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Abstract—This paper presents a novel approach of video fire
detection by the features of fire extracted in radiant energy
domain. Firstly, a fire color model in YCbCr color space is
applied to extract fire-colored pixels as candidate regions of fire.
Secondly, we convert the color space of the candidate regions
into radiant energy domain through camera calibration in
advance and model six features of fire with spectral irradiances
to better present the physical characteristics of fire. Finally,
a two-class SVM classifier with a RBF kernel is adopted
to recognize fire from the candidate regions. A series of
experiments have been carried out on two different datasets.
Experimental results illustrate that our approach performs well
when compared with other state-of-the-art methods.
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I. INTRODUCTION

Fire is one of the most harmful natural disasters and
fire surveillance affects everyday life around the world.
The traditional fire detection method is employing persons
to inspect fire, but the human resource is expensive and
inefficient for wide and complex areas. Another method is
using fire sensors to detect the particles generated by fire, the
temperature and relative humidity of the environment, and
so on. However, these sensors are not triggered until the par-
ticles actually reach them, and usually unable to provide any
additional information about the burning process, such as the
location and size of fire, the degree of burning. The system
manager still needs to visit the location for confirming the
existence of fire when the alarm is triggered. Nowadays,
surveillance cameras are installed in almost all of the public
places. And the CCD video camera is considered as the most
promising technology for automatic fire detection owing
to its low cost, high resolution, rapid response and easy
confirmation of the alarmed events through the surveillance
monitor.

In the past years, video-based fire detection techniques
have been extensively investigated. The main challenge in
such fire detection technique is modeling the chaotic and
complex nature of fire phenomenon and the large variations
of fire appearance in video. Most of the existing methods
use motion detection as well as color analysis to detect fire.
However, many fire-colored moving objects are identified
as fire, e.g., the sun, falling leaves in autumn, various

artificial lights or light reflections on various surfaces, red-
clothed walking people etc. Therefore, further analysis of fire
motion in video is needed to get more accurate fire detection
systems. A lot of researchers analyze the spatial change
and temporal difference of fire by wavelet analysis, Markov
Model, Fourier Transform, and so on. Some methods also
incorporate dynamic texture analysis into the fire detection
systems. But it is difficult to balance the detection speed
and accuracy. Moreover, video quality and scene complexity
also affect the robustness of vision-based fire detection
algorithms.

In this paper, a novel fire detection algorithm is presented.
The main contributions include: a) simplifying and vali-
dating the existing algorithm for extracting the candidate
fire regions; b) modeling spectral irradiance features of fire,
which can better present the physical characteristics of fire.
Four state-of-the-art fire detection algorithms are compared
with our method on two widely used fire detection datasets.
Experiment results illustrate that our algorithm achieves a
comparable detection rate with the highest frame rate.

The remainder of this paper is organized as follows:
the related work and a general overview of the proposed
method are presented in Section II. Section III describes the
segmentation of candidate fire regions. The calculation of
spectral irradiance features and classification of candidate
fire regions are presented in Section IV and V respectively.
Experiment evaluation is discussed in Section VI, and the
conclusions are drawn in Section VII.

II. RELATED WORK

To detect fire in video, the characteristics of fire must
be identified by means of modeling fire behavior. Color
detection is the primary detection method in video fire
detection techniques. G. Healey et al. [1] used purely color
information to distinguish fire, and it is usually the first step
of many other fire detection algorithms. T.Celik et al.[2]
proposed a generic color model for the classification of fire
pixels in YCbCr color space. The proposed model performed
well in segmenting fire regions in video sequences. T.Celik
et al.[3] combined color information with registered back-
ground scene to detect fire in real time.



Figure 1. The process of our video fire detection algorithm.

If only color information and motion detection are used,
some fire-colored moving objects are often mistakenly de-
tected as fire. In order to get more accurate systems, further
analysis of the appearance and moving characteristics of fire
in video is necessary. P.V.K.Borges et al.[4] exploited some
important low-level visual features of fire, including color,
area size, texture, boundary roughness and skewness of the
estimated fire regions. This method was applicable not only
for real time fire detection, but also for video retrieval. X.Qi
et al.[5] analyzed the temporal variation of fire intensities,
the spatial variation of fire color and the tendency of fire to
be grouped around a central point. This method was effective
in detecting all types of uncontrolled fire. B. Ugur Treyin et
al.[6] used a hidden Markov model to mimic the temporal
behavior of fire. Specifically, the Markov model was applied
to distinguish the flicker process of fire from the motion of
fire-colored moving objects, and evaluate spatial variations
of fire color. J.Chen et al.[7] applied multi-feature fusion to
detect fire in video. It incorporated motion and color clues,
as well as flicker detection.

With the development of wavelet analysis, it is widely
used in detecting the spatial and temporal characteristics
of fire. B. Ugur Toreyin et al.[8] detected fire flicker by
analyzing the video in the wavelet domain. The algorithm
used 1-D temporal wavelet transform to check the flicker of
fire and analyzed the color variations in fire-colored moving
regions by 2-D spatial wavelet transform. Osman Gnay
et al.[9] utilized the hidden Markov model and temporal
wavelet analysis to detect irregular nature of fire boundaries,
and also used spatial wavelet transform to detect the color
variations in fire. Different spatio-temporal features were
combined in [10] to detect fire. For discriminating between
fire and non-fire regions, two classification methods are
investigated: a Support Vector Machine (SVM) classifier
and a rule-based approach. K. Dimitropoulos et al.[11]
incorporated spatio-temporal consistency energy into the

algorithm [10] and raised the detection rate. Furthermore,
K. Dimitropoulos et al.[12] added dynamic texture analysis
to the algorithm [11]. This method was proved extremely
robust to false alarms.In this paper, a novel fire detection
method is proposed to extract fire features in the radiant
energy domain. The process is shown in Fig 1.

As can be seen from Fig 1, firstly, the color analysis
algorithm is applied to isolate candidate fire regions in each
video frame. Secondly, the common surveillance camera
is calibrated to restore the spectral irradiances at R, G
and B wavelengths from the color images for extracting
physical characteristics of fire. Thirdly, six spectral features
are modeled with the spectral irradiances to improve the
recognition rate. Finally, a two-class Support Vector Ma-
chines (SVM) classifier with a radial basis function (RBF)
kernel is designed to detect the fire phenomenon from the
candidate fire regions. These steps will be described in the
following sections.

III. SEGMENTATION OF CANDIDATE FIRE REGIONS

In this section, color analysis is used to extract the
candidate regions for each frame, because fire is obviously
different from other ordinary things in its color appearance.

A. Color analysis

Although there are various kinds of fire, fire, especially at
the beginning of combustion, exhibits a certain color range
from red to yellow. The fire color model [13] proposed by
Chen et al. was widely used in the preprocessing stage of
fire detection. It was modeled in RGB color space and could
exclude most of the non-fire pixels but lost fire details. As
the fact that fire is a luminous body, YCbCr color space
is more suitable for presenting fire than RGB color space
because it is better in discriminating the luminance from
the chrominance. Turgay Celik et al.[2] proposed a rule-
based color model in YCbCr color space. Experiment results



showed that the YCbCr color model [2] performed well in
segmenting fire regions in video sequences.

Through lots of experiments on fire and non-fire datasets,
we find that the last rule of the color model [2] makes
little contribution to the classification of fire pixels, but it
is the most time consuming rule. Then, our method only
applies the first four rules of the color model [2] to obtain
the candidate regions(Fig 1, Fig 2).

Figure 2. Comparison of three moving detection algorithms. (a) a fire
video; (b) our color analysis result; (c-e) the binary images of the detection
results of algorithm [14][15][16] respectively.

Though many fire detection algorithms apply moving
detection to help remove still pixels from the candidate
regions, many details of fire will also be removed. The
reason is that the motion of fire is beating and flickering
in situ, while the motion of ordinary objects is changing in
location. As a result, general moving detection algorithms
[14][15][16] often subtract many fire pixels which change
little across frames as shown in Fig 2. When fire is small,
it will result in too little fire pixels in the candidate regions
to successfully identify fire.

IV. MODEL OF SPECTRAL IRRADIANCE FEATURES

In this section, six spectral features of fire are modeled
in radiant energy domain to eliminate fire-colored ordinary
objects in candidate regions. The calculation of monochro-
matic irradiances and fire spectral features are described as
follows.

A. Calculation of monochromatic irradiance

To restore the irradiances from color images, the camera
response functions are calculated, and the spectral irradiance
attenuations are calibrated to compute the monochromatic
irradiances at R, G and B wavelengths.

1) Camera response function calculation: Camera re-
sponse function describes the relationship between image
pixel value and the irradiance accepted by CCD. Here, we
adopt the method [17] to calculate the response function of

Figure 3. Response functions of camera point-grey Flea2 08S2C for R, G,
B channels. (a) is the relative response functions, where ; (b) is the physical
response functions, where the constant c is determined using a photometer.

our common surveillance camera. As we know, pixel values
can be regarded as a function of exposure (Eq.1).

pij = f(Ei ·∆tj) (1)

where pij is the ith pixel of the jth image, f is the camera
response function, Ei is the corresponding irradiance value,
and ∆tj is the jth image exposure time. As the reason that
the inverse function of f (denoted as f−1) exists, Eq.1 can
be rewritten as :

g(pij) = ln f−1(pij) = lnEi + ln ∆tj (2)

Then we can obtain the irradiance value from the corre-
sponding pixel value, if g and ∆t are known. Here, we use
the multi-exposure method [17] to minimize the following
quadratic objective function:

O =

N∑
i=1

M∑
j=1

{ω(pij)[g(pij)− lnEi − ln ∆tj ]}2

+ λ

p=pmax∑
p=pmin

[ω(p)gn(p)]
2

(3)

where N is the number of pixels in an image, M is the
number of images, ω(p) is the weighting function, and λ
controls the smoothness of g. By solving Eq.3 with SVD, we
get the relative values between the camera response function
g(pij) and the irradiance Ej as shown in Fig 3 (a). They
are regulated by a scale factor c . To determine the constant
c, a photometer is used to further measure the absolute
irradiance. The calibration results of our surveillance camera
are shown in Fig 3 (b).

2) Irradiance attenuation calibration: The relationship
between pixel value pij and irradiance E at a specific
wavelength λ can be described as:

Eλ = α(λ, pij) · Ec = α · g(pij) (4)

where Ec is color channel irradiance value, g(pij) is the
logarithmic of the inverse of camera response function and
α is the irradiance attenuation from the color channel Ec to
the single wavelength Eλ that is decided by wavelength λ
and the pixel gray level.



Figure 4. Irradiance attenuation at R, G, B wavelengths for our optical
system.

Figure 5. Calculated monochromatic images.

We also adopt the method [17] to calibrate the irradiance
attenuation. Then, the irradiance attenuation at R, G and B
wavelengths are calibrated for our optical system, as shown
in Fig 4.

3) Monochromatic irradiance calculation: After calibra-
tion of our surveillance camera, we use the result as a
universal function for common surveillance cameras because
their hardware and software settings are similar. We calcu-
late the RGB monochromatic irradiance images from the
candidate fire regions of color video frame, as shown in Fig
5. Monochromatic irradiances at R, G and B wavelengths
are calculated respectively for each candidate fire pixel,
represented as Er(i, j), Eg(i, j), Eb(i, j).

B. Extraction of spectral irradiance features

To better extract the fire features, we first divide each
video frame into N*N blocks. Only the blocks that contain
an adequate percentage t of candidate fire pixels are selected
as the candidate blocks. As shown in Fig 6, (b) is the
segmented candidate fire regions of a video frame (a),
and (c) is the corresponding candidate fire blocks with
N = 16, t = 30%. For each candidate fire block, six spectral
irradiance features are modeled to represent the appearance
and behavior characteristics of fire. In the following, we
introduce these features in detail.

1) Models of spectral irradiance values: Human can see
some kind of color because the light with the corresponding
wavelength rips into eyes. The fact that fire always exhibits
a color range from red to yellow illustrates that radiant
energies of fire at some narrow bands follow the fixed

Figure 6. Candidate fire blocks of a fire video frame.

regulars.
To represent the characteristics of fire appearance, we

define three models in the radiant energy domain for each
candidate fire block. These feature models are red spectral
energy, differential spectral energy and relative spectral
energy respectively. The red spectral energy is modeled as
the average of the irradiance values at R wavelength of the
pixels in a candidate block (Eq.5). To illustrate the difference
between Er and Eb for a fire pixel, we adopt the differential
spectral energy as a feature of fire defined in Eq.6. The
relative spectral energy is the average of the slope of the
Er-Eg curve for a candidate fire block to represent the
relationship between Er and Eg (Eq.7). The following are
their definitions:

E =
1

N

∑
i,j

Er(i, j) (5)

D =
1

N

∑
i,j

|Er(i, j)− Eb(i, j)| (6)

R =
1

N

∑
i,j

Er(i, j)/Eg(i, j) (7)

where N is the number of candidate pixels in a block.
To show the differences of the above three features

between fire candidate blocks and non-fire candidate blocks,
we extract 5000 candidate blocks from four fire video
sequences (Fig 7 (a)) and four non-fire video sequences
(Fig 7 (b)), 2500 blocks for each type, and draw statistical
histograms of these feature values for fire blocks (Fig 7 (c))
and non-fire blocks (Fig 7 (d)) respectively. From Fig 7 (c-
1) and (d-1), we can see that the red spectral energy spreads
between 0.1 and 0.21 when it comes to actual fire, while
it varies mostly between 0.18-0.2 for non-fire blocks. The
red spectral energy distribution of non-fire blocks is more
concentrated maybe because the color range of fire-colored
objects is limited. The differential spectral energy of fire
blocks symmetrically distributes between 0.1 and 0.75, while
this feature value of non-fire blocks is concentrated and
spreads between 0.2 and 0.35 as shown in Fig 7 (c-2) and
(d-2). Fig 7 (c-3) and (d-3) are the histograms of the relative
spectral energy for fire and non-fire blocks respectively and
the distributions are also different.



Figure 7. The statistical histograms of the extracted feature values for (a)fire candidate blocks and (b)non-fire candidate blocks. The features are red
spectral energy, differential spectral energy, relative spectral energy and spectral spatial energy respectively. The row (c) is for fire blocks and the row (d)
is for non-fire blocks.

2) Spectral spatial energy: Unlike other false-alarm re-
gions, such as a red clothes, image regions containing real
fire usually exhibit obviously different spatial variations
because of the random nature of fire. As a result, we use
the variance of the pixels’ Er values as a feature of fire,
we called spectral spatial energy (Eq.8), to help eliminate
non-fire blocks in the candidate regions. The spectral spatial
energy of each candidate fire pixel is the Er variance of
itself and the pixels next to it according to the following
equation:

Sp(i, j) =
1

K + 1

∑
p

∑
q

[Er(p, q)− Er]2 (8)

where K is the number of pixels next to p(i, j) and (p, q) is
the location of these pixels. Er is the Er mean of the pixel
itself and the surrounding pixels. For each block, the spectral
spatial energy is estimated as the average of the energy for
the candidate pixels in the block.

Spblock =
1

N

∑
i,j

Sp(i, j) (9)

where N is the number of the candidate pixels in a block.
Fig 7 (c-4) and (d-4) are histograms of this feature for fire
and non-fire blocks respectively and the difference is also
distinct.

3) Spectral temporal energy: One of the most notable
features of fire is flickering all the time and the flicker
frequency of turbulent flames is around 10Hz that is much
more quickly than flashing lights. As a result, the radiant
energy of fire changes all the time. Though the radiant en-
ergy of flashing lights also changes with time, the changing
regularity of monochromatic spectral energy (we use the
red spectral energy E) is obviously different because of the
different traits and flickering frequency. As shown in Fig
8 (c) and (d), the red spectral energy of a fire candidate
block changes gently with time, nevertheless for a non-fire
candidate block containing part of a flashing light, the energy
also changes with time but varies intensely.

To present the temporal characteristic of fire, the variance
of the red spectral energy values through T frames is

modeled as another significant feature of fire (Eq.10).

Te =
1

T

T−1∑
t=0

(Et − E)
2

(10)

where T is the number of calculated sequence frames, E is
the average of the red spectral energy E in T frames for
a candidate fire block. As shown in Fig 8 (e) and (f), the
spectral temporal energy varies between 0-0.0001 for a fire
block, while the energy of a red flashing light block varies
between 0.0002-0.012.

Figure 8. Changes of spectral temporal energy through 100 frames: (a) a
fire block sequence; (b) a non-fire candidate block sequence; (c-d) the red
spectral energy changes; (e-f) the red spectral temporal energy changes.

4) Spectral spatio-temporal energy: Due to the airflow or
fire flicker, a real fire often has more spatial variations within
a time interval than a fire-colored object. Unlike spectral
spatial energy, which aims to identify fire spatial changes
in a single frame, this feature aims to indicate the spectral
spatio-temporal variations for each candidate fire block in a
sequence of frames. The temporal variance of the spectral
spatial energy for a candidate fire pixel within a temporal
window of T last frames is:

ST (i, j) =
1

T + 1

T∑
t=0

(Spt(i, j)− Sp(i, j))
2

(11)



Figure 9. The spectral spatio-temporal energy changes through 100 frames.
(a) a fire candidate block; (b) a non-fire candidate block. (c-d) the spectral
spatial energy changes; (e-f) the spatio-temporal energy changes.

where Spt(i, j) is the spectral spatial energy of the candidate
fire pixel p(i, j) in time instant t and Sp(i, j) is the average
of the energy through T + 1 frames. For each candidate
block, the total spatio-temporal energy STblock, is estimated
by averaging the individual energy of pixels belonging to
the block:

STblock =
1

N

∑
i,j

ST (i, j) (12)

To show the difference of the spectral spatial energy change
between fire blocks and non-fire candidate blocks, we select
two candidate blocks from a fire video and a non-fire video
as shown in Fig 9 (a)(b). And their spatial energy changes
through 100 frames are shown in Fig 9 (c)(d). Fig 9 (e)(f) are
the corresponding spectral spatio-temporal energy changes
with time. The fire block has a spatio-temporal energy
between 2.7×10−6 and 5×10−6, while the spatio-temporal
energy of a non-fire candidate block is less than 6.8×10−7.
What’s more, a fire block always has a spatio-temporal
change, while a non-fire candidate block, containing part
of a fire-colored moving object, presents a spatio-temporal
change only in a specific time interval.

V. CLASSIFICATION

In order to obtain the final decision about whether
a candidate block contains fire or not, classification is
the last step. A feature vector consisting of six features
f = [E,D,R, Spblock, T e, STblock] is created to present the
spectral feature of a candidate fire block. And a two-class
(fire, non-fire) Support Vector Machines (SVM) classifier
with a radial basis function (RBF) kernel is designed to
classify the candidate fire blocks with the feature vector as its
input. Firstly, we apply the five-fold cross validation with the
training set to get the optimal values of classifier parameter
c and gama. Secondly, the two-class SVM classifier with
a RBF kernel is trained by the optimal parameters and the
training set. Finally, we get a fire classifier model and apply
it to detect fire in various videos.

Figure 10. Dataset used in Ko’s experiment: Screenshots of video
sequences containing (a) actual fires and (b) fire-colored moving objects.

VI. EXPERIMENT EVALUATION

In this section, two datasets are used to test our
method. One is Ko’s dataset[19], which is widely used
by [8][12][18][19]. Another is a self-collected dataset from
some fire detection papers [7][10] and Internet resources.
These two datasets are shown in Fig.10 and Fig.11 respec-
tively. We employ three assessment criteria, respectively are
true positive rate, false positive rate and accuracy. The true
positive rate is the number of correctly detected fire frames
out of the total number of fire frames. And the false positive
rate is the number of non-fire frames that erroneously
recognized as fire frames out of the total number of non-fire
frames. The accuracy is the number of correctly detected
frames out of the total number of test frames including
fire and non-fire frames. For the reason of comparison with
[8][12][18][19], a frame is labeled as a fire frame if it
contains at least one fire block.

In each evaluation test, we follow the same training
strategy for the SVM classifier, including the same training
set and the same extracted features. The training set consists
of 5000 randomly selected candidate blocks from four fire
video sequences (Fig 10 posVideo1, posVideo2, posVideo3;
Fig 11 posVideo5) and five no-fire video sequences (Fig
10 negVideo5, negVideo6, negVideo7; Fig 11 negVideo1,
negVideo8). And the total number of candidate blocks are
3094, 2060, 1322, 2059 for the training fire videos and
123, 4790, 245, 109, 21 for the training non-fire videos
respectively. The experiments are performed on a PC with
a Core i5-3470, 3.20GHz processor and 6.00GB RAM.

A. Experiments on Ko’s dataset

The video set used in Ko’s experiment[19] consists of
eight fire videos and eight non-fire videos(Fig 10). We test



our algorithm on them and compare with four state-of-the-
art algorithms: Toreyin’s algorithm[8], K.D’s algorithm[12],
Ko’s algorithm based on hierarchical Bayesian Networks[18]
and Ko’s algorithm based on Fuzzy Finite Automata[19].

As shown in Tabel I, the accuracy of K.D’s algorithm[12],
Ko’s algorithm[19] and ours are more than 99%. Toreyin’s
algorithm[8] produces lower detection rate than the other
four algorithms because it is based purely on spatio-temporal
features. In addition, Ko’s method[18] produces better classi-
fication results using hierarchical Bayesian Networks, how-
ever, it also misses a significant number of real fire. Only
K.D’s method[12] has no false alarms. As to fire detection
systems, the crucial thing is detecting fire when it happens.
Our method gets the highest true positive rate than the other
four algorithms. What’s more, our method reaches a high
frame rate, that is 41fps for video sequences with resolution
320× 240, and it is five times of K.D’s algorithm[12]. This
is because the calculation simplicity of spectral features.

Table I
COMPARISON WITH DIFFERENT METHODS.

Methods True-Positive False-Positive Accuracy
ours 99.75% 0.71% 99.55%

Toreyin’s[8] 78.9% 6.4% 88.58%
K.D’s[12] 99.29% 0.00% 99.6%
Ko’s[18] 93.7% 4.9% 96.75%
Ko’s[19] 98.6% 0.2% 99.3%

The recognition rates on each video of Ko’s dataset are
shown in Table II. For fire videos, our method can all get a
100% true positive rate except video 1 and 5, because fire in
some frames of these two videos is too small. The negative
rates of non-fire videos are all equals to 0.00% except video
7 and 8 because some blocks of these video frames are too
similar to fire.

Figure 11. Video sequences collected as another experiment dataset (a)
fire videos (b) non-fire videos.

Table II
RECOGNITION RATES ON EACH VIDEO OF KO’S DATASET.

Videos True-Positive Videos False-Positive
posVideo1 98.75% negVideo1 0.00%
posVideo2 100% negVideo2 0.00%
posVideo3 100% negVideo3 0.00%
posVideo4 100% negVideo4 0.00%
posVideo5 99.29% negVideo5 0.00%
posVideo6 100% negVideo6 0.00%
posVideo7 100% negVideo7 2.7%
posVideo8 100% negVideo8 4.02%

B. Experiments on other datasets

To fully prove the generality of our method, we also
collected a lot of other videos from some relevant pa-
pers in fire detection and fire detection dataset web-
sites as shown in Fig 11. PosVideo1-6 and negVideo1-
2 are from the paper [10], posVideo7-8 and negVideo3
are from the paper [7]. The other videos are down-
loaded from http://signal.ee.bilkent.edu.tr/VisiFire/Demo/
and http:// cvpr.kmu.ac.kr/. We use the same SVM classifier
as the SVM used in the experiment on Ko’s dataset (Fig
10) to process these video sequences. The frame numbers
of fire videos are 245, 208, 219, 246, 260, 339, 500, 140,
402 respectively, and the frame numbers of non-fire videos
are 155, 1400, 244, 862, 250, 394, 102, 171, 200, 200
respectively. The recognition rate for each video sequence
is given in Table III. The algorithm misses a few real fire in
posVideo6 because fire in some frames is too small or fire
color is too light. For posVideo7 and posVideo8, we almost
have no successful detection as fire is too small. For non-
fire videos, false alarms happen in negVideo2 and negVideo3
because the influence of smoke moving in front of the fire-
colored background. Though there are false detections and
missed detections, our method is suitable for most videos
and can get a 100% true-positive rate and 0.00% false-
positive rate.

Table III
RECOGNITION RATE ON EACH VIDEO OF FIG 11.

Videos True-Positive Videos False-Positive
posVideo1 100% negVideo1 0.00%
posVideo2 100% negVideo2 21.3%
posVideo3 100% negVideo3 9.2%
posVideo4 100% negVideo4 0.00%
posVideo5 100% negVideo5 0.00%
posVideo6 99.12% negVideo6 0.00%
posVideo7 1.6% negVideo7 0.00%
posVideo8 0.00% negVideo8 0.00%
posVideo9 100% negVideo9 0.00%

negVideo10 0.00%



VII. CONCLUSION

In this paper, a novel video fire detection algorithm has
been presented in radiant energy domain based on the
spectral features of fire. Firstly, a fire color model in YCbCr
color space was applied to isolate the candidate regions for
each video frame. Secondly, we converted the color space of
the candidate regions into radiant energy domain through a
universal camera calibration in advance to better present the
physical characteristics of fire. Thirdly, six spectral features
were modeled to improve the recognition rate. Finally, a
two-class SVM classifier with a RBF kernel was designed to
detect fire in the candidate regions. A series of experiments
have been carried out on two different datasets. Experimental
results illustrated that our approach is efficient with a good
fire detection rate. Furthermore, our method can be applied
to real time fire detection. However, our method is difficult
to detect small fire and will produce false alarms on some
specific scenes. Future works will develop more distinctive
features of fire and further improve the training set to
reduce false alarms. Meanwhile, features of the surveillance
cameras will also come into our consideration. We plan to
calibrate more common surveillance cameras and integrate
the calibration results. It is believed that the integrated result
will produce more accurate features of fire.
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