
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 7, JULY 2015 1081

Efficient 3-D Scene Prefetching From
Learning User Access Patterns
Zhong Zhou, Member, IEEE, Ke Chen, and Jingchang Zhang

Abstract—Rendering large-scale 3-D scenes on a thin client
is attracting increasing attention with the development of the
mobile Internet. Efficient scene prefetching to provide timely data
with a limited cache is one of the most critical issues for remote 3-D
data scheduling in networked virtual environment applications.
Existing prefetching schemes predict the future positions of each
individual user based on user traces. In this paper, we investigate
scene content sequences accessed by various users instead of user
viewpoint traces and propose a user access pattern-based 3-D
scene prefetching scheme. We make a relationship graph-based
clustering to partition history user access sequences into several
clusters and choose representative sequences from among these
clusters as user access patterns. Then, these user access patterns
are prioritized by their popularity and users’ personal preference.
Based on these access patterns, the proposed prefetching scheme
predicts the scene contents that will most likely be visited in the
future and delivers them to the client in advance. The experiment
results demonstrate that our user access pattern-based prefetching
approach achieves a high hit ratio and outperforms the prevailing
prefetching schemes in terms of access latency and cache capacity.
Index Terms—3-D scenes, networked virtual environment,

prefetching, user access patterns.

I. INTRODUCTION

I N RECENT years, 3-D virtual environments have received
considerable attentions. Traditional networked virtual

environments apply the complete replication of all scene data
to maintain interactivity. Some pioneering companies, such
as Onlive and Gaikai, have proposed video streaming based
remote rendering instead of local data management and ren-
dering. However, their approaches suffer from display quality
degradation and interaction lag, creating difficulties. Recent de-
velopments in mobile Internet technologies and GPU chips lead
us to believe that in the near future, thin devices will be able
to run PC-style virtual environments by fetching scene data on
demand or perhaps even before demand. Local rendering will

Manuscript received December 15, 2014; revised April 02, 2015; accepted
April 28, 2015. Date of publication May 07, 2015; date of current version June
13, 2015. This work was supported by the National 863 Program of China under
Grant 2015AA016403 and by the Natural Science Foundation of China under
Grant 61170188. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Yonggang Wen.
The authors are with the State Key Lab of Virtual Reality Technology and

Systems, Beihang University, Beijing 100191, China (e-mail: zz@buaa.edu.cn;
chenke19850113@gmail.com; jczhang@buaa.edu.cn).
This paper has supplementary downloadable multimedia material available at

http://ieeexplore.ieee.org provided by the authors. This includes a demo video
that displays the framework of the proposed prefetching scheme and examples
of the prefetching results. This material is 16.3 MB in size.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2015.2430817

then be performed to guarantee rapid responses to interactions.
As 3-D virtual environments become increasingly realistic
looking, extensive and complex, the amount of scene data to be
prefetched will become quite large, which will burden both the
network and client cache. Therefore, an efficient prefetching
scheme must accurately predict the scene contents that will be
visible to the user and then fetch them in advance.
Existing prefetching schemes for 3-D scenes typically predict

the future position of a user avatar using extrapolation models
based on the user’s trace history. However, different avatars in
the same position will have different visibility sets because of
their different viewing directions, speeds and fields of view. The
current trace based prediction schemes define a zone within a
specific distance from the user avatar as an area of interest (AOI)
and request all scene data within the AOI as the visibility su-
perset. These AOI derived schemes construct a much larger visi-
bility set than a user actually uses. In fact, the scene contents that
are visited are strongly related to user access behaviors, user in-
terests and scene content popularities. Thus, incorporating these
factors into prefetching schemes is a promising task.
In this paper, we investigate scene content sequences ac-

cessed by various users instead of user viewpoint traces and
propose a user access pattern based 3-D scene prefetching
scheme. We make an offline clustering analysis on user access
histories to discover access patterns and then prioritize these
patterns by their popularities and users’ personal preferences.
The proposed prefetching approach combines the access pat-
terns and current access chunk set to make a prediction about
the scene contents that are most likely to be visited in the future.
Then, the predicted scene contents are delivered to the client
in advance when the network is idle. With a limited cache, the
proposed prefetching approach can significantly improve the
hit ratio and reduce the access latency. The main contributions
of this paper are as follows:
1) introduce a novel 3-D scene prefetching scheme, which can

accurately predict the scene contents that are most likely to
be visited in the future based on user access pattern mining
instead of the extrapolation of user traces;

2) propose a user access pattern mining method, which ex-
tracts access sequences from user access histories, builds a
relationship graph based on the proposed access sequence
similarity, and then makes a relationship graph based clus-
tering to discover user access patterns, i.e., the representa-
tive sequences of the clusters;

3) present the priorities for user access patterns, which pri-
oritize user access patterns for each individual user by in-
corporating the popularities of user access patterns and the
user’s personal preference.

1520-9210 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1082 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 7, JULY 2015

The remainder of this paper is organized as follows.
Section II reviews previous work. Section III presents our mo-
tivations and an overview of the proposed user access pattern
based 3-D scene prefetching scheme. Section IV describes the
details of user access pattern mining. Section V introduces
the 3-D scene prefetching approach with user access patterns
and the cache replacement policy. The experiment results
are described in Section VI. Finally, Section VII draws the
conclusions.

II. RELATED WORK

When walking through a 3-D scene, a user explores the scene
by browsing and interacting with the objects inside the scene.
To support real-time interaction, traditional systems, such as
DIVE [1], SIMNET [2], CALVIN [3] and VLNET [4], repli-
cate the scene data at the clients before launching. They em-
ploy a complete replication and download all resource data to
the clients beforehand. As the data size of the scene increases,
the transmission and client storage overhead for complete repli-
cation becomes extremely large. This will negatively impact
the startup time, storage requirements and performance of thin
clients. Moreover, in a 3-D scene, a user visits only a small por-
tion of the scene at any given time.
The task of determining the objects that are visible from

a user’s viewpoint has been widely studied. Many culling
methods aiming to eliminate invisible objects have been
proposed. Cohen et al. present a comprehensive survey of
occlusion culling [5]. Occlusion culling is a computation-
ally complex task, and many online culling methods apply
graphics hardware for acceleration [6]–[9]. It determines the
visible objects for the current viewpoint and is an important
technique for reducing local rendering overhead. However, in
networked virtual environments, it is impractical to introduce
the round-trip lag incurred by culling for each frame.
AOI based methods represent the prevailing scheme for de-

termining the visible objects in a 3-D scene. The AOI is typ-
ically an area in the shape of a circle or circle variant around
the viewpoint with the visibility distance as its radius. All 3-D
objects inside the AOI are regarded as objects in the potentially
visible set. When the viewpoint moves, the newly added visible
objects must be incrementally updated and downloaded. AOI
was first proposed by Macedonia et al. [10] and is widely used
for 3-D scene scheduling [11]–[13]. Wang et al. [14] consider
the view frustum and the distance from the viewpoint to divide
the AOI into several sections with different download priorities.
Hu et al. [15], [16] propose the flow level of detail (FLoD), an
AOI based solution for delivering 3-D content between peers in
a P2P network. Aljaafreh et al. [17] propose a multi-level AOI
for streaming 3-D scenes to mobile devices. They set the radii
of the multi-level AOI according to the mobile devices’ com-
puting capability.
AOI data are updated based on distance, which will lead to

large amounts of data transmission over short times. Prefetching
has therefore been proposed to reduce the data transmission
volume and improve system performance. It predicts objects
that are likely to be visible in the future and delivers them to
the client in advance. Many prefetching approaches predict the
next position of a viewpoint depending on its current location,

direction and velocity [18]–[20]. Then, the predicted position
is used to compute download priorities or to prefetch 3-D ob-
jects. Varadhan and Manocha [21] incorporate level-of-detail
(LOD) switching and visibility culling and propose a priori-
tized scheme for scene prefetching. Chim et al. [22] develop the
CyberWalk system, which employs an exponentially weighted
moving average (EWMA) to predict the next location of a user.
Chan et al. [23] propose a hybrid motion model for predicting
mouse motion and then map the predicted mouse motion into
the 3-D scene to calculate a user’s motion. Li and Hsu [24] also
study mouse motion and propose a most likelihood movement
(MLM) prefetch model for scene scheduling. Zheng et al. [25]
use a first-order dead-reckoning algorithm to predict the posi-
tion and direction of the viewpoint for upcoming frames. Li et
al. [26] propose a game-on-demand engine that uses a priori-
tized content delivery scheme to transmit scene contents to a
client in advance.
Most existing prefetching approaches focus on predicting the

future viewpoint of a user and exploiting the spatial relation-
ship based on the distance between the user and the objects
in the scene to deliver the relevant scene contents in advance.
Only a few approaches consider users’ activities and personal
interests. Park et al. [27] combine the spatial distance with a
user’s interests to calculate the access priority for caching and
prefetching. In their scheme, the user’s interest is simply de-
fined as the number of accesses to a given object. Hung et al.
[28] mine the correlations among 3-D objects and use the as-
sociation rules thus obtained to reconstruct the placement order
of 3-D objects in the storage system to improve disk I/O per-
formance. Rahimi et al. [29] propose a context-aware priori-
tized 3-D streaming algorithm that uses a hidden Markov model
(HMM) to predict a user’s future activities in a 3-D game. Vani
et al. [30] make an offline analysis on user interactions (the rates
of key presses and the sequences of keys pressed) to construct
a predictive model for 3-D mesh streaming.
In addition to predicting future viewpoints and analyzing

users’ activities and interests, user access patterns also assist in
predicting the scene contents that are most likely to be visited
in the future. Therefore, it is more reasonable to mine user
access patterns for 3-D scene prefetching. User access pattern
mining has been adopted in web navigation [31], [32] and
web recommendation [33], [34] systems to discover web page
based user behavior patterns. However, to date, few efficient
mining methods have been proposed for the identification of
user access patterns in 3-D scene navigation. In this paper, we
investigate user access pattern mining and propose a novel
3-D scene prefetching scheme. Our prefetching scheme is
based on the patterns mined from user access histories instead
of user viewpoint traces. The use of such access patterns is
demonstrated to significantly improve the hit ratio and reduce
the access latency, especially in the case of a limited cache.

III. MOTIVATION AND OVERVIEW

According to the research of Song et al. [35], human mobility
has high predictability, and therefore, the same is also likely to
be true for the mobility of user avatars in 3-D scenes. When
moving in a 3-D environment, many users maymove along sim-
ilar traces and are likely to visit popular sites in the scene, such

ZHOU et al.: EFFICIENT 3-D SCENE PREFETCHING FROM LEARNING USER ACCESS PATTERNS 1083

Fig. 1. Relationships between user viewpoint traces and visibility sets: (a) the same trace corresponds to different visibility sets, and (b) different traces correspond
to similar visibility sets.

Fig. 2. Overview of the proposed user access pattern-based scene prefetching scheme. In the offline phase, access sequences are extracted from user access content
histories and a relationship graph is constructed for these sequences. In the relationship graph, each node represents an access sequence and an edge (link) between
two nodes indicates that the two nodes (seque and) have a similarity . Then, a relationship graph-based clustering analysis is applied
to partition the access sequences into multiple clusters, and representative sequences from among these clusters are identified as the user access patterns. These
patterns are prioritized by their popularities and users’ personal preferences. In the online phase, both the access patterns and current access chunk set are used to
make predictions of the future accessed chunks.

as historical and cultural sites. These user access behaviors will
affect the actual scene contents to be visited. However, most
existing prefetching approaches still focus on predicting the fu-
ture viewpoints of users, and these viewpoints are insufficient to
represent the users’ access characteristics. Because of different
viewing directions, speeds and fields of view, the same view-
point trace may correspond to different visibility sets for two
different users, whereas different viewpoint traces may be re-
lated to similar visibility sets, as in the case of observing a land-
mark from different distances. Two examples comparing user
viewpoint traces and visibility sets are illustrated in Fig. 1. The
3-D scene is partitioned into uniform chunks. The chunks
that are overlapped by a user’s viewing frustum are considered
to be the visible chunks.
Although users 1 and 2 move along the same trace, the visi-

bility sets of user 1 are different from the visibility sets of user
2. By contrast, users 3 and 4 move along different traces, but
their visibility sets are highly similar. We denote the visibility

sets of users 3 and 4 by and , respectively, and record them
in time order as follows:

The elements of are highly similar to the elements of , and
they also follow the same order. The scene contents visited by
the users are correlated with certain sequential patterns. These
patterns, as well as user interests and the popularities of scene
contents, can help to predict the chunks that are most likely to
be visited in the future. Inspired by this observation, we propose
a user access pattern based 3-D scene prefetching scheme. An
overview of the scheme is illustrated in Fig. 2.
The proposed prefetching scheme has two components: of-

fline and online phases. In the offline phase, access sequences

1084 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 7, JULY 2015

Fig. 3. Shape of the conservative region.

are extracted from user access content histories and a relation-
ship graph is constructed, in which each node represents an ac-
cess sequence and each pair of nodes (sequences) and
with is connected by an edge (link). Then,
the access sequences are separated into several clusters through
a relationship graph based clustering. Representative sequences
from among these clusters are identified as the user access pat-
terns. These access patterns are prioritized by their popularities
and users’ personal preferences. In the online phase, when the
user region is updated, the proposed prefetching scheme uses
the current access chunk set and the identified access patterns
to predict the chunks that are most likely to be accessed in the
future. During the idle time of the network, the predicted chunk
data are delivered in advance.

IV. USER ACCESS PATTERN MINING

A. Conservative Region and User Access Sequence

We define the conservative region of a user as the -neigh-
borhood proposed by Wonka et al. [36]. The conservative re-
gion is a certain neighborhood around the viewpoint, and the
data of the chunks it overlaps are all delivered to the client.
The conservative region is valid for multiple frames, depending
on the user’s maximum movement speed and angular velocity.
When the viewpoint moves beyond a distance threshold or the
viewing direction turns beyond a rotation threshold , the con-
servative region requires updating, and the updated scene data
are delivered to the client. The shape of the conservative region
is illustrated in Fig. 3, where is the viewpoint and
represents the conservative region of .
As shown in Fig. 3, given a viewing frustum with the

field of view and visible distance , the conservative region
of is determined by the position , distance and field
of conservative region . The position and distance

are calculated as follows:

(1)

where denotes the viewing direction of the viewing frustum
EAB. The conservative region is a conservative approximation

Fig. 4. Conservative regions for two users along different traces. The ac-
cess sequences and of users 1 and 2, respectively, are as follows:

{{1, 2, 11 , 12}, {3, 12, 13, 22, 23}, {14, 23, 24, 25}, {25, 34, 35, 45},
{36, 45, 46, 47, 56, 57}, {38, 47, 48, 57, 58}}, {{1, 2, 11, 12},
{3, 12, 13, 14, 22, 23, 24}, {14, 23, 24, 25}, {25, 34, 35, 36}, {36, 45, 46, 47},
{37, 47, 48, 57}}.

of the union of all viewing frustums that can be reached by a user
within a moving distance threshold and a viewing direction
rotation threshold . When the movement or rotation of the user
passes beyond the thresholds, the conservative region must be
updated.
When a user performs a walkthrough in a 3-D scene, we

record the conservative regions and the chunks they overlap in
time order. Then, we extract the useful information from the
access histories in the form of access sequences. An access se-
quence is an ordered list of the chunks in the conservative re-
gions, and its formal definition is as follows:
Definition 1: (access sequence) Let be

the set of chunks comprising a 3-D scene. An access sequence
is defined as , where each element

is a nonempty subset of .
By the definition of an access sequence, a chunk

can occur only once in any given element
of , but it can occur multiple times in different elements.
For generality, the chunks in an element of are arranged
in lexicographical order. The access sequences can be easily
acquired by recording the chunks overlapped by the conser-
vative regions of a walkthrough and removing the continuous
duplicates. These conservative regions and their corresponding
access sequences are illustrated by an example in Fig. 4. The
3-D scene consists of chunks, and two users perform two
separate walkthroughs along different traces.
As shown in Fig. 4, we calculate the chunks overlapped by

the conservative regions of users 1 and 2, and obtain two access
sequences and , respectively. Although users 1 and 2move
along different traces and have different viewing directions, ac-
cess sequences and are highly similar. To measure the ac-
cess sequence similarity, we define the distance metric between
two sequence elements and further construct the distance be-
tween two sequences.
Definition 2: (element distance) Let and be two access

sequences, and let and denote the -th element of and the

ZHOU et al.: EFFICIENT 3-D SCENE PREFETCHING FROM LEARNING USER ACCESS PATTERNS 1085

-th element of , respectively. The element distance between
and is defined by as follows:

(2)

The element distance metric is also known as the Jaccard dis-
tance [37], which is used to measure the similarity between two
sets. The distance between two sequence elements is calculated
by normalizing the difference between the cardinality of their
union and the cardinality of their intersection. Based on the el-
ement distance, we define the sequence distance metric, which
measures the similarity between two access sequences. The def-
inition of the sequence distance is inspired by the Levenshtein
distance [38], which is a metric for measuring the difference
between two strings. By incorporating the element distance and
Levenshtein distance, we construct the distance metric between
two access sequences as follows:
Definition 3: (sequence distance) Let and be two ac-

cess sequences, and let and denote the lengths of
and , respectively. The sequence distance between and
is , which is defined recursively as

(3)

where and denote the current lengths of and , respec-
tively, and is the distance between the -th element of
and the -th element of .
The sequence distance measures the difference between two

access sequences. It represents the minimum single-element
changes required to modify one sequence into the other. Based
on this distance, the similarity between two access sequences
and is calculated by

(4)

Equation (4) considers both the distance between two access
sequences and their lengths. It measures the similarity of and

by normalizing the sequence distance rather than using the
raw distance directly. This normalization unifies the similarity
measurements for access sequences of different lengths.

B. Access Sequence Clustering and Access Patterns
The access sequence clustering analysis partitions a set of

access sequences into a set of sequence
clusters and generates a representative
sequence for each cluster . Based on the access sequence sim-
ilarity, similar sequences are classified into the same cluster. We
calculate the similarity for each pair of sequences in and con-
struct the relationship graph for the access sequences. Each ac-
cess sequence is denoted by an individual node in the relation-

ship graph. If is larger than a certain threshold ,
then there is an edge between and . The relationship graph
is described by an adjacency matrix . A term of is
defined by

(5)

and relies on the similarity between sequences and . It
denotes whether there is an edge between sequences and .
For each term on the primary diagonal of , is set to
zero because there are no edges between sequence and itself
in the relationship graph.
Because the similarity relations between access sequences

are described by the relationship graph, the task of access se-
quence clustering is transformed into relationship graph based
community structure discovery. The community structure
refers to groups of nodes with a high density of within-group
edges and a low density of between-group edges. We choose
the Newman algorithm [39] as our strategy for community
structure discovery because of its effectiveness and efficiency.
The Newman algorithm is a bottom-up method that aggregates
the nodes of the relationship graph into tightly connected
groups. This aggregation is based on a quality function or
modularity as follows:

(6)

where denotes the fraction of edges that fall within group
, is one-half of the fraction of edges that connect nodes in
group to nodes in group , and .

The Newman algorithm starts with an initial state in which
each node (access sequence) is regarded as an individual com-
munity. Then, it repeatedly merges communities together in
pairs by choosing the merger that results in the greatest increase
(or smallest decrease) in . The maximal value of corre-
sponds to the final community structure, which partitions the
access sequences into multiple clusters. From each cluster, we
choose a representative access sequence. The representative se-
quence of a cluster is a member of the cluster and generates the
minimum average distance within the cluster. Let be an ac-
cess sequence cluster and be the representative of . The se-
lection of is defined as the identification of the sequence that
satisfies the following minimization:

(7)

in which and denote the frequency of access sequences
and , respectively.
We calculate the frequency of each cluster, i.e., the sum of

the frequencies of access sequences within the cluster. A cluster
whose frequency exceeds a threshold is designated as a key
cluster. Then, the representative sequences of the key clusters
are regarded as the user access patterns. We summarize the pro-
posed process of user access pattern discovery in Algorithm 1,

1086 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 7, JULY 2015

which constructs the relationship graph of the access sequences,
uses the Newman algorithm to find access sequence clusters,
and then discovers the user access patterns from the represen-
tative sequences of those clusters. Let denote the number of
access sequences, denote the number of edges in the rela-
tionship graph, and denote the number of clusters. The time
complexity of the user access pattern discovery algorithm is

, where is the complexity of the re-
lationship graph construction, is the complexity
of the Newman clustering, and is the complexity of the
representative sequence and user access pattern selection.

ALGORITHM 1. User Access Pattern Discovery

Input: : the set of access sequences.
Output: : the set of access patterns.

// The set of access sequence clusters
// The adjacency matrix of the relationship

graph
// Build the relationship graph for the access sequences
for each access sequence in do

for each access sequence in do
if and then

else

end
end

end
// Newman clustering

NewmanClustering(M)
// Select representative sequences
for each cluster in do

SelectRepresentativeSequence()
end
// Discover user access patterns

for each cluster in do
if Frequency then

end
end

C. User Access Pattern Priority

We leverage real world heuristics for the user access pattern
based scene prefetching. First, each individual user has his or
her own preference regarding the mined access patterns and
tends to follow some of the patterns more frequently than others.
The access patterns must be therefore prioritized by personal
preference on a per-user basis. Second, users typically walk
through a 3-D scene following certain specific access patterns,
and as a result, some patterns are more popular than others. A
high popularity means that the access pattern has been followed

by many users. Considering both user individuality and com-
monality, we incorporate both users’ personal preferences and
pattern popularities into our access pattern priorities.
Let be the set of access patterns ac-

quired from user access content histories, and let denote
the frequency of , i.e., the frequency of the cluster to which

belongs. The popularity value of is calculated as

(8)

where denotes the
maximum frequency among the access patterns and

denotes their minimum fre-
quency. The popularity value represents the public preference
regarding the access patterns. Popularity is an important factor
for 3-D scene prefetching, especially when a user’s personal
preference is not available, which commonly occurs when the
user is a newcomer to a 3-D scene or is navigating an unfamiliar
portion of the scene.
Personal preference depends on a user’s individual access se-

quences. Different users are likely to have different personal
preferences. For each individual user, we calculate his or her
personal preference regarding the access patterns. Let

denote the clusters to which belongs,
and let denote the frequency of for user , i.e., the
frequency of user ’s access sequences in cluster . The per-
sonal preference value of for user is calculated by

(9)

where denotes the
maximum frequency among for user and

denotes the min-
imum frequency among for user . The personal
preference value represents the user’s own interest in the access
patterns. For a given user, certain access patterns typically
occur more frequently than others, and therefore, the personal
preference values of these patterns are higher.
Based on the popularity of access patterns and the personal

preferences of users, we combine and to
define the interest priority for each pattern. The interest priority

of access pattern for user is given by

(10)

where indicates which factor (popularity or personal pref-
erence) contributes more to the priority.
The determination of is related to the correlation be-

tween popularity and personal preference. When personal pref-
erence is insufficient, the popularity value dominates the in-
terest priority because wemust estimate the user’s interest based
on the public preference. Conversely, the value of is set
higher when personal preference sufficiently reflects the user’s

ZHOU et al.: EFFICIENT 3-D SCENE PREFETCHING FROM LEARNING USER ACCESS PATTERNS 1087

interest. Accordingly, the value of for access pattern
and user is defined by

(11)

where denotes the frequency of for user and
denotes the maximum frequency of for all indi-

vidual users. Equation (11) indicates that, if user follows
access pattern more frequently, then the personal preference
of accounts for more of the interest priority .

V. 3-D SCENE PREFETCHING AND CACHING

A. 3-D Scene Prefetching With User Access Patterns
Based on the identified access patterns, the proposed online

prefetching algorithm uses the current access chunk set, i.e., the
set of chunks in the current conservative region, to predict the
chunks that are most likely to be visited in the future. We pri-
oritize these predicted chunks according to the interest priority
values of their corresponding access patterns. Then, the chunks
with high priorities are first delivered to the client when the net-
work is idle.
According to the current access chunk set , our prefetching

algorithm dynamically selects the matched patterns from
user access pattern set . We choose the
minimum distance between and the elements of as the
metric to measure the matching degree between and . The
matching distance is calculated as

(12)

where is the -th element of and is the set of chunks
in the current conservative region. If is less than a
certain threshold , then is regarded as a matched pattern,
and the element that corresponds to the minimum distance is
considered to be the matched element of .
Then, our prefetching algorithm prioritizes the matched

patterns by their interest priority values . Let
be the prioritized matched patterns, and let

, denote the corresponding matched
elements. The successors , of the
matched elements represent the scene contents that are most
likely to be visited in the future. To avoid delivering duplicate
data, the chunks to be prefetched include only the chunks that
belong to the successor elements but do not reside in the client
cache. We use a priority queue to guarantee that the chunks
in the high-priority successor elements are prefetched to the
client first. In the case that none of the access patterns satisfies
the requirement of a matching distance of less than , our
prefetching algorithm employs the dead-reckoning based ap-
proach proposed by Zheng et al. [25] as an alternative strategy
to predict the future conservative region and the chunks to be
prefetched. The details of our online prefetching algorithm are
described in Algorithm 2. Let denote the number of access
patterns and denote the number of matched patterns. Our
prefetching algorithm runs in time, where
the determination of the matched access patterns requires

time, the sorting of the matched access patterns requires
time, and the prediction of the future accessed

chunks requires time.

ALGORITHM 2. User Access Pattern Based Prefetching

Input: : the access patterns,
: the current access chunk set.

Output: : the priority queue of the chunks to be
prefetched.

// Determine the matched access patterns
for each pattern in do

if then

end
end
if then

// Sort in descending order
SortByInterestPriority()
// Predict the future accessed chunks
while do

the first pattern in

MatchedElement()
SuccessorElement()

for each chunk in do
if ! InClientCache() and then
Pushback()

end
end

end
else

PredictbyDeadReckoning()
end

Our prefetching algorithm uses the user access patterns to
predict the chunks that are most likely to be visited by the client
in the future. The predicted chunks are placed into the priority
queue according to the interest priority values of their corre-
sponding patterns. When the network is idle, the server delivers
the chunks with the highest priorities to the client first. Suppose
that the client cache can contain a maximum of chunks,
of which are occupied by the current conservative re-
gion. Then, during the idle time of the network, the server will
deliver at most chunks in the priority queue to
the client.

B. 3-D Scene Cache Management
The conservative region update and user access pattern based

prefetching will cause the server to deliver chunk data to the
client. When the client cache cannot provide sufficient free
space for the newly delivered chunks, the client must remove
and replace certain older chunks in its cache following some
cache replacement policy. The most straightforward approach
is the least recently used (LRU) policy. In the LRU policy, the
chunks in the cache are prioritized by their last access time. If a
chunk has not been accessed for a long time, then that chunk

1088 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 7, JULY 2015

Fig. 5. Distance and angle factors of the cache priority.

Fig. 6. Distributions of the cache priority: (a) , (b) , (c)
, and (d) .

will have a lower priority and will thus be more likely to be re-
placed. However, it has been shown that the LRU policy is not
suitable for 3-D scene cache replacement [40] because the 3-D
objects accessed by a client may change frequently over time.
3-D scene cache replacement must consider the distance of an
object and the viewing direction rather than simply its access
time. A larger distance between a chunk and the viewpoint leads
to a lower access probability. Similarly, a larger angle between
a chunk and the viewing direction also leads to a lower access
probability. As Fig. 5 shows, the cache priority of a chunk is
determined by two factors: (1) the distance between the chunk
and the viewpoint of the conservative region and (2) the angular
deviation from the chunk to the viewing direc-
tion of the conservative region. We define the cache priority of
chunk as

(13)

where is the maximum distance of chunks in the cache and
is the weighting coefficient.

The weighting coefficient indicates which factor (distance or
angular deviation) contributes more to the cache priority. Let us
consider the impact of on the cache priority, and Fig. 6 shows
the priority distributions for , , and

. The cache priority with [Fig. 6(a)] is related only
to the angle factor, whereas the cache priority with
[Fig. 6(d)] considers only the distance factor.

Fig. 7. Weighting coefficient versus movement operation ratio .

TABLE I
PARAMETER SETTINGS FOR THE TEST SCENES

Fig. 8. Entrances/exits (boundary chunks) of the Paris Scene.

Fig. 6 illustrates that significantly affects the distribution
of the cache priority. More importantly, when viewing frustum
rotation is more frequent than viewpoint movement, should
be set to a low value, and vice versa. Unlike the previous works
[22], [40], which set to a fixed value, we dynamically ad-
just depending on the frequencies of viewing frustum rotation
and viewpoint movement. Between two conservative region up-
dates, the client counts the number of user viewing frustum ro-
tation operations and the number of user viewpoint move-
ment operations . The weighting coefficient is related to the
movement operation ratio . Inspired by the
S-shaped function [41], which exhibits the highest sensitivity to
changes around the average value, we define as

(14)

where is the scale factor of and is the protection threshold
of . Because of the nature of the standard logistic function

, its value is sufficiently close to 0 when and
to 1 when , and therefore, we set to 12, i.e., .
Fig. 7 shows the curve of the weighting coefficient versus
the movement operation ratio grows slowly when is

ZHOU et al.: EFFICIENT 3-D SCENE PREFETCHING FROM LEARNING USER ACCESS PATTERNS 1089

TABLE II
PERFORMANCE OF OUR PREFETCHING METHOD UNDER VARIOUS MATCHING DISTANCE THRESHOLDS IN THE PARIS SCENE

Fig. 9. Prefetching results of the user access pattern-based scene prefetching method: (a) the 124th frame, (b) the 167th frame, (c) the 488th frame, (d) the 575th
frame, (e) the 658th frame, and (f) the 695th frame (blue: the prefetched chunks; yellow: the chunks in the current conservative region; green: the chunks in the
client cache).

relatively small or large, and the value of limits the range of ,
i.e., . According to the research of Song et al. [35],
the lower bound on the predictability of user mobility is 80%.
Thus, even when a user continually performs one operation, i.e.,

or , there is only an 80% certainty that the user
will continue the same operation. Considering the uncertainty
of users’ future operations, we set the protection threshold to
0.2, i.e., .
The client treats a chunk as a single cache unit and manages

its cache according to the cache priority as defined above. When
the client cache cannot provide a sufficient amount of free space
for the newly delivered chunks (arriving as a result of the conser-
vative region update and user access pattern based prefetching),
some low-priority chunks inside the cache are removed and re-
placed. Among the cached chunks, the client first selects chunks
that are outside the current conservative region as candidates for
replacement. Then, the candidates are sorted by their cache pri-
orities, and those with the lowest priority are removed and re-
placed by the newly delivered chunks. We summarize the client
cache replacement policy and present its pseudo code in Algo-
rithm 3. The selection of the candidate chunks for replacement
requires time, where is the number of cached chunks,
and the sorting of the candidates runs in time, where
is the number of candidates. Thus, the time complexity of the

cache replacement policy is .

ALGORITHM 3. Cache Replacement

Input: }: the newly delivered
chunks,

}}: the chunks in the cache,
: the cache size of the client.

Output: : the chunks to be replaced.

if then
replace_num
// Select the candidate chunks for replacement

for each chunk in do
if ! ConservativeRegionCheck () then

end
end
// Sort in descending order
SortByCachePriority()

LastChunks(, replace_num) // The
last replace_num chunks

else
return // There are no chunks to be replaced.

end

1090 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 7, JULY 2015

TABLE III
HIT RATIO COMPARISON IN THE PARIS SCENE

TABLE IV
HIT RATIO COMPARISON IN THE PALACE SCENE

TABLE V
HIT RATIO COMPARISON IN THE VENICE SCENE

VI. EXPERIMENT EVALUATION

A. Experimental Scenarios and Parameter Settings

We have implemented a remote walkthrough prototype
system to evaluate the performance of the proposed user access
pattern based scene prefetching scheme. It allows multiple
users to navigate a 3-D scene using a keyboard and mouse.
Using the client program, a user connects to the server to
obtain an initial scene package, which contains the geometry
and texture data of chunks in that user’s conservative region.
After receiving the package, the user can navigate the 3-D
scene. The client requests additional chunks from the server
when the user conservative region is updated, i.e., when the
user moves beyond the distance threshold or turns beyond the
angle threshold. The server employs the proposed prefetching
method to predict the chunks that will be visited in the future.
During the idle time of the network, the data of the predicted
chunks are delivered to the client.
In our experiment, the server runs on a workstation with an

Intel Xeon CPU at 2.0 GHz, 4 GB of memory and a 100 Mbps
Ethernet connection to the university network. The client runs
on a personal computer with a DualCore Intel Core i3 330UM
CPU at 1.2 GHz, 2 GB of memory and an ATI Mobility Radeon
HD 540v graphics card. Three test scenes are used, including

TABLE VI
ACCESS LATENCY COMPARISON IN THE PARIS SCENE (UNIT: MS)

TABLE VII
ACCESS LATENCY COMPARISON IN THE PALACE SCENE (UNIT: MS)

TABLE VIII
ACCESS LATENCY COMPARISON IN THE VENICE SCENE (UNIT: MS)

two city scenes (the Paris Scene and Venice Scene) and one his-
toric site scene (the Palace Scene). Each test scene is partitioned
into uniform chunks of units in size. The detailed pa-
rameters of each test scene are provided in Table I.
For each test scene, all boundary chunks can be chosen as the

entrances/exits of the scene. Fig. 8 illustrates the entrances/exits
of the Paris Scene. To collect user access sequences, we invite
50 volunteers to perform walkthroughs as users. In the exper-
iment, each volunteer can freely choose one boundary chunk
as his or her starting position. Then, the volunteer performs a
walkthrough inside the scene and is allowed to freely move to
another boundary chunk to complete the walkthrough. During
the walkthrough, the navigation route, moving speed and
viewing direction are freely controlled by the volunteer. In each
of the three scenes, each volunteer performs 50 walkthroughs.
Then, we mine these walkthroughs for user access patterns and
calculate the corresponding interest priority values. Inspired
by research on DNA and protein sequence analysis [42], [43],
[44], in which a value of 0.8 is typically used as an empirical
cut-off value for sequence similarity, we set the similarity
threshold of our user access pattern discovery algorithm as 0.8
(i.e.,). The cluster frequency threshold depends on

, where denotes the average number of ac-
cess sequences per user and denote the average number of

ZHOU et al.: EFFICIENT 3-D SCENE PREFETCHING FROM LEARNING USER ACCESS PATTERNS 1091

Fig. 10. Bandwidth usage comparison for the walkthrough in the Venice Scene (cache capacity chunks): (a) no prefetch, (b) our method, (c) EWMA, and
(d) DR.

access sequences per cluster. Accordingly, in our experiment,
is set to 50 for the three test scenes.
To evaluate the effectiveness of the proposed scene

prefetching method, we invite another 50 volunteers with no
knowledge of the test scenes to perform 10 walkthroughs in
each of the three scenes. We choose the hit ratio as the metric for
performance evaluation and calculate this metric each time the
client’s conservative region is updated. The hit ratio measures
the percentage of required chunks that can be retrieved from
the client cache. It is the ratio of the number of chunks that
are available in the client cache to the total number of chunks
in the conservative region. In this experiment, the hit ratio is
calculated as , where denotes the number
of chunks that are available in the client cache and denotes
the number of chunks that are required to be downloaded from
the server.
We test the hit ratio performance of the proposed prefetching

method under various matching distance thresholds (i.e.,
and). We also calculate the

average number of chunks that are prefetched between two
consecutive conservative region updates. Table II shows the
hit ratios and average prefetched chunk numbers for the Paris
Scene. The initial cache capacity depends on the number of
chunks overlapped by the conservative region. As some chunks
may not be completely covered by the conservative region, we
expand the boundary of the conservative region outward by
one chunk width and then calculate the initial cache capacity
as , where is the area of the expanded
conservative region and is the area of one chunk. The
cache capacity is initialized at 90 chunks and then grows to 120

(increased by 33%), 150 (66%), 180 (100%), 210 (133%) and
240 (166%) chunks.
As Table II shows, the average number of prefetched chunks

increases with increasing , and the hit ratio increases rapidly
when grows from 0.2 to 0.5. However, when is larger than
0.5, further increase in the hit ratio with increasing is very
slow. affects the number of matched access patterns and thus
affects the chunks to be prefetched and the hit ratio of the pro-
posed method. Based on the trade-off between the hit ratio and
the prefetched chunk data, we choose 0.5 as the matching dis-
tance threshold () for the following experiments. Fig. 9 shows
the prefetching results for a volunteer’s walkthrough in the Paris
Scene. Our prefetching method uses the access patterns and cur-
rent access chunk set to predict the future visited chunks. The
chunks prefetched by our method are then visited in subsequent
frames.

B. Comparison Results
We compare the proposed user access pattern based scene

prefetching method with three other methods, including no
prefetching (No Prefetch), exponentially weighted moving
average based prefetching (EWMA) and dead-reckoning based
prefetching (DR). No Prefetch serve as a base case for the
performance comparison. In the No Prefetch scheme, the server
delivers chunk data to the client only when the conservative
region is updated. EWMA prefetching is a prevailing AOI
derived method adopted by various classic and state-of-the-art
virtual environment systems [15], [16], [22], [23]. It employs
an exponentially weighted moving average to predict the
next position of a user. DR prefetching is proposed by Zheng

1092 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 7, JULY 2015

Fig. 11. Bandwidth usage comparison for the walkthrough in the Venice Scene (cache capacity chunks): (a) No Prefetch, (b) Our Method, (c) EWMA and
(d) DR.

TABLE IX
PERCENTAGES OF USER ACCESS PATTERN-BBASED PREDICTIONS VERSUS
DEAD-RECKONING-BASED PREDICTIONS FOR OUR PREFETCHING METHOD

et al. [25] for 3-D data pre-transmission. It uses a first-order
dead-reckoning algorithm to predict future viewpoints and
viewing directions. Dead-reckoning is critically important
in distributed virtual environments and is recommended by
IEEE 1278.1 (Distributed Interactive Simulation) [45]. In our
experiment, DR is used to predict both the future conservative
region and the chunks to be prefetched.
We test the hit ratio performance of the four methods for

various cache capacities. As shown in Table III (Paris Scene),
Table IV (Palace Scene) and Table V (Venice Scene) show,
our prefetching method outperforms the other three methods.
When the cache capacity is increased from 90 to 120 chunks,
the hit ratio of our method increases considerably, because a
larger cache can accommodate more prefetched chunks. When
the cache capacity is greater than 120 chunks, the hit ratio of
our method is nearly constant, because the cache capacity is
sufficient to hold all of the prefetched chunks. Compared with
No Prefetch, the hit ratio of our method is approximately 8.5%
higher on average. This improvement can be attributed to the
use of user access patterns, which enables effective predictions
of the chunks that are most likely to be visited in the future.

Fig. 12. Usage rates of the top 10 access patterns: (a) Paris scene, (b) Palace
scene, and (c) Venice scene.

The DR method also makes a prediction of the future visited
chunks, but its hit ratio is clearly lower than our method. DR
considers only the previous positions and directions of the con-
servative region. It neglects the patterns inherent in the history
of scene content sequences accessed by various users. As a re-
sult, its prediction accuracy and hit ratio inevitably degrade. The
hit ratio of EWMA decreases considerably as the cache capacity

ZHOU et al.: EFFICIENT 3-D SCENE PREFETCHING FROM LEARNING USER ACCESS PATTERNS 1093

Fig. 13. Prediction time cost for each user in the Paris Scene.

is decreased from 240 to 90 chunks. The cache capacity signifi-
cantly affects the hit ratio of EWMA. EWMA is an AOI derived
method that prefetches chunks around the predicted viewpoint.
When the cache capacity is increased, more chunks around the
predicted viewpoint can be prefetched, and therefore, the hit
ratio of EWMA increases. For the hit ratio to reach approxi-
mately 95%, EWMA requires nearly twice the cache capacity
required by our method.
We also test the access latency performance of each method.

Access latency is the latency between the instant of time when
the client requests the chunks in its updated conservative re-
gion and the instant of time when the client has received all
requested chunks. Only when all chunks in the current con-
servative region are available in the client cache, the user can
perform a meaningful walkthrough inside the scene. Tables VI,
VII, and VIII show the experiment results for the Paris Scene,
Palace Scene and Venice Scene, respectively. The access la-
tency is strongly correlated with the hit ratio. A higher hit ratio
results in fewer chunks being transmitted and thus lowers the
access latency. Our method significantly reduces the access la-
tency compared with No Prefetch. In particular, when the cache
capacity is larger than 120 chunks, the access latency is reduced
by nearly 70-80% on average. Our method also demonstrates
superior access latency performance to DR. Through compar-
ison with the DR results, the effectiveness of exploiting user
access patterns can be clearly observed. The access latency of
EWMA becomes close to the access latency of our method as
the cache capacity increases. A larger cache allows EWMA to
prefetch more chunks around the predicted viewpoint. As a re-
sult, the hit ratio of EWMA increases and its access latency is
reduced.
For further comparison, we measure the bandwidth usages of

the four methods. In Fig. 10 (cache capacity chunks) and
Fig. 11 (cache capacity chunks), a walkthrough in the
Venice Scene is used as an example for comparison. As shown in
Figs. 10 and 11, a finite startup time is required to download the
chunks in the initial conservative region. After the startup time
(nearly 2 s), the bandwidth usages of the four methods are quite
different. Compared with No Prefetch, the chunk data transmis-
sion required for updating conservative regions is effectively
reduced by our method. The primary reason for this reduction
is that the data transmission of our method is amortized during
the idle time of the network, and the access latency is hidden
in the chunk prefetching. The DR method also prefetches some
chunk data to the client when the network is idle. However, DR

TABLE X
AVERAGE PREDICTION TIME COST COMPARISON (UNIT: MS)

transmits more chunks during the updating of conservative re-
gions than does our method. The EWMA method clearly re-
duces the chunk data transmission required for conservative re-
gion updates when the cache capacity is 240 chunks. However,
as Fig. 11(c) shows, EWMA achieves this reduction at the cost
of an extremely large amount of data prefetching, which is why
EWMA requires a large cache to maintain both a high hit ratio
and a low access latency.
Additionally, for our prefetching method, we count the

number of predictions using the user access patterns and the re-
maining number of predictions employing the dead-reckoning
based approach. Table IX shows the percentages of these two
types of predictions. On average, the percentage of user access
pattern based predictions is 89.6%, considerably higher than the
corresponding percentage of dead-reckoning based predictions
(10.4%). In most cases, our prefetching method uses the user
access patterns to predict the chunks that will be visited in the
future. Therefore, its improvement in prefetching performance
can be predominantly attributed to the use of user access pattern
based predictions. We also count the prediction incidence for
each access pattern, i.e., the number of predictions which use
that access pattern. Then, we calculate the usage rate for each
access pattern as its prediction incidence divided by the sum
of the prediction incidences of all access patterns. We sort the
access patterns by their usage rates, and Fig. 12 shows the usage
rates for the top 10 access patterns for the three test scenes. We
observe that the sums of the usage rates of the first 7 access
patterns for the Paris Scene, the first 5 patterns for the Palace
Scene and the first 6 patterns for the Venice Scene exceed 80%.
Clearly, certain user access patterns have considerable impact
on the predictions.
To evaluate the prediction overhead, we investigate the

prediction time cost of our prefetching method, i.e., the av-
erage computation time required to make a prediction. We
also compare our method with No Prefetch, EWMA and DR.
Fig. 13 shows the prediction time costs for each user in the
Paris Scene. No Prefetch does not make any predictions of the

1094 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 7, JULY 2015

chunks to be visited in the future and therefore its prediction
time cost is always 0. The prediction time costs of EWMA
and DR are relatively stable. However, the prediction time
cost of our method varies from 4.1 ms to 7.7 ms. The primary
reason for this variation is that different users have different
preferences and are interested in different scene contents. User
preferences and interests affect the numbers of matched pat-
terns and, consequently, the time required to make predictions.
Based on the time costs of the 50 users who participate in this
study, we calculate the average prediction time cost for the
Paris Scene, and we obtain the results for the Palace Scene
and Venice Scene in the same manner. As Table X shows, the
average prediction time cost of our method is very close to
EWMA and DR. From the results presented above, we observe
that our prefetching method demonstrates time performance
comparable to EWMA and DR.

VII. CONCLUSION

Although different users follow different paths with different
speeds, viewing directions and fields of view when moving in a
3-D virtual environment, the scene contents accessed by users
may follow specific patterns. These access patterns, together
with user interests and scene content popularities, will affect the
actual data to be visited. Applying these patterns to 3-D scene
prefetching is a promising technique for effective scene content
prediction.
In this paper, we propose a user access pattern based 3-D

scene prefetching scheme, which includes both offline and on-
line phases. In the offline phase, history user access sequences
are partitioned into several clusters using the Newman algo-
rithm. Then, user access patterns are selected from among the
representative sequences of the clusters. These access patterns
are prioritized by their popularities and users’ personal prefer-
ences. In the online phase, instead of user viewpoint traces, the
identified access patterns and the current access chunk set are
used to predict the scene contents that are most likely to be vis-
ited in the future. When the network is idle, the predicted scene
data are delivered to the client in advance.
We conduct comprehensive and comparative experiments to

evaluate the performance of our user access pattern based scene
prefetching scheme. The experiment results demonstrate that
our prefetching method can effectively predict the scene con-
tents to be visited in the future. Our method achieves a signif-
icantly improvement in the hit ratio and considerably reduces
the access latency. Furthermore, our method outperforms the
prevailing prefetching schemes (EWMA and DR), especially in
the case of a limited cache.

REFERENCES
[1] C. Carlsson and O. Hagsand, “DIVE A multi-user virtual reality

system,” in Proc. IEEE Virtual Reality Annu. Int. Symp., Sep. 1993,
pp. 394–400.

[2] J. Calvin et al., “The SIMNET virtual world architecture,” in Proc.
IEEE Virtual Reality Annu. Int. Symp., Sep. 1993, pp. 450–455.

[3] J. Leigh, A. E. Johnson, C. A. Vasilakis, T. A. Defanti, and R. S.
Wurman, “Multi-perspective collaborative design in persistent net-
worked virtual environments,” in Proc. IEEE Virtual Reality Annu.
Int. Symp., Mar.–Apr. 1996, pp. 253–260.

[4] I. Pandzic, T. Capin, E. Lee, N. Thalmann, and D. Thalmann, “A flex-
ible architecture for virtual humans in networked collaborative virtual
environments,” in Proc. Eurograph., 1997, pp. 177–188.

[5] D. Cohen-Or, Y. L. Chrysanthou, C. T. Silva, and F. Durand, “A survey
of visibility for walkthrough applications,” IEEE Trans. Vis. Comput.
Graph., vol. 9, no. 3, pp. 412–431, Sep. 2003.

[6] N. K. Govindaraju, A. Sud, S. E. Yoon, and D. Manocha, “Interactive
visibility culling in complex environments using occlusion-switches,”
in Proc. ACM Interactive 3D Graph., 2003, pp. 103–112.

[7] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer, “Coherent hi-
erarchical culling: Hardware occlusion queries made useful,” Comput.
Graph. Forum, vol. 23, no. 3, pp. 615–624, Sep. 2004.

[8] M. Guthe, A. Balazs, and R. Klein, “Near optimal hierarchical culling:
Performance driven use of hardware occlusion queries,” in Proc.
EGSR, 2006, pp. 207–214.

[9] O. Mattausch, J. Bittner, and M. Wimmer, “CHC++: Coherent hierar-
chical culling revisited,” Comput. Graph. Forum, vol. 27, no. 2, pp.
221–230, Apr. 2008.

[10] M. R. Macedonia et al., “NPSNET: A multi-player 3D virtual scenes
over the internet,” in Proc. ACM Interactive 3D Graph., 1995, pp.
93–ff.

[11] D. Schmalstieg and M. Gervautz, “Demand-driven geometry transmis-
sion for distributed virtual environment,” Comput. Graph. Forum, vol.
15, no. 3, pp. 421–431, Aug. 1996.

[12] J. H. P. Chim, M. Green, R. W. H. Lau, H. V. Leong, and A. Si, “On
caching and prefetching of virtual objects in distributed virtual envi-
ronments,” in Proc. ACM Multimedia, 1998, pp. 171–180.

[13] F. W. B. Li, R. W. H. Lau, and D. Kilis, “GameOD: An internet
based game-on-demand framework,” in Proc. ACM VRST, 2004, pp.
129–136.

[14] W. Wang and J. Jia, “An incremental SMLAOI algorithm for progres-
sive downloading large scale WebVR scenes,” in Proc. Web3D, 2009,
pp. 55–60.

[15] S. Y. Hu et al., “FLoD: A framework for peer-to-peer 3D streaming,”
in Proc. IEEE INFOCOM, Apr. 2008, pp. 1373–1381.

[16] S. Y. Hu, J. R. Jiang, and B. Y. Chen, “Peer-to-peer 3D streaming,”
IEEE Internet Comput., vol. 14, no. 2, pp. 54–61, Mar. 2010.

[17] M. Aljaafreh, H. R. Maamar, and A. Boukerche, “An efficient object
discovery and selection protocol in 3D streaming-based systems over
thin mobile devices,” in Proc. IEEE Wireless Commun. Netw. Conf.,
Apr. 2013, pp. 2393–2398.

[18] E. Teler and D. Lischinski, “Streaming of complex 3D scenes for re-
mote walkthroughs,”Comput. Graph. Forum, vol. 20, no. 3, pp. 17–25,
Sep. 2001.

[19] C. M. Ng, C. T. Nguyen, D. N. Tran, T. S. Tan, and S. W. Yeow, “An-
alyzing pre-fetching in large-scale visual simulation,” in Proc. IEEE
Comput. Graph. Int., Jun. 2005, pp. 100–107.

[20] S. Jiang, B. Sajadi, A. Ihler, and M. Gopi, “Optimizing redundant-data
clustering for interactive walkthrough applications,” Vis. Comput., vol.
30, no. 6–8, pp. 637–647, Jun. 2014.

[21] G. Varadhan and D. Manocha, “Out-of-core rendering of massive geo-
metric environments,” in Proc. IEEE Vis., Nov. 2002, pp. 69–76.

[22] J. Chim, R. W. H. Lau, H. V. Leong, and A. Si, “CyberWalk: A web-
based distributed virtual walkthrough environment,” IEEE Trans. Mul-
timedia, vol. 5, no. 4, pp. 503–515, Dec. 2003.

[23] A. Chan, R. W. H. Lau, and B. Ng, “Motion prediction for caching and
prefetching in mouse-driven DVE navigation,” ACM Trans. Internet
Technol., vol. 5, no. 1, pp. 70–91, Feb. 2005.

[24] T. Y. Li and W. H. Hsu, “A data management scheme for effective
walkthrough in large-scale virtual environments,” Vis. Comput., vol.
20, no. 10, pp. 624–634, Dec. 2004.

[25] Z. Zheng, E. Prakash, and T. K. Y. Chan, “Interactive view-dependent
rendering over networks,” IEEE Trans. Vis. Comput. Graph., vol. 14,
no. 3, pp. 576–589, May 2008.

[26] F.W. B. Li, R.W.H. Lau, D.Kilis, and L.W. F. Li, “Game-on-demand:
An online game engine based on geometry streaming,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 7, no. 3, p. 19, Aug. 2011.

[27] S. Park, D. Lee, M. Lim, and C. Yu, “Scalable data management using
user-based caching and prefetching in distributed virtual environ-
ments,” in Proc. ACM VRST, Nov. 2001, pp. 121–126.

[28] S. Hung and D. S. M. Liu, “Using prefetching to improve walkthrough
latency,” Comput. Animation Virtual Worlds, vol. 17, no. 3–4, pp.
469–478, Jul. 2006.

[29] H. Rahimi, A. A. N. Shirehjini, and S. Shirmohammadi, “Context-
aware prioritized game streaming,” in Proc. IEEE Int. Conf. Multi-
media Expo, Jul. 2011, pp. 1–6.

ZHOU et al.: EFFICIENT 3-D SCENE PREFETCHING FROM LEARNING USER ACCESS PATTERNS 1095

[30] V. Vani, R. P. Kumar, and S. Mohan, “3D mesh streaming and ren-
dering-an approach based on predictive modeling,” Int. J. Comput. Sci.
Issues, vol. 9, no. 2, pp. 606–613, Mar. 2012.

[31] J. Borges andM. Levene M, “Evaluating variable-length markov chain
models for analysis of user web navigation sessions,” IEEE Trans.
Knowl. Data Eng., vol. 19, no. 4, pp. 441–452, Apr. 2007.

[32] M. A. Awad and I. Khalil, “Prediction of user’s web-browsing be-
havior: Application of markov model,” IEEE Trans. Syst. Man Cybern.
B, Cybern., vol. 42, no. 4, pp. 1131–1142, Aug. 2012.

[33] T. Iwata, K. Saito, and T. Yamada, “Modeling user behavior in recom-
mender systems based on maximum entropy,” in Proc. ACM WWW,
2007, pp. 1281–1282.

[34] J. Chen, X. Zhou, and Q. Jin, “Recommendation of optimized infor-
mation seeking process based on the similarity of user access behavior
patterns,” Personal Ubiquitous Comput., vol. 17, no. 8, pp. 1671–1681,
Dec. 2013.

[35] C. Song, Z. Qu, N. Blumm, and A. L. Barabási, “Limits of pre-
dictability in human mobility,” Science, vol. 327, no. 5968, pp.
1018–1021, Feb. 2010.

[36] P. Wonka, M. Wimmer, and F. X. Sillion, “Instant visibility,” Comput.
Graph. Forum, vol. 20, no. 3, pp. 411–421, Sep. 2001.

[37] P. Jaccard, “The distribution of the flora in the alpine zone,” New Phy-
tologist, vol. 11, no. 2, pp. 37–50, Feb. 1912.

[38] V. I. Levensthein, “Binary codes capable of correcting deletions, in-
sertions and reversals,” Soviet Physics Doklady, vol. 10, pp. 707–710,
Feb. 1966.

[39] M. E. J. Newman, “Fast algorithm for detecting community structure
in networks,” Phys. Rev. E, vol. 69, no. 6, p. 066133, Jun. 2004.

[40] J. Chim, R.W. H. Lau, H. V. Leong, and A. Si, “Multi-resolution cache
management in digital virtual library,” in Proc. IEEE Adv. Digital Li-
braries Conf., Apr. 1998, pp. 66–75.

[41] D. Kucharavy and R. De Guio, “Application of S-Shaped curves,” in
Proc. ETRIA TRIZ Future Conf., Nov. 2007, pp. 81–88.

[42] R. Strohal, A. Helmberg, G. Kroemer, and R. Kofler, “MouseVk gene
classification by nucleic acid sequence similarity,” Immunogenetics,
vol. 30, no. 6, pp. 475–493, Dec. 1989.

[43] F. Pazos and A. Valencia, “Similarity of phylogenetic trees as indi-
cator of protein–protein interaction,” Protein Eng., vol. 14, no. 9, pp.
609–614, Sep. 2001.

[44] K. Cartharius et al., “MatInspector and beyond: Promoter analysis
based on transcription factor binding sites,” Bioinformatics, vol. 21,
no. 3, pp. 2933–2942, Apr. 2005.

[45] IEEE Standard for Distributed Interactive Simulation—Application
Protocols, IEEE Std. 1278.1, 2012.

Zhong Zhou (M’10) received the B.S. degree from
Nanjing University, Nanjing, China, in 1999, and
the Ph.D. degree from Beihang University, Beijing,
China, in 2005.
He is an Associate Professor and Ph.D. Adviser

with the State Key Lab of Virtual Reality Technology
and Systems, Beihang University. His main research
interests include augmented virtual environment, nat-
ural phenomena simulation, distributed virtual envi-
ronment, and Internet-based VR technologies.
Dr. Zhou is a member of the ACM.

Ke Chen received the M.S. degree in computer sci-
ence and technology from Beihang University, Bei-
jing, China, in 2010, and is currently working toward
the Ph.D. degree in computer science from the State
Key Lab of Virtual Reality Technology and Systems,
Beihang University.
His research interests include remote rendering,

3-D visualization, and video coding.

Jingchang Zhang received the B.S. degree in
computer science and technology from Shanghai
University, Shanghai, China, in 2013, and is cur-
rently working toward the M.S. degree in computer
science from the State Key Lab of Virtual Reality
Technology and Systems, Beihang University,
Beijing, China.
His research interests include remote rendering

and 3-D visualization.

