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Abstract—Compositing is one of the most critical techniques
in various aspects such as movie production and computer
graphics. When images have complex textures, existing color
based methods require exhaustive training samples to achieve
plausible compositing results. In this paper, we propose a
scene-adaptive color transfer model with an application for
image compositing. We extract foregrounds from the source
and target images. Then, we divide the source and target
images into unequal bands according to the luminance. After
that, color transfer is conducted by dynamically adjusting the
weights of luminance and chrominance. To achieve a realistic
composite, we introduce an adaptive source compositing region
selection method and address the boundary transition by a
discrete Poisson solver. The experiment results illustrate that
our method achieves a faithful color transfer. In addition, our
composite results appear highly realistic.
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I. INTRODUCTION

Color transfer is one of the most effective techniques
to render realistic images. It has been widely used in
film production to evoke certain emotions or reinforce a
certain mood [1], such as The Grandmaster of Sil-Metropole
Organization Ltd. and The Bullets Fly of Emperor Visual
Product. The task of color transfer is mapping the color
features of a source image to a target image. It can also
be used to composite foreground of an image into another
image with a seamless fusion. The effectiveness of color
transfer affects the realism of compositing.

Color transfer methods using global statistics do not
rely on the contents of images. These methods typically
fails when the source and target images have different
spatial distributions or styles. As a result, some methods
incorporating local regions and user-assisted segmentations
have been proposed. However, when the source and target
images have significantly different distribution in luminance
and chrominance, those methods may cause artifacts. As
illustrated in Fig. 1, since the target image (Fig. 1(a)) of
Titanic has salient luminance difference, the result image
(Fig. 1(c)) of Bonneel et al.s method appears discontinuity
and cannot retain local contrast.

In this paper, we propose a scene-adaptive color trans-
fer model with application for image compositing, which
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Figure 1: Comparison of equal pixel division and unequal
pixel division: (a) target image, frame from Infernal Affairs;
(b) source image, frame from A Chinese Odyssey; (c) color
transfer result with equal pixel division; (d) color transfer
result with adaptive pixel division. Video credits: Infernal
Affairs (2002) (target), A Chinese Odyssey (1994) (source).

divides luminance channels into unequal bands and dynam-
ically adjusts the weights of luminance and chrominance.
We use the color consistency to extract foregrounds from
the target image and compositing region from source image.
Then, according to the luminance, we divide the source
and target images into unequal bands and conduct color
transfer between corresponding bands. To achieve a realistic
fusion, we dynamically adjust the weights of luminance and
chrominance. The main contributions of this paper are as
follows.

(1) Propose a novel color transfer model with weight
adjustment for scene adaption, which divides luminance
channels into unequal bands and dynamically adjusts the
weights of luminance and chrominance.

(2) Present a scene-adaptive image compositing, which
selects source composite regions adaptively and adds inter-
esting objects into composite scenes by our color transfer
model.

The remainders of this paper are organized as follows:
Section 2 presents related work in color transfer and scene
fusion. Section 3 introduces the color transfer model in-
cluding the unequal pixel division and weight adjustment.



Section 4 introduces the adaptive selection of the composit-
ing region and scene fusion. Our experiment results are
illustrated in Section 5, and Section 6 draws a conclusion.

II. RELATED WORK

Color transfer techniques have attracted increasingly at-
tention since Reinhard et al. [2] proposed the decorrelated
color space and used two features to present the mean
value and deviation of each channel. Pitie et al. [3] focused
on global color distribution using Probability Distribution
Function. However, when matching regions have different
spatial distributions, the global methods may cause serious
artifacts.

In order to deal with local contrast, some methods incor-
porating local regions and user-assisted segmentations have
been proposed. Pitie et al. [4] proposed the best linear color
transformation using Monge-Kantorovicth theory in mass
transportation area. Tai et al. [5] applied an Expectation-
Maximization model to optimize local color matching by
probabilistic segmentation. An et al. [6] allowed user to
specify regions by strokes and then make color transfer be-
tween the specified regions. Pouli et al. [7] used the reshaped
histogram at different scales to transfer color palette between
images at arbitrary dynamic range. HaCohen et al. [8]
presented a method that uses Generalized PatchMatch and
coarse-to-fine scheme to enhance correspondence regions
between two images with shared content. Bonneel et al.
[9] proposed an example-based video color grading method,
which uses a mixed color transfer model for luminance and
chrominance.

However, when the source and target images have signifi-
cant difference in luminance and chrominance distributions,
most existing color transfer methods are apt to cause artifact-
s. In this paper, we propose a scene-adaptive color transfer
model with application for image compositing, which uses
unequal pixels division in luminance bands and dynamically
adjust the luminance and chrominance weights to improve
the realism of visual perception.

Color transfer has already received some attention in
scene composite. Johnson et al. [10] used a large number
of images collected from online repository and conducted
region matching between CG and real images by a mean-
shift segmentation algorithm. Xue et al. [11] proposed a
data-driven method which introduces some statistical mea-
sures to denote the realism of compositing and then adjust
the luminance and chrominance of an interesting region
accordingly. Unfortunately, these methods require numerous
training samples, and the best sample matching is an exhaus-
tive process. In this paper, our compositing method utilizes
the luminance and chrominance consistency to transfer the
color of a fusion region in the source image to an interesting
region in the target image. It is proved to be highly realistic
in the final fusion results.

Compared with the existing color transfer methods, our
transfer model adaptively adjusts the weights of luminance
and chrominance and considers both the color features of
interesting objects and composite scenes.

III. COLOR TRANSFER MODEL

In this section, we propose a scene-adaptive color transfer
model applying characteristics of a source image to a target
image. We use a cumulative histogram method to maintain
the luminance contrast within the source image. Then, we
divide the source and target images into unequal bands
and conduct chrominance transformation for each luminance
bands. For the color space, we follow the recommendation
of Reinhard and Pouli [8] and work in CIE-Lab and the D65
illuminant.

A. Luminance Transformation

We use the standard cumulative histogram method [12]
to transfer the luminance features of a source image to a
target image. The standard histogram transfer function is
defined as Lt = H−1(Tl), where the operator H denotes
the normalized luminance cumulative distribution function,
Tl denotes the cumulative probability under the specified
value in channel L within the target image, and Lt denotes
the transferred value. We then remap the luminance of the
source image to the target image using the inverse function
of H . Specifically, we use the generalized inverse [13] when
the cumulative distribution function is not invertible.

Considering that two matching images may have seri-
ous noises (i.e., low-quality image input) or significantly
different distributions (i.e., salient contrast), we apply the
Gaussian filter to prevent extreme histogram stretching.

B. Chrominance Transformation

Since the equal pixel division may cause uncontinuous
artifacts, especially when the source image and target image
have salient different spatial distributions, our chrominance
transformation separates the source and target image into
unequal pixel bands according to the luminance. We use the
K-medoids clustering method [14] to divide the pixels of the
source and target images into multiple clusters, respectively.
Then, for each cluster, we choose a representative luminance
value among its member pixels. The clustering results of K-
medoids are regarded as the initial classifications of pixels
within the source and target images.

After K-medoids clustering, two features of each cluster
will be stored in a two-tuple [

⇀
V ,

⇀
N ]m, where ⇀

V denotes
the vector of representative luminance values, ⇀N denotes the
vector of pixel number within the clusters, and m denotes
the total number of clusters. Accordingly, the representative
luminance value and the pixel number of the i-th cluster
are stored as the i-th components of ⇀

V and ⇀
N , respective-

ly.Based on ⇀
N , the clusters with frequency less than are

merged with their neighbors. Typically, a value of 0.1 is used
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Figure 2: Unequal chrominance transformation: (a) target image, (b) source image, and (c) color transfer result.

(a) (b) (c) (d)

Figure 3: Color transfer without and with fore-background segmentation: (a) target image, (b) source image, (c) global
transfer without segmentation, and (d) local transfer with segmentation. Video credits: Titanic (1994) (Target), Schindler’s
List (1993) (Source).

as an empirical cut-off value of σ. Then, according to ⇀
V ,

we compute the average intra-cluster luminance difference
d(C) for each cluster C and merge the clusters with d(C)
less than ∆. The value of ∆ is typically set as 0.33. Finally,
we obtain three clusters of the source and target images,
respectively, and regard them as the final luminance bands.

According to the representative band value, we pair a
band of the source image with a band of the target image.
For each pair of bands, we compute the mean values and
covariance matrix of a and b channels in Lab, respectively.
The mean values of a and b form a bivector [µa, µb]

T ,
and the covariance matrix is a 2 × 2 square matrix [15].
Then, we apply the linear Monge-Kantorovitch linear color
mapping [4] to transfer the chrominance at and bt of a
source image pixel to the corresponding a‘t and b‘t. The
chrominance transformation is computed as[

a‘t
b‘t

]
= Tst

[
at − µat

bt − µbt

]
+

[
µas

µbs

]
(1)

where µas and µbs denote the mean values of a and b in
the source image respectively, µat and µbt denote the mean
values of a and b in the target image respectively, and Tst

denotes the chrominance transformation matrix. The matrix
Tst is defined as

Tst =
∑−1/2

t (
∑−1/2

t

∑
s

∑−1/2
t )

1/2 ∑−1/2
t (2)

where
∑

s and
∑

t denote the covariance matrices of
the source and target images, respectively. The result of
chrominance transfer is illustrated in Fig. 2, in which the
chrominance of the source image is remapped to the target
image.

C. Foreground-background Segmentation

(a) (b) (c)

Figure 4: Fore-background segmentation. (a) Input image.
(b) Matte image. (c) Foreground image. Fore-background
segmentation maintains local style in the source image. In
(b), we make a matte for the wolf and refine the matte using
tri-map method. Then, in (c), we obtain the foreground of
the input image.

We employ a user-specified segmentation to extract fore-
ground objects from a background image, especially when
a source image has significant local contrasts. Fig. 4 gives
an example to show the significance of segmentation for
color transfer. As Fig. 3(c) shows, the color transfer without
foreground-background segmentation only uses the global
luminance and chrominance, and the transferred result loses
the local style of the source image.

We create an initial matte using the segmentation method
proposed by Bai et al. [16] to create an initial matte. This
method uses a set of local classifiers to integrate multiple
local image features and extracts foreground objects by the
collaboration of the classifiers. Then, we erode and dilate
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Figure 5: Color transfer with weight adjustment: (a) target image, (b) source image, (c) color transfer result without weight
adjustment, and (d) color transfer result with weight adjustment.

the initial matte and obtain two mattes as the input of the
matting method proposed by Levin et al. [17]. This matting
method obtains a globally optimal matte by solving a sparse
linear system of equations. Fig. 4 shows the segmentation
results of fore-background.

D. Weight Adjustment for Scene Adaption
When compositing an object into a scene, we must incor-

porate both the color features of the object and the composite
scene. The correlation of luminance and chrominance affect
the realism of composited results in visual perception. We
adaptively adjust the weights of luminance and chrominance
according the color difference between the source image and
target image.

The difference of luminance between the source image S
and target image T is defined as

CL(S, T ) =
∑
m

∥µm
Sl − µm

Tl∥
2 (3)

where m is the number of luminance bands, µm
Sl and µm

Tl

denote the mean luminance values of the m-th band within
F and B, respectively.

The difference of chrominance between the source image
S and target image T is computed by

Cab(S, T ) =
∑
m

tr(
∑m

S +
∑m

T − 2(
∑m1/2

S

∑m
T

∑m1/2

S )1/2)

+∥µm
Sab − µm

Tab∥2
(4)

where m is the number of luminance bands,
∑

m
S and

µm
Sab denotes the covariance matrix and the mean chromi-

nance values of the m-th band within S respectively, and∑
m
T and µm

Tab denotes the covariance matrix and the mean
chrominance values of the m-th band within T respectively.

For target image T , We compute the mean luminance val-
ue as MLT and the mean chrominance values as MaT and
MbT , respectively. Then, we use the proposed luminance
and chrominance transfer and remap T to T .Based on T ,
which is the initialization of target image color transfer, we
adjust the weights of luminance and chrominance to generate
the final transfer results. The pseudocode of our weight
adjustment for scene adaption is described as Algorithm 1.

Algorithm 1 Weight Adjustment for Scene Adaption

Input: S: the source image, T ‘: the transferred target image.
Output: T ‘: the adjusted image.

1: InitializeColorFeatures(MLT ‘, MaT ‘, MbT ‘)
2: InitializeColorFeatures(MLS, MaS, MbS)
3: α = 0.1 // The scale of difference between S and T .
4: β = 0.001 // The scale of color feature update.
5: while

∥∥CL(T, T
‘)+Cab(T, T

‘)
∥∥ > α ∥CL(S, T ) +

Cab(S, T )∥ do
6: (MLT ”, MaT ”, MbT ”) = (MLT ‘, MaT ‘, MbT ‘)
7: MLT = UpdateLuminance(T ‘, β)
8: MaT = UpdateChrominancA(T ‘, -β)
9: MbT = UpdateChrominancB(T ‘, -β)

10: if
∥∥CL(T, T

‘)+Cab(T, T
‘)
∥∥ >

∥∥CL(T, T
”) +

Cab(T, T )∥ then
11: T = T ”

12: else
13: MLT ‘ = UpdateLuminance(T ‘, -β)
14: MaT ‘ = UpdateChrominancA(T ‘, β)
15: MbT ‘ = UpdateChrominancB(T ‘, β)
16: end if
17: end while

Our weight adjustment algorithm uses the difference
α ∥CL(S, T ) + Cab(S, T )∥ of source image S and tar-
get image T to adjust the color of the transferred tar-
get image T ‘. The algorithm terminates when the differ-
ence

∥∥CL(T, T
‘)+Cab(T, T

‘)
∥∥ of T and T ‘ is less than

α ∥CL(S, T ) + Cab(S, T )∥. The adjusted image T ‘ involves
both features of the source image and target image. Fig.
5 illustrates the transferred result with the dynamic weight
adjustment of luminance and chrominance.

IV. SCENE-ADAPTIVE IMAGE COMPOSITING

When adding foregrounds extracted from a target image
into a composite image, we must keep the color consistency
between foregrounds and backgrounds of the composited
image. The compositing region is adaptively selected ac-
cording to the seed point. Then, the color features of the
region are transferred to the foregrounds. After that, we use



the Poisson image editing to make smooth transition from
the foregrounds to the composite image.

A. Adaptive Source Composite Region Selection

We propose an adaptive source region selection method,
which starts from a seed point and extends the region
according to the color consistency of boundary pixels. After
a seed point R is given, which represents the position of
the foreground in the composite image, we initialize the
composite region Ω as the area around R covered by the
interesting objects matte. The boundary of Ω is defined
by ∂Ω = {p ∈ Ω |Np ∩ Ω ̸= ∅} , in which p denotes the
boundary pixels and Np denote the 4-connected neighboring
pixels of p.

The seed point denotes the position to locate the fore-
ground of the target image which illustrated as red square
point in Fig. 6(a) and initialized compositing region is the
defined as the region covered by the interesting objects
matte. Then we use Ω to denote the initial compositing
region and use Np to signify the set of its 4-connected
neighbors which are in Ω. So the boundary of Ω is ∂Ω =
{p ∈ Ω |Np ∩ Ω ̸= ∅} . The pseudocode of our adaptive
composite region selection is described as Algorithm 2.

Algorithm 2 Adaptive Composite Region Selection

Input: S: the source image, TM : the matte of an interesting
object.

Output: F : the composite region in composite image.
1: Λ = BoundaryPixelSet(TM )
2: F = Λ
3: α = 0.35 // The threshold to decide whether to add a

pixel.
4: while IsNotEmpty(Λ) do
5: p = PickOnePixel(Λ)
6: Υ = Neighbors(p)
7: while IsNotEmpty(Υ) do
8: q = PickOnePixel(Υ)
9: E = 1

m

∑
p∈Λ

(pL + pa + pb)

10: if ∥qL + qa + qb − pL − pa − pb∥ < αE then
11: Λ = Λ ∪ q
12: F = F ∪ q
13: end if
14: end while
15: end while

Our adaptive compositing region selection expands the
boundary pixel set Λ of an interesting object to generate the
final region F . The algorithm picks one pixel p from Λ and
adds the neighbors of pixel p to Λ according to the average
color energy E = 1

m

∑
p∈Λ (ql + qa + qb − pL − pa − pb).

Fig. 6 illustrates the adaptive selection result of the com-
positing region by our method.

(a) (b)

Figure 6: Adaptive compositing region selection: (a) com-
posite image, and (b) the source compositing region. (The
red point denotes the position to locate the interesting
objects)

B. Image Compositing

We remap the luminance and chrominance of an interest-
ing object to the compositing region by our color transfer
model. The transferred result with our dynamic weight
adjustment is illustrated in Fig. 7.

(a) (b)

Figure 7: Dynamic weight adjustment result of the objects:
(a) the original objects, and (b) the transferred objects with
weight adjustment.

Figure 8: Composite result which adds a cup from target
image into the composited image.

To achieve highly realistic visual effect, we must make
smooth transition on the boundary of the composite region.
We build the boundary mask of the interesting object by a
Breadth First Search algorithm with a path length threshold
min{max{Dp}, σ · min{W,H}}, where Dp denotes the
distance from pixel p to seed point R, W and H denote
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Figure 9: Results of our color transfer method. (a) Target image. (b) Source image. (c) Color transfer results without weight
adjustment. (d) Color transfer results with weight adjustment.

the lengths of the object in horizontal and vertical directions,
respectively. Typically, σ is set to 0.1 as the empirical value.

For image compositing, we use the Possion image editing
method proposed by Farbman et al. [18] to create plausible
transition on the boundary between the foregrounds and
backgrounds. Let S denotes the composite image, f∗ de-
notes a known scalar function defined outside the composite
region Ω, f denotes an unknown scalar function defined
inside the composite region Ω, and g denotes a known
scalar function defined in the interesting objects of the target
image. Then, the boundary transition is formulated as an
optimization problem:

min
f

∫∫
Ω

∥∇f −∇g∥ s. t. f |∂Ω = f∗|∂Ω (5)

where ∇ is he gradient operator. Then, the optimization
problem is solved by a discrete Poisson solver, and the
interesting object is fused into the composite image naturally
in visual perception. Fig. 8 shows the composited result of
our method. We add a cup into an image, and the composited
image appears highly realistic and natural.

V. EXPERIMENTS & RESULTS

To evaluate the effectiveness our color transfer method, we
apply it to several image pairs from online repositories and
conduct experiments on a computer of Intel Xeon(R) CPU at
3.06GHz and 6G RAM. The color transfer results are shown
in Fig. 9. Fig. 9(a) illustrates the column of target images,
Fig. 9(b) illustrates the column of source images, Fig. 9(c)
illustrates the transferred images without weight adjustment
and the results with weight adjustment are illustrated in Fig.
9(d). It is clearly shown that the transferred images in Fig.
9(d) involve both features of the source images and the target
images.

Compared with the color transfer method proposed by
Bonneel et al., which divides pixels into even bands, our
method shows superior performance. As shown in Fig.10,
our method achieves a more faithful result even when the
luminance distributions of a source image and a target
image are significantly different. The main reason is that
our method divides pixels into several unequal bands by
luminance clustering and maintains the consistency in the
mapping.



(a) (b) (c) (d)

Figure 10: Contrast between even division based color transfer and our unequal division based color transfer. (a) Target
image. (b) Source image. (c) Equal division result. (d) Unequal division result.

(a) (b) (c) (d) (e)

Figure 11: Comparison of composites: (a) target image, (b) background scene, (c) composited result without color transfer,
(d) composited result using color transfer without weight adjustment, and (e) composited result with our weight adjustment
based color transfer.

(a) (b) (c)

Figure 12: Composite regions selected by different strategies: (a) entire compositing image selected as the composite region,
(b) the region selected by a naive method, and (c) the region selected by our method. (The red point in (a) denotes the
position to locate the interesting objects.)

(a) (b) (c) (d)

Figure 13: Color transferred objects and the corresponding composited images: (a) original objects without color transfer,
(b) objects transferred with the entire compositing image as the composite region, (c) objects transferred with the composite
region selected by a naive method, and (d) objects transferred with the composite region selected by our method.



We also apply our weight adjustment based color transfer
method to add interesting objects into an image, and Fig.
11 shows the composited results. Compared with the com-
posited results in Fig. 11(c) and Fig. 11(d), the effectiveness
of the weight adjustment can be clearly seen, and the result
in Fig. 11(e) appears highly realistic in visual perception.
Our transfer method considers both the color features of the
interesting objects and composite image, and thus achieves
a realistic composite result.

The selection of the compositing region significantly
affects the realism of the composited image. Fig. 12 shows
the compositing regions selected by different strategies. In
Fig. 12(a), the entire image is considered as the compositing
region. In Fig. 12(b), a naive method is employed for region
selection, which only uses the matte of an interesting object
as the compositing region. Fig. 12(c) shows the result of our
composite region selection, which considers both the color
distribution of a composite image and the color similarity
between an interesting object and the image. Accordingly,
Fig. 13 shows the color transferred interesting objects and
the corresponding composited images. From the results of
Fig. 13, the composited images with our region selection
method demonstrates a more realistic and natural looking.

VI. CONCLUSION

A novel scene-adaptive color transfer model is proposed
in this paper. In this model, foregrounds are extracted from
the source and target image. Then, we divide the source and
target images into unequal bands according to the luminance.
After that, color transfer is conducted by dynamically adjust-
ing the weights of luminance and chrominance. To achieve
a realistic compositing, the compositing region is selected
adaptively and the boundary transition is addressed by a
discrete Poisson solver. The experiment results demonstrate
that our method achieves faithful color transfer and realistic
compositing.
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