
ICVRV2014

Streaming Location-based Panorama Videos into Augmented Virtual

Environment

Yi Zhou, Peifu Liu, Jingdi You, Zhong Zhou

State Key Laboratory of Virtual Reality Technology and Systems

Beihang University

Beijing, China

zhouyi@vrlab.buaa.edu.cn

Abstract

Location-based panorama systems such as Google Street

View let users explore places around the world through

panoramic bubbles or strips. The panorama image is easy to

be deployed, but it can only provide the static views of

capturing time and lacks developing process. In this paper,
we present an augmented virtual environment system that

combines multiple location-based panorama videos with the

structural context of scenes. The raw panorama images are

from several independent video cameras. A frame

synchronization method of video streams is proposed to

provide the temporal consistency in the panorama stitching.

Our novel method augments the virtual environment through

mixing it with the panorama videos. To the best of our

knowledge, this is the first paper to fuse panorama videos

with virtual environments. The system is demonstrated in a

campus-wide area, and it enhances users’ walk-through

experiences in the experiment environment.

Keywords: Panorama video, augmented virtual environment,

Video streaming synchronization

1. Introduction

The ability to visualize the real world in a virtual

environment is long-cherished. 360-degree panoramas [1]

provide an immersive experience for observers through

simultaneous camera shots and reliable automated stitching.

Nowadays, location-based panorama systems are prevailing

and enable users to explore places around the world through

panoramic bubbles or stripes. Google Street View [2]

produces a street view imagery with discrete panoramic

bubbles. And Microsoft Street Slide [3] employs multi-

perspective strip panoramas to generate a visual summary of

continuous street sides.

Unfortunately, the image source used in these systems is
a sequence of offline-stitched pictures that only show users a

history imagery. It cannot reflect the scene variations.

Moreover, existing systems lack overall sense from other

view than the given points and Street Slide provides only a

flat summary of two sides.

The concept of combining the location-based videos with

virtual environment attracts a lot of attention. Surveillance

systems use visualization techniques, such as texture

projection, to provide a global context which helps users

understand the spatial relationships between multiple videos.

The typical technique, video texture projection, suffers from

severe foreshortening and zigzag while user left the original

viewpoint. But it enhances users’ visual experiences in a

particular view range.

In this paper, we present an augmented virtual

environment system that combines multiple location-based

panorama videos with the virtual environment. The system

extends panoramic bubble’s immersive nature and also gives

an overview sensation for discrete videos. Our novel method

augments virtual environment through mixing with the
panorama videos. The dynamic panorama videos are

visualized by depth order.

We also present a video streaming synchronization

method to provide the temporal consistency in the panorama

stitching. Our stitching procedure is accomplished by

blending the textures of aligned bubble meshes during the

render loop.

To the best of our knowledge, this paper is the first trial to

combine panorama videos with virtual environment. And it

includes three contributions to panorama streaming and

rendering. The elements of our system include:

 A user-controlled streaming synchronization method

that provides the temporal consistency in the panorama

stitching,

 A novel mixed visualization method that provides the

spatial consistency, and

 The campus-level 3D surveillance framework with
workload control.

2. Related work

Augmented virtual environment (AVE) [4] is proposed to

integrate multiple videos into a 3D context model. With the

help of 3D models, street lines, site icons and other

ICVRV2014

annotations, it is intuitive and convenient for users to

understand objects and activities in the multiple videos. And

a user-friendly graphics interface that supports navigating or

dragging will provides a good immersive in the virtual

environment. Moezzi et al.’s seminal work [5] on multi-

perspective interactive video (MPI-Video), extracted object

from multiple videos at the same location and used it to

augment the virtual environment.

Sawhney et al. [6] further developed the thought of
integrating by projecting multiple videos onto a 3D

environment model. They thought that, if the video is

projected from the actual camera location with the correct

camera parameters, the walls and floors in the video can

seamlessly match the model. Video Flashlight system [6]

demonstrated texture projection’s feasibility. They detected

moving objects inside the video and visualized them as

textured dynamic rectangles moving around in the 3D model.

Several other similar motivated surveillance applications

have also been introduced [7] [8].

Methods for large-scale environment, like city-level, are

presented along with the growth of videos. They employed

geographical approaches to simulate or augment virtual

objects in 3D environments. Kim et al [9] introduced different

approaches to analyze the videos of cities under differing

conditions and then created augmented Aerial Earth Maps

(AEMs) with live and dynamic information. Austin et al [10]
implemented the registration of 3D Map and hundreds of web

cameras by using corresponding points.

Other devices like PTZ or fish-eye cameras are also used

for 3D integrating, such as [10] [11]. Our work is based on

integrating multiple panorama videos with the structural

context and there are few previous works focusing on this

topic.

The classical synchronization of multiple streaming is

mainly about the audio-video synchronizing or NTP-based

rough matching of video streams, which is widely used in

video conference, video surveillance and video live broadcast

systems [12]. Since current IP cameras don’t provide time

synchronization services, existing AVE systems merge the

pictures from different time into one scene. It will affect the

scene completeness in rendering esp. in the same bubble

when there are several streams inside the panorama video.

Shrestha et al. [13] presented a synchronization method
based on detecting flashes which are presented in the video

content. The flashed frames are selected as benchmark and

easily detected by using an adaptive threshold on luminance

variation across the frames. They [14] also describe an audio-

fingerprints matching method to synchronize videos with

complete audios. They both are used for adjacent videos

synchronization. Yan et al. [15] relies on correlating space-

time interest point distribution in time between videos.

Space-time interest points represent events in videos that

have high variation in both space and time.

Our synchronization method is based on user- identified

event, such as a flash event. The synchronization baseline is

streamed to the client as a timestamp. Each independent video

is played according to the synchronized buffer queues.

3. System architecture

Our open extensible system is comprised of three main

components, and is depicted in Fig. 1: (1) the client, as the

consumer of our system, can be PC application, web browser,

or mobile application. The client obtains services and data,

such as video streams from the streaming server; (2) several

servers, the service provider, consist of GIS server, web

server, and several streaming servers. The GIS server and

streaming server provide data for visualization, while web

server offers the fundamental data. The streaming data is

synced by user-identified event (details in section 4); and (3)
underlying data source is composed of web cameras,

playback files, and the database. The important components

are described in the following sections.

Web Server

Streaming

Server

GIS

 Server

IP camera

Database

ClientClient

Visualization
Playback

files

ServersServers

Workload

Control

Fig. 1. System architecture

IP Camera: The panorama video capturing uses the Panoeye

series panoramic surveillance cameras [16], shown in Fig. 2.
The high resolution PE-V hemispherical digital video camera

system has eight 1.3 MP cameras that enable the system to

collect video from a hemispherical view with 360 degrees in

horizontal and 180 degrees in vertical, and a standard

Ethernet interface with locking screw connection that allows

almost 10MP resolution videos to be streamed to disk at more

than 15fps. A PE camera can output 8*2 real-time video

streams encoded in H.264. For the PE-II camera, each lens

provides a D1 main stream and a CIF auxiliary stream.

(1) PE-II (2) PE-V

Fig. 2. PE panoramic monitoring camera

GIS Server: GIS is one of the effective tools to manage

large-scale scene data. The location of our outdoor cameras

is expressed as exclusive latitude-longitude. Based on this

ICVRV2014

location, it is easy to find more information of the real world

for AVE, including 3D models and annotations, which

greatly extends our system's application range. Our system

uses the 2D maps from the GIS server to locate the panorama

camera and the 3D models to augment the panorama video.

Web Server: As the director of the whole system, web

server ensures that the whole system runs exactly as the

administrator expects. System administrator can handle the
system through the administration interface. On the other

hand, it can provide kinds of services, such as delivering

HTML file to web browser or XML file to windows

application, through the HTTP protocol to help the admin

understand the running state of the system. Then the client

can decide whom to send a request to. Furthermore, our web

server provides authority authentication service to satisfy the

privacy requirement in surveillance systems.

4. Multi-video acquisition & synchronization

Our video streams are captured by physical cameras or

generated from playback files. The video streams are played

in one virtual environment and need to be synchronized. The

section 4 introduces the architecture of the streaming server

and its synchronization method, showed in Fig. 3 and Fig.4

respectively.

R
T

P

D
a
ta

 P
a
ck

a
g
in

g

Video Processing

Message Loop

Real-time Video

Acquisition

Camera

Playback File

Virtual

Camera

Driver

Fig. 3. Streaming server architecture

As described in Fig.3, the streaming server uses a

message loop to handle RTSP request. If the client requests

live videos, the streaming server controls the real-time video

acquisition getting data from physical cameras via the virtual

camera driver and sending for next processing. The virtual

camera driver encapsulates various cameras into a virtual

camera and provides a unified programmable interface. In

this way, the streaming server is able to receive data flows

from different kinds of cameras without concerning specific

camera drivers. The new types of physical camera can be

easily added to the system. If the client requests playback, the
video processing module is called immediately to load record

files. This module abstracts the process procedure, which is

independent from their detailed coding formats. After

processed, frames are packed into RTP packages and flowed

to the message loop for delivering.

Although cameras usually provide respective

timestamps, they hold no common time benchmark.

Furthermore, the frame rate of a given camera may not be the

same as others’. So it’s almost infeasible to synchronize

simply by using timestamp. We provide a synchronization

method consisting of server part and client part, introduced in

Fig. 4. The server recalculates timestamp, while the client

calculates serial numbers and uses them to synchronize the

streams.

Camera

Stream

Camera

Stream

Camera

Stream

Camera

Stream

Time

alignin

g

Video

Stream

Video

Stream

Video

Stream

Video

Stream

S
tream

in
g

 S
erv

er

2 134

3 14

2 134

2 13

Reconfigure

timestamp

Client

Calculate

Serial Number

Play

Fig. 4. Time aligning and synchronized playing.

Given the camera set C={Ck | K=0,1,2,…}, the server

offers a tool for manually aligning their time benchmark(see

Fig. 5). A camera C0 is chosen and its time is used as the

benchmark. Then the operator chooses another camera Ck and

finds when an event occurs in both cameras. In Fig. 5, the

operator notices a flash in several camera views. Then the

user tries to find out the moment the flash first appeared by

manual adjusting in each view. After aligning, the time offset

Td can be calculated through their timestamps

When a frame of Ck arrives at the server, its timestamp

is recalculated before delivered by using Td. Then these

frames arrive at the client and are synchronized by using

following steps:

Step1: Denote reference frame rate F=min Fk and create

a timeline T whose origin point is T0, and T0<=TS, where Fk

is the fps of Ck and TS is the timestamp of the first arrived

frame.
Step2: Given a frame fm of Ck and its timestamp TSmk, its

serial number is calculated as:

𝑆𝑁(𝑓𝑚, 𝐶𝑘) = ⌊𝐹 ∗ (𝑇𝑆𝑚𝑘 − 𝑇0)⌋

Then the frame is sent to corresponding receiving buffer

for camera Ck.

Step3: The playing component starts a timer and gets the

next frames. Each camera holds a state indicating whether it

is obstructed or not, and if the camera is obstructed, the

playing component will ignore its frames.
We extract the minimum serial number of the header

frames from unobstructed cameras. Then take respective

frames from receiving buffers for synchronous playing.

However, if a receiving buffer is empty, a timer is started to

wait for the desired frame. If the corresponding frame arrived

before timeout, it is sent to play together with other frames,

or else it will be ignored at this time. If a camera is always in

timeout for a certain period, it will be set obstructed.

ICVRV2014

Fig. 5: Interface of aligning tool. A flash occurs in several cameras.

5. Mixing panorama videos with 3D virtual

environments

The mixing method contains the registration of

panorama videos and the environment, a visualization to

combine all manners of models and video in a coherent

visualization to improve the understanding, and a workload
control strategy. Our registration method, which is based on

Perspective-n-Point theory and similar to Austin’s [10], is

employed in our system. The details about registration are not

presented here because of space limit. More details of the

latter two topics are introduced below.

5.1. Visualization

We define three views to satisfy all of the different situations.

Fig. 6 show the view switch graph and its effects.

inside viewoutside view across view

Fig. 6. View switch: the outside view summarizes the bubbles,

while the inside view and across view are close-up views.

5.1.1. Inside bubble view: Static view

Our system achieves video overlaying on reference models

by dynamically deciding the render tree. We define a render

tree, which has a dramatically influence on results, to decide
the render order of bubbles and other models. As Fig. 7 shows,

the leaf nodes are traversed based on its hierarchy. But the

bubbles are set to render in an order based on its depth under

the current viewport. The bubbles and models use alpha

masks to realize a blend or transparency effect.

Inside a bubble, the usual viewpoint is the optic center

of panorama. If the user want to leave this view, it must long

press the direction button until the scaling factor exceeds the

threshold, otherwise the viewpoint will stay at the center of

bubble.

Model

StateGraph

Bubble 1

Bubble N

Map StateSet

BubbleStateSet

StateSet

Annotations

BubbleStateSet

...

Bubble 2StateSet

1st

2nd

3rd

4th
Fig. 7. The render tree of blend effect

5.1.2. Across bubble view: View transition

View transition between two discrete bubbles has great

influence on immersive of the whole virtual environment. We

suppose that this case only happens between panorama

bubbles with overlapping views and motions, otherwise we

use a view leap method to instead of it.

Unlike the technique used in systems such as Google

Street View, we use the image fusion between the two

bubbles by projecting panorama texture to the complete scene.

The texture projection method of the panorama is based on

the shadow mapping technique of a zero-decrement point

light source. The render loop contains a pre-render pass and

a nested-render pass. In the pre-render pass, a 24-bits depth
map is generated by spherical projection. And it will be used

for depth test in the second pass. These points who are not

occluded will be textured with panorama pixels.

We search for the target bubble and change the bubble

view into projection mode. During this mode, the view point

changes along the line between centers of these bubbles. We

refer to this view as virtual view and the angle between the

pixels in view line and its virtual view ray as 𝜃. And two

weight are computed to decide the blend effect, as Fig.8

showed.

𝜔2 = 𝜃1 (𝜃1 + 𝜃2)⁄ , 𝜔2 = 𝜃1 (𝜃1 + 𝜃2)⁄

𝐼𝑝 = 𝜔1 ∗ 𝑝1 + 𝜔2 ∗ 𝑝2

1O
2O

1 2

P

Virtual view

Fig. 8. Image blend based on angle

5.1.3. Outside bubble view: Visual summary

In this view, all videos are showed as a 3D hemisphere. Its

location and rotation are generated by our calibration tool,

while the scale is set by experience. There is no more limit to

the eye location, and users can observe multiple individual

bubbles from an arbitrary viewpoint. In this case, a bubble is

more like a point which can be selected and stepped into.

ICVRV2014

5.2. Workload control

While browsing 3D environment, some bubbles are occluded

or small enough on the screen, and we do not need to update

its texture or use lower resolution texture. Our streaming
server supports double resolutions of videos and we

implement dynamic resolution transition and workload

control which refers to the bandwidth.

We also employ a view-dependent method to toggle

between the main stream and the auxiliary stream. As show

in Fig. 9, the selection depends on the bubble center’s

distance d to the viewpoint. Then, we use the result of

occlusion query to decide whether to render the hemisphere.

D1 stream

CIF stream

No update

Proportion of visible

pixels on screen

Distance to

viewpoint

Intermediate

result

Final result

D1 stream

CIF stream

No update

Far

Low

Near

High

Fig.9. The view-dependent client workload control

As we mentioned above, the panorama videos are rendered

on a hemisphere mesh. According to the result of occlusion

query, these bubbles which are not in the view frustum should

be removed from streaming list. And these bubbles whose

visible pixels are lower than the threshold should disconnect

from the server or toggle the auxiliary video stream.

6. Experiment evaluation

We carried out experiments to evaluate out our

streaming server’s performance and two proposed methods.
All the tests are conducted on a PC workstation with a

NVIDIA Quadro 2000 graphics card, double Intel(R) Xeon(R)

X5680 at 3.33GHz, 20GB memory, and a 100Mbps Ethernet

connection to the campus network. In addition, five outdoor

PE-V cameras, one indoor PE-II camera and several virtual

cameras are used in our system.

6.1. Streaming server performance and

synchronization

The average response latency in different load conditions is

tested and showed in Fig. 10. The result shows that the

number of the stream links ranges from 32 to 320, while the

response latency ranges from 6.63ms to 10.12ms. In the

concurrency test, we see a rapid reduction when the

resolution increased dually or more (higher than CIF).

Fig. 10. 10*10 D1 video tests on the different load conditions and

the respective average latency.

Table 1. Concurrency performance

Exp. term 1 2 3 4 5
Resolution QCIF CIF 640*480 D1 1080P

ABR(kbps) 34.41 132.17 768.75 912.43 2845.29

Max Links 618 601 372 354 118

Our synchronization method is demonstrated by the two

lenses from one camera. In Fig. 11, a ghosting stitching

occurs when people walking across their overlaying region

(Fig.10 (b)). With our method, motion lags are significantly

reduced between cameras.

(a) (b) (c)

Fig.11. synchronization results: (a) overlaying region (b) ghosting

occurs (c) synchronous motion

6.2. Visualization and workload control

Our client is implemented in C++ using OSG and GLSL

shader. The videos are received over the network in separate

threads. The decoding threads take up the major system

resources. The visualization result is showed in Fig.13.

We simulate an animation path of virtual environment

to evaluate the workload control. Except for five outdoor

cameras, three playback files are used in our test. Fig. 12

shows the bandwidth occupation under different resolutions.

Fig. 12. Bandwidth occupation under different resolutions. Each D1

video occupies a bandwidth of about 1MBps and CIF 250KBps.

In Fig. 12, the occupation of the three situations soon soars to

a summit when getting close to the ground. With the view-

6

7

8

9

10

11

32 64 96 128 160 192 224 256 288 320R
e
sp

o
n

se
 L

a
te

n
c
y

(m
s)

Server load (existed connections)

0

20

40

60

80

100

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

O
c
c
u

p
a

ti
o

n
(%

)

T (s)

D1

Controled

CIF

ICVRV2014

dependent control, the average occupation is much lower than

CIF, thus more cameras can be deployed in our system

simultaneously.

7. Conclusion and future work

In this paper, we introduced methods for Augmented Virtual

Environment (AVE) with multiple panorama videos. The

proposed visualization solution creates a global sense of

multiple bubbles, and users can observe them at any view.

The system presents a frame synchronization to provide

temporal consistency in the panorama stitching. The result

makes it clear that our work provides a more engaging virtual

environment at least for the given test.

It is also important to note a few of our limitations. First,

the method of view transition does not consider dynamic tone

mapping between two cameras. Secondly, our solution does

not support the automatic camera pose correction which is

caused by some unavoidable nature force.

In our future work, we aim to overcome the above

limitations, and engage on the fusion method of ordinary
videos and panoramic videos.

(a) (b) (c) (d)

(e)

(f) (g) (h)

Fig.13. Results from our system using 8 PE-V 200 camera (three of them are virtual cameras), 64 D1 steams, 64 CIF streams: (1) inside view:
(a) ~(d) view around the bubble, (e) the stitched spherical panorama (2) outside view: (f) single camera; (g) eight cameras along the road; (h)

an assistant minimap for location

References

[1] S. E. Chen, “Quicktime VR: An image-based

approach to virtual environment navigation,” Proc. the

22th ACM Annual Conference on Computer Graphics

and Interactive Techniques, Los Angeles, pp. 29-38,

August 1995.

[2] L. Vincent, “Taking online maps down to street level,”

Computer, vol. 40, no. 12, pp. 118-120, December

2007.
[3] J. Kopf, B. Chen, R. Szeliski, et al., “Street slide:

browsing street level imagery,” ACM Transactions on

Graphics, vol. 29, no. 4, pp. 96, July 2010.

[4] I. O. Sebe, J. Hu, S. You, et al., “3D Video

Surveillance with Augmented Virtual Environments,”

Proc. the 1st ACM SIGMM International Workshop on

Video Surveillance, California, pp. 107-112,

November 2003.

[5] A. Katkere, S. Moezzi, D. Kuramura, et al., “Towards

video-based immersive environments,” Multimedia

Systems, vol. 5, no. 2, pp. 69-85, March 1997.

[6] H. S. Sawhney, A. Arpa, R. Kumar, et al., “Video
Flashlights: Real Time Rendering of Multiple Videos

for Immersive Model Visualization,” Proc. the 13th

Eurographics Workshop on Rendering, Pisa, pp. 157-

168, June 2002.

[7] P. M. Roth, V. Settgast, P. Widhalm, et al., “Next-

generation 3D visualization for visual surveillance,”

Proc. the 8th IEEE International Conference on

Advanced Video and Signal-Based Surveillance,

Klagenfurt, pp. 343-348, August 2011.

[8] G. H. de, J. Scheuer, R. V. de, et al., “Egocentric

navigation for video surveillance in 3d virtual

environments,” Proc. IEEE Symposium on 3D User

interfaces, Lafayette, pp. 103-110, March 2009.

[9] K. Kim, S. Oh, J. Lee, et al., “Augmenting aerial earth

maps with dynamic information,” Proc. the 8th IEEE

International Symposium on Mixed and Augmented

Reality, Orlando, pp. 35-38, October 2009.

[10] A. D. Abrams, R. B. Pless, “Webcams in context: web

interfaces to create live 3D environments,” Proc. the

International Conference on Multimedia, Firenze, pp.

331-340, October 2010.

[11] P. DeCamp, G. Shaw, R. Kubat, et al., “An immersive

system for browsing and visualizing surveillance

video,” Proc. the International Conference on
Multimedia, Firenze, pp. 371-380, October 2010.

[12] A. P. Tresadem, I. D. Reid, “Video synchronization

from human motion using rank constraints,” Computer

Vision and Image Understanding, vol. 113, no. 8, pp.

891-906, August 2009.

[13] P. Shrestha, H. Weda, M. Barbieri, et al.,

“Synchronization of multiple video recordings based

on still camera flashes,” Proc. the 14th Annual ACM

International Conference on Multimedia, Santa

Barbara, pp. 137-140, October 2006.

[14] P. Shrestha, M. Barbieri, H. Weda, “Synchronization

of multi-camera video recordings based on audio,”

Proc. the 15th International Conference on

Multimedia, Augsburg, pp. 545-548, September 2007.

[15] J. Yan, M. Pollefeys, “Video synchronization via

space-time interest point distribution,” Proc.
Advanced Concepts for Intelligent Vision Systems,

Brussels, pp. 501-504, August 2004.

[16] http://www.panoeye.com.cn/

