orientation of whose rank is
minimal. However, this method requires good initialization
of a fagade region and cannot automatically locate facade re-
gions, which limits its application in fagade detection. Anoth-
er sparse method [18] detects the facade regions from aerial
images via maximizing local regularity by Gini-Index, and
greedily adding regions with consistent dominant orientation-
s. Their method only describes the facade as a bounding box,
and cannot obtain the detailed structure deployment.

3 Overview

Given an outdoor urban image at night, our goal is to group its
window-like regions into planar fagades, and get their lattice
structures and orientation estimations. To achieve this goal,
we first analyze the characteristics of input images and their
possible reasonable assumptions.

As mentioned in section 1, the images used in our work
are the nighttime image which are barely used in the field
of scene geometry analysis. Compared to daytime images,
nighttime images have two characteristics: low scene com-
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Fig.1 Main steps of the automatic fagade recovery method

plexity and salient visual feature of the light. The former
means clutters in the scene become faintly visible in the dark
condition and are blended into the background. In this situ-
ation, the scenes are much simpler and are easier to analyze.
The latter means the illumination intensities of light region-
s are much stronger than the shade regions of the images.
This high contrast makes light regions salient visual features
which are easy to recognize.

Features, such as the color, texture or line segment [7, 8]
can be effectively extracted from daytime images. However,
they are not apparent any more at night caused by the poor
lighting condition. Inspired by recent works on fagade pars-
ing, we use the architectural feature as the visual pattern: a
salient lattice composed by a group of repetitive windows.
The feature used here is different from the feature used be-
fore, and the ‘line’ used in our method is the high-level adja-
cency relation of man-made structures.

We follow two assumptions in our work. The first one
is Local Manhattan World (LMW). The assumption suggests
that the whole scene not only contains a Cartesian coordinate
system (CCS), but also several CCSs. The parallel lines or
VPs which belongs to one CCS are orthogonal to each other.
All the CCSs share the same vertical axis, i.e. Except for the
vertical vanishing point (or zenith), other horizontal vanish-
ing points lie close to a single line in the image plane known
as the horizon.

We also assume that the smallest recognizable information
of nighttime images is the lighting window. The spaces be-
tween some windows are near the same, and by connecting
these windows, we can get lattice structures. Multiple differ-
ent lattices and some other clutters, such as street lamps or
specular highlight, compose a man-made scene.

Based on LWM and lattice structure assumptions, we
solve the facade recovery problem in three procedures. The

pipeline is showed in Fig. 1. The first step is to find the

window-like candidates. Then, we group candidates into
multiple non-overlapped fagade proposals by patch matching
and greedy removal. After that, a global energy model is pro-
posed to decide fagade’s orientation. And this model com-
bines low-level representation (facade structure error) with
high-level constraints (the zenith and the horizon), which op-
timizes both the center locations of windows and the position
of zenith and horizon.

In the following sections, we detail the procedures of our
automatic fagcade recovery method in the section 4 to 6, ex-
perimental results in section 7, and two applications of our
planar fagades in section 8.

4 Extracting window-like regions

We start our method by extracting window-like regions. We
find that the lighten windows at night are usually salient sepa-
rate regions with higher intensity than its neighboring pixels.
And then they can be formulated as a set of distinguished
closed connected regions.

We first detect Maximally Stable Extremal Regions
(MSER) [19] R” = {R} in the input image I, and use the
brighter regions as the lighten candidates. However, the de-
tection on a single image resolution often miss regions due
to blur and incomplete boundary. In order to capture all the
window in the image, we adopt the concept of multi-scale
MESRs proposed by [20]. Each MSER region only has one
level of intensity, and cannot represent a complete lighting
window. So we merge adjacent regions into connected re-
gions R = {Rj|R; = lel U---u lek} . We also utilize the mor-
phological opening and closing operations for further merg-
ing, which enforce that very close window pieces are merged



Fig. 2 TImages and its close-up. Left: input image; Middle: window-like
regions with our gradient-based method; Right: Lighten regions generated
by OSTU threshold. The gradient-based method relieves the interference
caused by indoor intensity variation.

into a single stable region. Please note that the extraction
method of lighting regions used here is based on the intensity
variation and connectivity of light, which will be more robust
than the methods based on threshold binarization. We show
the difference between gradient-based method and threshold-
based method in Fig. 2.

5 Lattice detection

5.1 Group candidates into facade

To generate lattice proposals, an exhaustive search is used to
make sure all the possible proposals won’t be missed. Given
a start seed, we start from its centroid and iteratively expand
it into two of its possible direction connected to its neighbors
until the search satisfies the terminal condition. We treat the
window centroids as the lowest location of basins, and em-
ploy watershed method to segment the image into fragments
as same amount as the window candidates. The adjacency
relation of the fragments is transferred to candidates, yield-
ing possible connecting directions for every candidate. The
experiment demonstrates that it is effective enough to find
correct facades, including the quantity and structures.

For two close candidates, we use a patch matching method
based on normalized cross correlation (NCC). On the bina-
ry image, we check three factors in a search direction every
time, including measures of the texture similarity, angle error
and patch location error. The score is defined as:

Score(i,i’y = NCC(P(®i), P(i)) - (1 = 0(r(i, i), p(i, 1))
(1 = sigmoid(||r(i, ") — p(i, Hl2/IIpG, )ll2))
i’ is the predicted neighbor of candidate i. The NCC(,) is

used to check the texture similarity, while P(i) is the image
region at the candidate i. r(7,i") denotes the direction vector
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between the real centers of patch i’ and i, and p(i,7’) is the
predicted one. 8(r(i,i"), p(i, ")) is the angle distance between
this two vectors. The sigmoid function is used to punish the
Euclidean distance between the predict center and the real
center. We repeat the search procedure for every candidate in
the image, resulting a set of overlapped lattices. And when
the score is lower than a threshold T, the search in this di-
rection will end.

Fig. 3 The steps of window adjacency relationships generation. (a) Input
image (b) rectified image(not necessary, helpful for expressing idea) (c) win-
dow label (white for window, black for non-window). (d) shows watershed
segmentation result, and (e) their adjacency relationships give search direc-
tions for iterative expansion.

Fig. 4 Lattice proposal generation. We iteratively expand seed windows
(a) into the two suggested direction. After three steps of expanding (b-d), (e)
shows final parsing result.

5.2 Lattice energy representation

Since the relative position of features is important for char-
acterizing lattice structures, we model this relationship with
energy representation. We choose the start candidate to rep-
resent its lattices. The output is a set of seed windows and
their lattices. We use the regular linear error to measure the
quality of lattices.

We denote the set of window candidates as C =
{c1,---,cy} and the corresponding set of labels as L =
{ly,--- ,In}. c;is the centroid of ith window candidate in the
image. [ denotes the correct window set within the lattice
proposal. O denotes the outlier set. L € I U O represents ei-
ther an outlier or a window in the lattice. The energy function
is written as below.
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Elattice = Edata + Estruct + Eoutlier )

We try to explain as many candidates as possible by using
a regular lattice structure. Eg,,, = —|{/j|l; € I}| is the negative
number of explained lattice elements. E,,zier = A,-|{Li|l; € O}
represents the number of outlier candidates in lattice’s convex
bounding hull. And E;,.; measures how well candidate i can
be predicted by its neighboring candidates k£ and j, weighted
by the number of explained candidates:

llcj + cx = 2¢ill2
llc; = ckll2

In more general situation, the direct neighboring j and k of

—I{4ill; € I}] - max

ijkel

3

Egruer =

candidate i may be missing at this lattice proposal. Then we
use the candidates nearest to candidate i to replace it. Eg; e
can be rewritten as below:

|lcPrey — cRealy||»

Eguce = —[{lilli € I}] - I;I‘}CZEl;( llcPrell> @
, 1l
cPrejy = E’" : ?l - : - yym :yn ) xf( : xf )
'm k Xm = Xk Ym = Y| V&~ Vi
cRealy = ¢ — c; ©

In Eq. 5, k,m,n € I are three non-collinear nearest neigh-
boring candidates from the lattice. And (x,y) is their loca-
tions in the lattice structure. We predict a vector from jth
candidate to the ith, denoted as cPre;;, while cReal;; is the

A}E H H

Fig. 5 (a) Input image. (b) Three outliers (yellow regions) found in this red
lattice proposal. (c) Linear condition of three neighbor candidates, yellow
and green candidates is used to represent the red candidates. (d) when its
directly neighboring candidates are partly missing, the red candidate should
be represented by its nearest neighbors.

real one.

5.3 Overlapping removal

Different lattice configurations may overlap each other,
which means that a candidate belongs to two or more lat-
tices. However, this situation is impossible to happen in real
world. We must select a set of feasible non-overlapped pro-
posals which covers as many images as possible. A greedy

method is used to remove duplicates by keeping only the top
scoring proposal first. After overlapping removal, we get a
set of seed windows and its responding planar lattices.

Fig. 6 Three proposals with same window candidates but different direc-
tions. Left shows a right direction.

6 Orientation estimation

6.1 Horizon constraint

If we do not use edge features to decide the search direction,
we will yield a group of possible ambiguous proposals, as
shown in Fig. 6. These proposals have same window candi-
dates but different directions. With the horizon constraint, we
can solve this problem. Actually, we refine both low-level lo-
cations of lattice elements and high-level lattice orientations
in one equation.

6.2 Global energy model

We now explain our global energy model of the scene in our
method. The input is several non-overlapped clusters of lat-
tice configurations. And a lattice decides two principle di-
rection: one for horizontal vanishing point and another for
zenith. The lattice is denoted as T = {#;};=;
ble horizontal VP A;, vertical VP z; (computed by the parallel

,,,,, 7, and its possi-
lines in lattice structure). All the vertical VP is equal, and we
have z; = 7, = - -+ = z7 = z. z is the zenith, corresponding to
the parallel line family in the vertical direction.

The energy function in our method includes an individual
energy E;, for every lattice ;, which defined as:

Eind(tilhiv Zi) = min{ﬂt ' Elatﬁce,i’ /lc} (7)

In Eq. 7, Ejq is decided by the lattice energy Eiuice.is
which is the ith rectified lattice in the image and will vary
from A; and z;. 4, is a weighted constant to balance this term
and other terms. A, is a large value when /; cannot be repre-
sented by A; and z;.

As we mentioned in section 3, all the local CCSs share the
same vertical vanishing point. And their horizontal VPs lie
closely to the horizon line in the image plane. We enforce
this by measuring the angle distance between horizon line



and connection line of two lattices’ horizontal VPs. Then the
energy term under the horizon constraint is defined as:

Ehoriz(m(hia h]lz) = /lh . f(‘P(hz - h]’ u-—= Z)) (8)

where ¢ is the absolute angle between u — z and h; — h;j. z
is the zenith, and u is the principle point of the camera which
is usually the center of this image. f(:) is a monotonic in-
creasing function, and it should penalize (up to +1) on strong
non-orthogonality, since u — z is perpendicular to the horizon
line. We choose the tangent function as this function f. A, is
weighted constant to balance this term and other terms.

Then the final energy is defined as:

Ea(h, dAT) = " (tlh;, )+
=1

! )

Z (hia thZ) + E.\‘mooth(h)

1<i<j<T

where E oo = As-|lhllo = A T is a smooth term penaliz-
ing the number of lattice number. A, is the constant regulating
the strength of this term. The energy E,,;,; combines the two
stage components into one equation. And the optimized lat-
tice result can be obtained by minimizing this global model.

6.3 Approximation solution

The minimization of Eq. 9 is a hard computation problem
when the lattices number 7T is large and the locations of van-
ishing point vary randomly in the image near the true values,
so its solution necessitates the use of approximations. We use
its discrete approximation method to solve the minimization
of the global energy:

Ezliscrere(X, ZlT) = Etozal({ilk}k:xkﬂ 5 ZlT) (10)

The variable x is binary and decides whether a horizontal
vanishing point hi is present (x; = 1) or absent (x; = 0) in
the image. The discrete energy is defined as the continuous
energy of the appropriate subsets of vanishing points.

The discrete energy defined in Eq. 10 can be written as:

Ediserere®2T) = )" Eipa(tilthidis -1, 20+
i=1--T

Z )C,")Cj'(il,‘,iljll)‘l‘/ls' Z X;

1<i<j<T i=1T

(an

We vote the zenith z from the whole lattices based on the
evident that the vertical vanishing point is on the extreme top
of image. Given the fixed z, we then perform optimization
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over the binary variables x through the Iterated Conditional
Modes (ICM) algorithm with the randomized node visiting
order.

6.4 Expand and merge lattices

After affirming that the principle directions of all the lattices
are correct, we expand lattices and make them contain more
window regions as many as possible. We relax the terminal
condition and expand the lattice into its two principle direc-
tions once more, to verify its max possible size and update
its orientation. If two lattices share same principle direction-
s and adjacent windows, we merge them into one, as shown
in Fig. 7. These operations are designed for reducing the
error situation that split happens among the detected lighten
windows.

Fig. 7 Illustrations of how to merge facade. Left is the ground truth.

7 Results

7.1 Datasets for Evaluation

We collect a night dataset Night campus with manual anno-
tation of facade segmentation and surface orientation. The
surface orientation is calculated with the Samsung GALAXY
S4’s K330 gyroscope sensor and GPS sensor clinging to the
camera. The dataset consists of 82 images captured by our-
selves, and there are more than two lattice-like facades per
image on average in this dataset. To our knowledge, this
dataset is the first public benchmark for night facade parsing
and providing planar annotations. It is a challenging dataset
for testing our planar lattice detection method.

7.2 Fagades recovery performance

We show several qualitative and quantitative results in Fig.
8. Fig. 8(a) illustrates successful separation of lighting win-
dows in planar facades from street lamps in non-planar re-
gions, while Fig. 8(c) shows an effective grouping of salient
regions which belong to different lattices. We also draw the
estimation of the horizon on test images. Compared to the
ground truth, the estimated horizon line is located within a
reasonable range.
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The runtime of our algorithm depends on the number of
repeated patches detected. The average runtime on a 2.6GHz
quad-core CPU is about 2 min. Some images in the urban
scenes category take longer than 5 min due to the large num-
ber (> 400) of repetitive patterns detected.

7.3 3D orientation error estimation

We obtain an orientation error for all facades of 12.1 = 4.5
degree in 82 nighttime images. We believe the mean orienta-
tion accuracy of 12.1 to be very reasonable since the method
makes no explicit use of geometric information, such as line
segments. In addition, the angle error may be lower if we con-
sider the measurement error of the hardware. The gyroscope
sensor we used is not a strict high-precision attitude sensor,
and in our test, its orientation error will reach +2° when the
phone keeps a large pitch angle.

As shown in Fig. 9, we plot the distribution of orientation
errors. A small amount of outlying lattices have large errors,
and a significant number is under 15° (70%) and under 20°
(86%).

35%

30%

Ices

© 25% ¢+
20%
15%

10%

Percentange of latt]

5%+

0%

5 10 15 20 25 30 35 40 45 50
Origntation error{degrees)

Fig.9 Histogram of orientation errors in the night dataset, showing that the
majority of regions are given an orientation estimate with low error.

7.4 Comparison with state-of-the-art lattice detection meth-
ods

We have compared the proposed algorithm, against Park et
al. at PAMI 2009 [13], and their another work at ACCV 2010
[14]. We tested three algorithms on the night campus dataset
with our self-labeled ground-truth. For a fair comparison, we
improve PAMI 2009 to support multiple lattice detection. We
first run PAMI 2009, then remove the convex hull of image
parts where the 2D lattice is found, and repeat until no more
lattices are found. For ACCV 2010, we also keep their feature

aggregation from a variety of interest point detectors, which
contains the same detector MSER we used.

As can be seen in Fig. 10, we give several typical results.
Comparing columns 2 3and 4, we can see that the grouping
window-like regions in our method has low constraint to the
color of regions, and doesn’t enforce regions in same lattices
have consistent texture, so PAMI 2009 and ACCV 2010 have
better texture regularity than ours. But exactly because of
this reason, our method has other strength that we can group
light-variant windows into one lattice. In row 1 of Fig. 10,
our method detects both dark window and lighting window in
all the three lattices, and our lattice is more complete than PA-
MI 2009 and ACCV 2010. In row 2, our method detects one
lattice on the right of image, and other two methods do not
find it. On the other hand, due to the dark light of the night,
the method is likely to find un-meaningful lattices. In row 3
of column 1, PAMI 2009 find a lattice(the pink one) which
don’t fit the frontal facets of the building, in other words, the
basic vector pairs of lattice aren’t aligned with vertical or hor-
izontal direction of the building. Although ACCV 2010 can
has a correct direction by using symmetry [14], but it doesn’t
always work in nighttime image due to the dark vision in the
night. Our method uses global horizon constraint, and has
better trend to the direction of facade.

7.5 Failure modes and discussions

We report some modes where our algorithm fails. Fig. 11(a)
shows an example where one facade is completely missed
caused by incorrect extraction of lighting regions where out-
And Fig. 11(b) shows another
window-missed result because of the excessive corrupted sit-

door illumination exists.

uation in real scenes. Above all, our primary failure mode
is the lack of enough easy-detected lighting windows. This
problem stems from the nature of input nighttime images and
cannot been simply overcome on the algorithm level. If we
indeed need a solution, we thought that a statistical image
from long term sequence at night might give this algorithm a
well-formed input.

Fig. 11 Failure results. The error region is marked in red circles.
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Fig.8 Exemplar results on the night campus dataset. Column 2 shows the hand-labeled fagades segmentation and its ground truth orientation. Columns 3-4
show our results, including a lattice detection result and an orientation result (pink line denotes the horizon line).

8 Applications

8.1 3D reconstruction

We all know that the same kind of buildings in 3D world all
possess an approximately consistent storey height, which fits
the architectural specification. If we know a facade’s height
in world coordinate system, other facades’ height in the real
world can be computed. And we can estimate relative depth
via 3D orientation.

We check the orthogonality between each two horizontal
VPs and unify all the LMW, which means every facade shares
same focus length. Given two orthogonal VPs, focus length
can be estimated by the method mentioned in [21]. We use
other horizontal VPs to check the focus length estimated by

the first horizontal VP and zenith. After unifying the focus
length, the relative depth can be estimated. We use 3D bill-
boards to model facades. Fig. 12 shows two results of 3D
reconstruction.

8.2 Surface layout enhancement for daytime images

Another kind of works can be done with the nighttime im-
age and its associated daytime image. We treated the lattice
structures from nighttime images as a kind of accuracy auxil-
iary information to enhance the rough surface orientation es-
timation from daytime images [22], which aims at arranging
each pixel in vertical regions a possibility vector for discrete
orientation proposals (planar left, front or right). The key
point here is that the lattice stores the similarity of nodes in a
global description, which will benefit the scene geometry un-
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Fig. 10 Comparison with Park [13, 14] on a set of examples of night campus dataset. Column 1 is the ground-truth, Columns 2 and 3 is the results of PAMI

2009 and ACCV 2010, and column 4 is our results.

Fig. 12 Left is the result of planar detection, and the right is its facade
models based on the consistency assumption of storey height. LeftBottom
displays a subtle oriented distinction between three neighboring fagades.

derstanding from another perspective. Thus, we can use this
similarity to adjust the probability vector of orientations.

To enhance the surface layout estimation, we firstly adop-
t the Generalized Dual-Bootstrap ICP (GDB-ICP) proposed
by Yang G. et. al. [23] to align day-night image pairs. Then
the lattice in night can be transformed to daytime image. For
each pixel located in the lattice regions, we build a possi-
bility vector, in which component is computed as the cosine
distance between lattice normal and its component direction.
And we complement the original probability vector from lo-
cal pixel by adding this weighted vector from lattices. The
final surface orientation is decided by the component with the
maximum possibility. The Fig. 13 shows an aligned instance

of complex image pairs, and the Fig. 14 compares the re-
sults of surface layout estimation before enhancing and after
enhancing.

Fig. 13 Day and night image pairs; and its aligned result.

Fig. 14  Surface layout estimation. We label a planar left region with a left
arrow, and a planar right region with a right arrow. The hollow circle denotes
the region is porous, while the cross denotes the region is solid.
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9 Conclusion

We have presented an automatic fagade recovery method for
a single night image by detecting lattice structure. And it can
group the salient regions of an image into planar surfaces,
and get their lattice structures and orientation estimates. We
demonstrate its high detection rate and low-error orientation
estimation on real scenes data.

Our method cannot be used to deal with the situation in
which only a small majority of windows are lighted because
of the predominance of the corrupted or missing data. A
direction of future work, therefore, is to incorporate time-
lapsed video or daytime images, which can be used to collec-
t multiple information from human activities and synthesize
‘all light open’ images. What’s more, the method is not relied
on line segments or other explicit geometric information, so
it can easily be extended to integrate other monocular cues.
It will be interesting to combine the planar information with
geometric context labels provided by a daytime image [22]
more closely, and could achieve a more reasonable spatial re-
lationship and complete 3D model.
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