
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS
Int. J. Numer. Model. 2015; 28 254–274:
Published online 25 May 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jnm.2003

Lagrangian particle-based simulation of fluid–solid coupling on
graphics processing units

Xuqiang Shao, Zhong Zhou�,� , Jinsong Zhang and Wei Wu

State Key Laboratory of Virtual Reality Technology and System, Beihang University, Beijing 100191, China

SUMMARY

Lagrangian particle method has been widely used in computer physics and graphics; however, numerically solving
the partial differential physical equation on a great number of particles is a computationally complex task. In
this paper, a unified particle method on graphics processing units is proposed to simulate fluid–solid interaction
with large density ratio interactively. Motivated by microscopic molecular dynamics, we consider the solid object
as a particular fluid limited to solid motions; therefore, fluid–solid interaction as well as solid–solid interaction
could be solved directly using multiphase weakly compressible smoothed particle hydrodynamics solvers. And
then, we present a momentum-conserving particle collision handling scheme to prevent fluid penetrating into solid
objects. In the simulation, a measure of particle densities is used to handle density discontinuities at fluid–solid
interfaces, and consequently, new formulations for density-weighted inter-particle pressure and viscous forces
are derived. Moreover, to realistically simulate various small-scale interaction phenomena such as water droplets
flowing on solids’ surfaces, a surface tension model that uses density-weighted color gradient and can obtain a
stable and accurate surface curvature is employed to capture the interfacial fluid–solid tensions. Because all of the
computation is carried out on graphics processing unit and no CPU processing is needed, the proposed algorithm
can exploit the massive computational power of graphics processing unit for interactive simulation with a higher
particle resolution. The experiment results show that our method can simulate realistic fluid–solid couplings at
interactive frame-rates even for up to 126 k particles. Copyright © 2014 John Wiley & Sons, Ltd.

Received 25 September 2013; Revised 20 February 2014; Accepted 10 April 2014

KEY WORDS: graphics processing units; physics-based modeling; fluid–solid coupling; Lagrangian particle
method; smoothed particle hydrodynamics

1. INTRODUCTION

Nowadays, physics-based modeling of natural phenomena by solving complex partial differential
equation has been studied extensively in manufacture and entertainment industry, and various appli-
cations could be found in computational physics, computer games, and special effects. Among many
physical phenomena, fluid–solid coupling with high density ratio is common in our daily life, for
example, a piece of iron sinks into a pool of water and a rubber duck floats on the water surface.

The coupling processes between fluid and solid are physically complex and difficult to simulate. Cur-
rently, the coupled models that usually couple Eulerian grid-based fluid and Lagrangian solid together
[1–3] have been widely employed. But in this kind of approach, various simulated effects and materi-
als are usually constrained by interfaces between different models. In addition, the low computational
efficiency of coupled models is unsuitable for interactive applications. It is highly desirable to have
a unified framework that can handle different types of materials and eliminate the need to define an
interface for coupling different solid and fluid models. Recently, to simplify the fluid–solid coupling,
the fully particle-based approaches [4, 5] have been put forward to simulate fluids, solids, and phase

�Correspondence to: Zhong Zhou, 6863 Box, Xueyuan Road, Haidian District, 100191, Beijing, China.
�E-mail: zhouzhong2011@gmail.com

Copyright © 2014 John Wiley & Sons, Ltd



THE SOLID BOUNDARY HANDLING OF WCSPH FLUIDS 255

transitions in a unified way. However, the density discontinuities and surface tension at interfaces are
not handled in particle-based fluid–solid coupling.

On the basis of the work of [5], we propose an interactive particle-based method to model the phe-
nomena arising from fluid–solid coupling with high density ratio. In the method, we think of the solid
object as a particular fluid limited to solid motions; therefore, mutual interactions could be calculated
through solving the Navier–Stokes equations based on any multiphase smoothed particle hydrody-
namics (SPH) solver. And a momentum-conserving particle collision handling scheme is proposed to
prevent fluid leaking into solid. To handle density discontinuities at fluid–solid interfaces, we employ
a measure of particle densities, which was used in the work of [5] to handle discontinuities in density
contrast fluid–fluid interaction. In addition, surface tension is an important factor in small-scale fluid
simulations such as water droplets flowing on the surface of solid. In our approach, a surface tension
model that can obtain a stable and accurate surface curvature is employed to capture small-scale details
in fluid–solid coupling. The method uses a density-weighted color gradient formulation to reflect an
asymmetrically distributed surface tension force.

However, because of the large computational demands that arise from numerically solving the com-
plex partial differential equation, the fast simulation of particle-based fluid–solid coupling presents a
great challenge. In a practical application, producing high quality fluid–solid coupling requires hun-
dreds of thousands of particles and takes several hours or days to compute a single frame. Recent
advancement of parallel computing environments with graphics processing units (GPUs) has signif-
icantly promoted progress in scientific computation performance. Through the recent development
of tools such as Compute Unified Device Architecture (CUDA) and Open Computing Language
(OpenCL), it has become possible to fully utilize the bandwidth and computational power they con-
tain in many fields, such as computational electromagnetics [6–9] and computational fluid mechanics
[10]. In this paper, enabling interactive simulation with a higher particle resolution, we fully execute
all steps of our unified particle method on the GPU by using CUDA to avoid any CPU–GPU transfer
overhead. The performance data show that our GPU implementation is many times faster than the CPU
implementation and is able to simulate 126 k particles at interactive frame rates.

The main contributions of our paper can be summarized as follows:

(i) A particle-based framework considering solid as a type of particular fluid limited to solid
motions and directly calculating mutual interactions through solving the Navier–Stokes
equations of fluid with the multiphase SPH method.

(ii) A momentum-conserving particle collision handling scheme is put forward to prevent fluid
leaking into the solid objects.

(iii) A surface tension model capturing the interfacial liquid–solid tensions is employed to
realistically simulate a variety of small-scale water–solid coupling phenomena such as
water droplets.

(iv) A CUDA-based parallel algorithm for the entire simulation pipeline is designed for time
performance improvements.

2. RELATED WORK

In computer physics and graphics, physically based animation of fluids such as smoke and water has
received considerable attention in recent years. Numerous techniques have been proposed by using
both Eulerian and Lagrangian particle approaches. Two-way coupling between solid and fluid is a typi-
cal issue in fluid simulation, and the current solving approaches are mainly coupling models. Genevaux
et al. [2] proposed a method to simulate the interaction between mass-spring solids and a Eulerian grid
fluid, with a communication interface between the two phases. But the nodes of a mass-spring network
are not quite well suited for the application of coupling forces. Carlson et al. [11] simulated coupled
fluid and rigid bodies with distributed Lagrange multipliers. Their method considers rigid bodies as
fluid on a grid and projects velocity in those regions back to the rigid motion with careful additions
to the body force to account for the density ratio between solids and fluids. However, the method
cannot stably handle light solids and fails in some cases, allowing fluid to erroneously leak into the
solid objects. To simulate the two-way coupling between the Eulerian fluid and finite element or finite

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



256 X. SHAO ET AL.

difference elastic solid, Chentanez et al. [1] enforced coupling constraints by combining both the pres-
sure projection and implicit integration steps into one set of simultaneous equations. Mosher et al. [3]
proposed a novel solid–fluid coupling method that utilizes the standard Eulerian grid for the fluid and
Lagrangian mesh for the solid. Their method treats the coupled system in a fully implicit manner, mak-
ing it stable for arbitrary time steps, large density ratios, and so on. But it takes from a few minutes to
several hours per frame. Müller et al. [12] developed a method in which SPH fluid particles interact
with Lagrangian meshes by adding boundary particles to the surface of the mesh. Because the den-
sity of generated particles varies among polygons, which do not have a uniform surface area, it does
not guarantee the constant particle density near the wall boundary. In conclusion, for these coupling
models, the interfaces between different objects always limited the variety of the handled effects and
materials. Large density ratios even lead to severe numerical instabilities.

Nowadays, several particle-based frameworks that combine simulation methods of fluid, rigid
object, deformable object, and fluid–solid coupling are presented. Müller et al. [13] put forward a com-
plete particle-based approach to simulate elastic, plastic, and melting solids, in which a moving least
squares method is employed to compute interparticle forces. Keiser et al. [4] improved the aforemen-
tioned method and merged the fluid governing equations with the equations of deformable solids to
compute solid deformation, fluid flow, and phase transition. Solenthaler et al. [5] can handle copla-
nar and coarsely sampled particle configurations by adopting SPH method to evaluate the deformation
field’s Jacobian. However, the aforementioned methods only concentrate on phase transitions. On the
basis of the work of [5], Toon et al. [14] presented the two-way coupling of a fluid to thin deformable
shells in a unified particle model using explicit collision handling to avoid leaks. Furthermore, by alter-
ing the local reference shape definition, their method is able to perform SPH cloth simulations. But the
density discontinuities and surface tension at interfaces are not handled. Iwasaki et al. [15] presented a
particle-based approach on GPU to simulate the freezing and melting phenomena and ice-water inter-
actions, in which a novel interfacial tension model is put forward to handle water flowing on the ice
surface and the formation of water droplets. Müller et al. [16] introduced an interface force to model
fluid–fluid interaction based on standard SPH method. Compared with standard SPH, Solenthaler et
al. [17] presented a new formulation to handle density discontinuities at interfaces between multiple
fluids correctly without increasing the computational costs.

The particle-based Lagrangian approaches are playing a more and more important role in recent
researches on physical simulation. Among these methods, SPH is one of the most promising methods.
Desbrun et al. [18] introduced SPH to the graphics community for the simulation of highly deformable
solids. Stora et al. [19] modeled the flow of lava using SPH method through coupling viscosity with
temperature. Müller et al. [20] showed that SPH could produce compelling fluid simulations at inter-
active rates, which led to a large body of follow-on work. Up to now, researchers have used SPH
to model such phenomena as viscoelasticity [21], viscoplasticity [22], incompressible flow [23–25],
solid–fluid coupling [4, 5], and fluid–fluid interaction [16, 17]. Adams et al. [26] demonstrated adap-
tive sampling in SPH simulations. Along with the great advance of GPU, SPH model can be integrated
with general-purpose computation on GPU techniques easily [10, 27]. In addition, Zhang et al. [28]
performed adaptive SPH simulations on the GPU.

3. PARTICLE-BASED FRAMEWORK

In this paper, our framework solves motion equations of fluids and solids using the SPH numerical
method [20] proposed by Müller et al. in computer graphics.

3.1. SPH

SPH is an interpolation method for particle systems. With SPH, field quantities that are only defined at
discrete particle locations can be evaluated anywhere in space. For this purpose, SPH distributes quan-
tities in a local neighborhood of each particle using radial symmetrical smoothing kernels. According
to SPH, a scalar quantity A.xi/ is interpolated at location xi by a weighted sum of contributions from
all particles:

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



THE SOLID BOUNDARY HANDLING OF WCSPH FLUIDS 257

A.xi / D
X
j

mj
Aj

�j
W.xij ; h/; (1)

where j iterates over all particles, xij D xi � xj ; mj is the mass of neighboring particle j , and �j its
density. W.x; h/ is a smoothing function, which is a smoothed, symmetric, and normalized function
with finite support, that is,

R
W.r; h/dr D 1 and W.r; h/ D 0 for jrj > h.

In fluid and solid governing equations, derivatives of quantity field need to be calculated. Using the
SPH interpolation method, the derivatives will only influence the smoothing kernel function. Thus, the
first-order gradient and second-order Laplacian of the smoothing quantity field A.x/ are

rA.xi / D
X
j

mj
Aj

�j
rW.xij ; h/; (2)

r2A.xi / D
X
j

mj
Aj

�j
r2W.xij ; h/: (3)

3.2. Fluid simulation

Our particle-based fluid framework is based on the researches in [16,20,23]. Fluid motions are usually
governed by the famous Navier–Stokes equations

�
Dv
Dt
D �rp C �r2vC �g; (4)

d�

dt
D ��r � v; (5)

where p is fluid pressure, v is velocity, g the gravity acceleration, and � fluid viscosity. Equation (4)
formulates the momentum conservation law, and Equation (5) assures conservation of mass.

The method applies Equation (1) to the summation density of a particle pi located at xi , and obtains
the so-called mass density

�i D �.xi / D
X
j

mjW.xij ; h/: (6)

Then, substitute Equations (2) and (3) into the first formula of Navier–Stokes equations and
symmetrize; we can obtain two forces exerted on a particle pi

Fpressurei D �
X
j

mj
pi C pj

2�j
rW.xij ; h/; (7)

Fvis cos ity
i D �

X
j

mj
vj � vi
�j

r2W.xij ; h/: (8)

where Fpressurei and Fviscosityi are forces per unit volume, and we use the kernels W.r; h/ adopted in
[18]. The fluid pressure for pi is evaluated by Tait’s equation used in [23]

pi D
��0

�

��
�i

�0

��
� 1

�
; (9)

where �0 is the rest density, k represents the fluid stiffness, and � D 7 enforces weakly
compressible fluid.

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



258 X. SHAO ET AL.

3.3. Solid simulation

We simulate solid objects based on the work of [5]. The rigid objects are represented by particles, and
forces exerted on all particles can be accumulated to a total force and torque to control the motion of
rigid bodies.

Then, we have to deal with rotation explicitly for restricting the motion of a solid object to the rigid
motion. To do this, we calculate a torque vector � using

�i D .xi � xcm/ � Fi ; (10)

where xcm is the mass center of an object and Fi is the total force acting on the i th solid particle.
The total force exerted on an object is computed by Ftotal D

P
i

Fi , and the total torque is evaluated

by �total D
P
i

�i . Then, we perform time integration through iterating over the rigid body to compute

the influence of the torque and force, that is, the influence on the object’s position and the angular and
linear velocity.

For the simulation of deformable solids, at every particle position, the gradient of displacement ru
from the reference shape of the body is used to compute the strain ", stress � , and elastic forces Felastic .
Because the approximation of the deformation gradient in this method is only zero-order consistent, it
is not rotationally invariant. Instead, rotations are misinterpreted as deformations, resulting in forces
that prevent a body from rotating. Becker et al. [29] presented a novel corotational SPH formulation
for elastic solids. The approximation for the deformation gradient is

rui D
X
j

NvjrW.xij ; h/
�
R�1i .xj � xi / �

�
x0j � x0i

��T
; (11)

where Nvj is the body volume of particle j and Ri the individual rotation matrix for a particle i
computed using a polar decomposition of transformation matrix.

Basing on the continuum elasticity theory, the elastic force Felastic can be defined as the negative
gradient of strain energy U with respect to displacement. The force that particle i exerts on its j th
neighbor is given by

Felasticj i D �rujUi D �2 Nv2j
�
ICruTi

�
�irW.xij ; h/; (12)

where I is the identity matrix, Ui D 1
2
."i � �i /.

4. FLUID–SOLID COUPLING SIMULATION

In this section, we show how the proposed algorithm calculates two-way interaction between fluid and
solid with high density ratio avoiding penetration artifacts.

4.1. Interaction forces

By representing fluids and solids by particles carrying various properties, we adopt unified particle-
based method based on SPH to model fluids, solids, and interaction between them. In the standard SPH
for a single material, attributes are identical for all particles and can be stored globally, for example,
the particle mass m, the density �, and the viscosity coefficient �. Similar to the fluid–fluid interac-
tion method in [16], our unified particle-based model makes each particle carry all those attributes
individually. The attributes of a particle are summarized in Table I.

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



THE SOLID BOUNDARY HANDLING OF WCSPH FLUIDS 259

Table I. Attributes of each particle.

Attribute Description Unit

m Mass kg
T Particle type 1
V Volume m3

x Position m
v Velocity m=s

f Accumulated forces N=m3

� Density kg=m3

C Color attribute for surface tension 1

Figure 1. Forces between particles in fluid–solid coupling.

As Figure 1 shows, during fluid–solid two-way coupling simulation, we need to handle three differ-
ent forms of interparticle forces: the force Ff luid�f luid between fluid particles , the force Fsolid�solid

between solid particles, and the interactive force Ff luid�solid between fluid particles and solid parti-
cles. In the proposed unified model, we consider the solid object as a particular fluid limited to solid
motions; therefore, fluid–solid interaction as well as solid–solid interaction could be solved directly
using multiphase SPH solvers to solve the fluid governing equations. We evaluated Ff luid�solid

in the same way that we evaluated Ff luid�f luid , which is equal to the summation of Fpressure

and Fviscosity formulated by Equations (7) and (8), respectively. Fsolid�solid has two forms: forces
between neighbor solid particles from different solid objects and forces between neighbor deformable
particles from the same solid object. The former forces are used to couple different solid objects and
are also calculated in the same way as Ff luid�f luid . The latter are elastic inner forces of deformable
solid and are solved using Equation (12).

4.2. Penetration prevention

In our method, we only consider the impermeable solid objects. When the velocity difference between
fluid and solid or the fluid pressure is too large, only depending on the aforementioned interparticle
forces is not enough to overcome penetration. In this section, we propose a momentum-conserving
particle collision handling scheme to prevent penetration artifacts at the fluid–solid interfaces, which
improves the stability of fluid–solid couplings.

As shown in Figure 2, the influence range of a solid particle is divided into two regions. When the
distance between a solid particle i and a fluid particle j is smaller than the summation of their radius
jxij j < ri C rj (white region in Figure 2), we correct the position and velocity of the fluid particle
by ensuring the conservation of momentum. By translating the fluid particle j along the direction of
vector xj i , we firstly correct its position xj as

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



260 X. SHAO ET AL.

Figure 2. The momentum-conserving particle collision handling scheme.

x0j D xi C .ri C rj /
xj i
jxj i j

; (13)

where r D 3

q
3V
4�

is the particle radius and x0j the displaced position of fluid particle j .
Then, the velocity of j is corrected according to boundary material and the law of momentum

conservation. We project the velocities of i and j to the direction and the tangential direction of xj i ,
then obtain vni ; v

t
i ; v

n
j , and vtj . Considering momentum conservation along these two directions, we

formulate the following equations

mivni Cmj vnj D mi Qv
n
i Cmj Qv

n
j ; (14)

mivti Cmj vtj D mi Qv
t
i Cmj Qv

t
j ; (15)

where Qvni and Qvnj denote the unknown velocities after the collision.
To enforce the nonpenetration constraint at the fluid–solid interfaces, we ensure that the corrected

velocity components in the direction of xj i are equal, that is, Qvni D Qv
n
j . Substitute it into Equation (14)

and obtain

Qvni D Qv
n
j D

mivni Cmj vnj
mi Cmj

: (16)

As for the velocity correction in the tangential direction of xj i , we define a variable @ to control the
different slip conditions.

@ D
Qvti � Qv

t
j

vti � vtj
; (17)

where @ D 0 means no-slip in the collision, while @ D 1 states that the collision is free to slip.

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



THE SOLID BOUNDARY HANDLING OF WCSPH FLUIDS 261

Combining Equations (15) and (17), we obtain

Qvti D
.mi Cmj @/vti Cmj .1 � @/v

t
j

mi Cmj
;

Qvtj D
.mj Cmi@/vtj Cmi .1 � @/v

t
i

mi Cmj
:

(18)

When the distance between i and j is larger than the summation of their radius jxij j >D ri C rj
(gray region in Figure 2), following [23, 30], we apply a boundary force Fboundary between these
two particles

Fboundaryji D �Fboundaryij D kb
mj

mi Cmj
W.xj i ; hi /

xj i
jxj i j

(19)

where kb is a user-defined coefficient whose unit is 1, the kernel function W is defined as

W.xij ; h/ D
1

jxij j

8̂̂
<
ˆ̂:

2
3
; 0 < q < 2

3

2q � 3
2
q2; 2

3
� q < 1

1
2
.2 � q/2; 1 � q < 2

0; otherwise;

9>>=
>>; (20)

where q D jxij j
h

. Therefore, fluid particles approaching solid boundary particles are now first slowed
down. Only when there is enough pressure they will actually collide with the solid particles. We notice
fluid particles are now able to slide off the solid surface instead of being repelled.

4.3. Handling discontinuities at interfaces

The mass density summation Equation (6) for multiphase fluid would become infeasible if the neighbor
particles carry different rest densities [17]. For particles close to the interface, the computed density
is underestimated if they belong to the material with higher rest density, and overestimated otherwise.
This happens because the kernel function smoothes the density and cannot accurately represent sharp

Figure 3. Handling discontinuities at interfaces. (a) Actual desired density discontinuities. (b) Standard SPH
smoothes the density at the interface. (c) Erroneous pressures are present near the interface. Our SPH equations

using the particle density (d), resulting in densities (e).

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



262 X. SHAO ET AL.

density changes as it has been desired. This is illustrated in Figure 3(a) and (b). When this density is
used to calculate the pressure through the two phase equations of state, the pressure will be very wrong
(see Figure 3(c)), leading to a spurious interface tension and a large gap. Even worse, the erroneous
pressure forces induce numerical instabilities at the interface, and it is impossible to set up a stable
interface in equilibrium.

Our method considers a solid to be a particular fluid restrained to solid motions, so the aforemen-
tioned problems also exist in our particle-based model for fluid–solid coupling with high rest density
ratio. To handle density discontinuities at fluid–solid interfaces correctly, we replace the mass density
formula Equation (6) by a measure of particle density, which was adopted in multiphase fluid solvers
with high density ratio in [17]. The idea is to ignore the mass in the computation of the particle density.
The continuous and derivable particle density is defined as

ıi D
X

j2Nneighbor

W.xij ; h/: (21)

Then, the adapted density Q�i of a particle is computed by multiplying the particle density by the
mass of the particle

Q�i D miıi D mi
X

j2Nneighbor

W.xij ; h/ (22)

where N neighbor includes neighboring fluid particles and solid particles.
Because neighboring particles contribute to the particle density only by affecting the specific volume

of particle i , Equation (22) allows for density discontinuities when there are large density differences
between nearby particles. As illustrated in Figure 3(d), when dealing with fluid–solid coupling with
different densities, we can achieve a density field reproducing sharp density changes at the interface
by using Equation (22). We replace �i by Q�i , yielding the equation for the pressure

Qpi D
��0

�

��
Q�i

�0

��
� 1

�
: (23)

Then, we again replace �i by Q�i and pi by Qpi , yielding the final equation for the pressure and
viscosity force

Fpressurei D �
X

j2Nneighbor

1

ıj

Qpi C Qpj

2
rW.xij ; h/; (24)

Fvis cos ity
i D �

X
j2Nneighbor

�i C �j

2

vj � vi
ıj

r2W.xij ; h/: (25)

On the basis of the improved mass density, force, and pressure formulations in [17] for multiphase
fluid, our method can eliminate all unnatural and spurious interface tension effects when simulating
the two-way coupling between fluid and solid with large density ratio (as shown in Figure 3(e)). Our
approach is able to deal with rest density ratios of up to 100.

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



THE SOLID BOUNDARY HANDLING OF WCSPH FLUIDS 263

4.4. Surface tension model

Surface tension is an important factor for small-scale details in fluid simulations. It is caused by
unbalanced molecular cohesive forces in the interfacial region where two phases meet (liquid–air,
liquid–solid, or solid–air). If we wish to synthesize a variety of small-scale fluid phenomena including
water droplets flowing on the surface of solid objects, surface tension effects become too strong to be
neglected. With SPH, there are generally two surface tension models in computational fluid dynamics
(CFD): one is the microscopic model based on inter-phase attractive potentials [15, 23] and the other
one is the macroscopic model [16, 20]. Although the microscopic model is straightforward, one of the
difficulties is that the resulting surface tension does not converge to a fixed value with increasing res-
olution. On the other hand, the macroscopic surface tension model converges to the exact value with
increasing resolution. However, the macroscopic model requires the calculation of curvature, which is
difficult to predict, that is, the divergence of the unit interface normal direction. In addition, Wang et
al. [31] presented a physical approach to enforce contact angles at the intersection of the fluid free sur-
face and the solid, allowing to model many small-scale interaction phenomena including water drops
on the object surface in grid-based fluid solvers.

The surface tension model we employed for particle-based two-way fluid–solid interaction with high
density ratios is considered to be a variation of the method of [32] for multiphase SPH fluids in CFD,
which can obtain a stable and accurate surface curvature. Following the work of [16, 20], the surface
tension force can be expressed as a body force

Fsurface D ˛�n D �˛r2C
n
jnj

(26)

where ˛ is surface tension coefficient, C a smoothed color field, n D rC=jrC j the normal, and
� D �r2C=jnj the curvature that is the divergence of the normal.

To calculate surface tension forces between fluid phase and solid phase, we introduce a color
function C as

C
j
i D

²
1; if i and j belong to the different phase
0; if i and j belong to the same phase:

(27)

Physically, at the fluid–solid interface, the surface tension forces in the phase with high density are
much more prominent than those in phase with low density. The interfacial motion is mainly driven
by the material with high density. To reflect this behavior, on the basis of Equation (2), the following
density-weighted gradient of the color function is used

rCi D ıi
X
j

 
1

ı2i
C
1

ı2j

!
Q�i

Q�i C Q�j
C
j
i rW.xij ; h/ (28)

where ıi is calculated by Equation (21).
The kernel function W in Equation (28) should have the Dirac delta-function property

lim
h!0

W.r; h/ D ı.r/ and have compact support to allow for numerically efficient approximations of

the field quantities and gradients. In this work, we use the quintic spline function presented by Morris
et al. [33] with a compact support of 3h.

W.s/ D
10

7�

8̂<
:̂
1 � 3s2

2
C 3s3

4
; 0 � s < 1

.2�s/3

4
; 1 � s < 2

0; 2 � s

9>=
>; (29)

where s D jxij j = h.

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



264 X. SHAO ET AL.

To calculate the fluid–solid interface curvature, on the basis of the Taylor series expansion, the
continuous vector function 	.x/ D rC is approximated as

	.x/ D 	.xi /Cr	.xi /.x � xi /CO
�
jx � xi j2

�
(30)

where r	.xi / D @	.xi / = @xi .
Neglecting the second and higher-order terms of Equation (30), we can obtain r	.xi / D Œ	.x/ �

	.xi /
 ˝ .x � xi /�1. Then, we multiply both sides of the aforementioned equation by the gradient
of the kernel function rW.x � xi / and integrate over the entire domain and make discretization; the
summation form of the corrected gradient is formulated as

r	.xi / D

2
4X

j

	j i ˝rW.xj i /
1

ıj

3
5
2
4X

j

xj i ˝rW.xj i /
1

ıj

3
5
�1

(31)

where 	j i D 	.xj / � 	.xi /.
The second term at the right side of Equation (31) is a d �d matrix, where d is the number of spatial

dimensions. This matrix must first be constructed and then inverted. On the basis of the work of [34],
we approximate the matrix by

2
4X

j

xj i ˝rW.xj i /
1

ıj

3
5 � I

d

0
@X

j

xj i � rW.xj i /
1

ıj

1
A : (32)

where I is the identity matrix.
Then, plugging Equation (32) into (31) and taking the trace of Equation (31), we obtain the following

approximated divergence

r � 	i D d

P
j

	ij �
rW.xij /
ıjP

j

jxij j @W@jxij j
1
ıj

: (33)

Using the aforementioned formulation in which only two simple summations are required, we can
obtain a stable and accurate curvature of the interface.

5. GPU IMPLEMENTATION

Our particle-based model is very suitable for GPU implementation, because each particle can be
processed in a separate unit, and only their neighbor information is needed. Figure 4 shows the GPU
implementation pipeline of each time step.

Initialization To fully exploit the performance of the GPU, all of the physical values of the particles
are stored in GPU memory. For updating, the new values will not affect particles not yet processed,
our implementation requires four double-buffered CUDA arrays for radix-sort, density and pressure,
position, and velocity. Because it could be the case that global memory accesses are not coalesced, we
obtain the old attribute values from CUDA texture arrays (i.e., particle positions, densities), while we
write updated values into the double-buffered arrays. These two sets of CUDA arrays reverse their role
every frame as readable textures and writable global memory. Because force values are not required
outside the force kernel, we do not need any global memory for them. Also, we avoid allocating

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



THE SOLID BOUNDARY HANDLING OF WCSPH FLUIDS 265

Figure 4. The GPU implementation pipeline of each time step. Blue rectangles represent data, black rounded
rectangles represent operations, and green directed line segments represent writing and reading data.

Figure 5. Physical values stored on the GPU. FP, SP, and VP denote fluid particle, solid particle, and mesh
vertex, respectively.

separate memory for block computations by doing it in the same CUDA array as we use for radix-
sort. Once updated particle positions are copied into the position array, the radix-sort array is free and
can be used for block computations. Hence, no extra space is in fact needed for blocks maintenance.
To make unified handling, we put forward to store the physical properties of all particles in the same
CUDA arrays (see Figure 5) and use an additional flag value T (fluid particle (FP): 0; solid particle
(SP): 1; : : : ; n; mesh vertex (VP): nC 1; : : : ; 2nIn is the number of solid objects) stored in the fourth
element of f loat4 to distinguish to which object and type each particle belongs. For example, if the
flag value of a particle i satisfies Ti > n and Ti%n DD 3, this particle is a VP of the third solid object.

Block dimensions are imposed as 8*8*8, with a total of 512 threads per block, half of the maximum
possible but chosen as to allow symmetry alongside the three axes. The grid dimensions are based on
the total number of particles and their initial position, dividing the number of particles per length by
the block’s length, effectively taking advantage of the three-dimensional domain of the problem.

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



266 X. SHAO ET AL.

Neighborhood search For particle-based simulations, the calculations of the physical values require
a search for neighbors of each particle, as shown in Equations (21) and (22). Our method uses CUDA-
accelerated uniform spatial hashing algorithm to accelerate the search process. Different from the
previous work where all particles have uniform support radius, the support radius of each particle in
our model is distinct. We use max support radius hmax of all particles to divide the simulation domain
into a uniform grid. This scheme would increase neighbor candidates for the particle with smaller sup-
port radius, but it has almost no impact on the efficiency. The particle pj is considered as a neighbor
of pi if and only if jxi �xj j � max.hi ; hj /. Particles in the same cell will then lie consecutively in the
linear buffer, and finding neighbors is simply a matter of iterating over the correct indices in the buffer.
For the sorting we use the fastest radix sort available for the GPU [35] at the time of implementation.

Forces computations The calculations of forces between particles are performed in parallel by launch-
ing a CUDA thread for each particle. We first launch a kernel to calculate the forces between particles,
which are the summation of Fpressure and Fviscosity formulated as Equation (24) and (25). The calcu-
lated forces include Ff luid�f luid , interaction force Ff luid�solid , and Fsolid�solid between particles
from different solids. For avoiding undesired calculations of the aforementioned forces between solid
particles from the same object, we use particle type T stored by each particle to do it. If a pair of
particles all belong to the same solid object, the calculation should be given up in the kernel.

The aforementioned forces exerted on solid particles are treated as external forces when we calculate
the motions of solids. In our method, the motions of rigid solids and deformable solids are simulated
on GPU in different ways. To simulate the motions of the rigid solids, the total force Ftotal and the
total �total for each rigid solid are calculated according to its particle type T . During the calculation,
it requires the sum of the physical quantities such as positions, forces, and torques over the rigid
solid particles. The summation of these physical quantities is computed by using a parallel reduction
operation. For the motions of the deformable solids, we calculate the elastic forces between particles
from the same deformable solid using Equations (11) and (12) in parallel.

The calculation of surface tension forces can be performed in parallel and is suitable for GPU
computations. The surface tension forces are between fluid particles and solid particles. We use the
particle type information T in the kernel to identify the particle phase in the kernel. In Equation (26),
the term n=jnj would become numerical unstable when jnj ! 0. Hence, the surface tension exists
only if jnj � l , where l � 0 is some threshold value related to the particle concentration, otherwise it
is set to be zero.

Integration and particle collision handling The time integration and particle collision handling
scheme are implemented in the same kernel. New particle velocity and position are integrated using an
explicit Leap-frog scheme [30]. Then, the kernel implements our collision handling method using the
updated velocities and positions. For each solid surface particle, which can be determined by our sur-
face tension model, the kernel calculates its distance to each neighboring fluid particle. If the distance
is smaller than the summation of their radius, the velocity and position of fluid particle are corrected.
Otherwise, the boundary force is computed and added to the total force in the next time step.

Fluid surface construction and rendering We adopt a GPU-based surface reconstruction method for
particle-based fluids using Marching Cubes, in which the distance field is only constructed in the cubes
around the free surfaces and fluid–solid interfaces. The surface reconstruction method includes four
stages:

First, detecting the fluid surface particles near the free surface and fluid–solid interfaces. We launch

a kernel for each fluid particle i , and compute di D

P
j

xijmjP
j

mj
using the information of neighboring fluid

particles. If di exceeds a certain threshold or the neighborhood is empty, pi is considered to be a fluid
surface particle. In Figure 6(a), the red colored particles are the detected fluid surface particles.

Second, finding the cubes around the fluid surfaces. For each fluid surface particle j , a kernel
is launched to determine which cube contains it. The yellow-colored cubes of Figure 6(a) are the
cubes containing fluid surface particles. We compute an axis-aligned bounding box (AABB) that spans

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



THE SOLID BOUNDARY HANDLING OF WCSPH FLUIDS 267

Figure 6. GPU-based fluid surface construction.

R D 2r distance on each axis for each yellow colored cube. The cubes that are overlapping this AABB
are colored blue in Figure 6(a). Both the yellow and blue cubes are around the free surfaces and fluid–
solid interfaces and are called as surface cubes. We obtain a binary array in which surface cubes are
marked as 1, and other cubes are marked as�1: Then, we use CUDPP library of NVIDIA to implement
parallel compression operation and obtain an index array of surface cubes.

Third, calculating the distance field in the surface cubes. We launch a kernel for each surface cube
k, and adopt the method of [5] to compute the distance values for its eight vertices

	.x/ D jx � Nx.x/j � r (34)

where Nx.x/ D

P
j

xjW.jx�xj j;R/P
j

W.jx�xj j;R/
. As shown in Figure 6(b), to identify the fluid particles contributing to

the final distance field values of cube vertices, we compute AABB that spans R distance on each axis
for each surface cube. The fluid particles inside the cubes which are overlapping this AABB are the
contributing fluid particles.

Fourth, the triangulation of surface cubes. We launch a kernel for each surface cube to obtain the
triangle meshes of the fluid surface based on the ‘marching cubes’ demo of NVIDIA.

To ensure that the fluid film consisting of one layer particles can be reconstructed, we analyze the

relationship between the particle radius r and the cube sizeL in 2D. As Figure 6(c) shows, if r <
p
2
2
L

and Nx at the center of the cube, the fluid surface cannot be reconstructed. To overcome this problem,

we set r >
p
2
2
L. In 3D, the relationship between r and L is r >

p
3
2
L.

For the fluid rendering, the particle position array is stored as a virtual buffer object, and we map
it to CUDA when performing parallel computations and to OpenGL when rendering directly from the
virtual buffer object.

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



268 X. SHAO ET AL.

Figure 7. A water stream falls onto a deformable rabbit.

Figure 8. The comparison of surface tension model. The surface tension model [23] (left), the surface tension
model [31] (middle), and our surface tension model (right).

6. RESULTS AND DISCUSSION

We have tested the proposed method with several example simulations. We implement the physical
simulation of our framework on a Microsoft Windows XP computer with dual Intel Core 2.8 GHz
CPUs, 2.0 GB RAM, and NVIDIA GeForce GTX 480 GPU with 1.5 GB VRAM. The programs were
written in C++, OpenGL and CUDA. The water rendering results are obtained by employing Pov-
Ray engine to render triangle surfaces extracted from a scalar quantity field using the Marching Cube
method of [20].

6.1. Coupling results

In Figure 7, the animation describes that a water stream falls onto an elastic rabbit whose bottom is
fixed. The rest density of the water particle is 1000 kg/m3, and the density of the rabbit particle is
40000 kg/m3. The rabbit causes splashes when it is battered by the water stream, and in the meantime,
the water also makes the rabbit deform elastically. The collision handling scheme prevents water pen-
etrating the surface of solid rabbit, and the surface tension method simulates the formation of water
droplets and the flow of water on the rabbit surface.

With our surface tension model, a variety of small-scale phenomena including the formation of water
droplets and the flow of water on solid surface can be realistically simulated. In Figure 8, we compared
our surface tension model with the methods of [23] and [31] when simulating the water dropping onto
the surface of a rigid duck. As the figure shows, the surface tension model of [23] is only appropriate
for single-phase free-surface flows, while our model can simulate water droplets flowing on the surface
of solid as the method of [31].

Figure 9 is a scenario that a fluid stream drops into a thin elastic box .�0 D 200/. Because of the
adoption of the momentum-conserving particle collision handling scheme, our method can handle the
stable coupling of SPH fluids and thin deformable structures avoiding penetration artifacts under larger
velocity differences.

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



THE SOLID BOUNDARY HANDLING OF WCSPH FLUIDS 269

Figure 9. Fluids poured into an empty elastic box avoiding the penetrations.

Figure 10. Letter-shaped objects of different densities drop into water.

Figure 10 displays the snapshots of a 3D solid-fluid coupling that three letter-shaped objects of
different densities .J W �0 D 50000 kg/m3IN W �0 D 10000 kg/m3IM W �0 D 100 kg/m3/ drop
into water, which demonstrates that our coupling method can handle fluid–solid coupling with large
density ratio up to 50.

Figure 11 shows that a water dam interacts with several rigid and deformable objects of dif-
ferent densities (Elastic ducks: �0 D 100; 10000; Elastic torus: �0 D 200; 8000; Rigid rabbits:
�0 D 200; 9000; Rigid spheres: �0 D 300; 10000), which demonstrates our uniform particle-based
framework can simulate fluid–solid interaction as well as solid-solid interaction.

6.2. Stability analysis

Figure 12 is a 2D scenario that four elastic objects of different densities drop into a pool of water
(from left to right: �0 D 5000 kg/m3; 200 kg/m3; 3000 kg/m3, and 300 kg/m3). The results show
that our solid–fluid coupling method (Figure 12(b)) makes the simulation results well agree with the
purely physical method proposed by Solenthaler et al. [5] (Figure 12(a)). However, when the velocity
difference between fluid and solid is large, Solenthaler’s method [5] produces penetration at solid–fluid
interfaces. On the basis of the proposed collision handling scheme, our method prevents the penetration
artifacts at the fluid–solid interfaces, which highly improves the stability of the fluid–solid simulation.

In Figure 13, we simulate the coupling between a water dam and a rigid empty box sampled with a
band of black colored boundary particles. The initial densities of the water and the box are 1000 kg/m3

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



270 X. SHAO ET AL.

Figure 11. A water dam interacts with different material solids.

(a)

(b)

Figure 12. The penetration prevention using the momentum-conserving particle collision handling scheme. (a)
Solenthaler’s method [5] and (b) our method.

and 5000 kg/m3, respectively. The fluid particle pressures are color-coded. Red to yellow to green to
blue colors illustrate that the pressure changes from large to small. While the coupling method [12]
leads to pressure noise and sticking artifacts at the solid–fluid interfaces (Figure 13(a)), our method
avoids these problems in the coupling (Figure 13(b)).

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



THE SOLID BOUNDARY HANDLING OF WCSPH FLUIDS 271

(a)

(b)

Figure 13. Fluid pressure distribution in the coupling. (a) The coupling method [12] and (b) our coupling method.

Table II. Executive time.

Scene #FP #RSP #ESP CPU time GPU time Speedup

Figure 7 40 k 3.2 k 913.9 msec 35.7 msec 25.6
Figure 8 20 k 3 k 546.8 msec 25.2 msec 21.7
Figure 9 35 k 5 k 758.2 msec 32.4 msec 23.4
Figure 10 62 k 7.4 k 1665.3 msec 54.6 msec 30.5
Figure 11 80 k 22 k 24 k 3852.2 msec 93.5 msec 41.2

6.3. Time performance

Compared with the coupling methods [1–3], the time performance of each time step is highly improved
by using an entire GPU implementation of our uniform particle-based formulation. Table II shows
statistics for the average time cost in milliseconds of each simulation step (each animation frame only
includes one time step), which states that the time cost increases with the increase of fluid particles
and solid particles. The number of fluid particles, rigid solid particles, and elastic solid particles for
each 3D scenario are noted as #FP; #RSP; and #ESP; respectively. As shown in Table II, our method
can achieve the realtime simulation of fluid–solid couplings. Even for up to 126 k particles, the frame
rate can be achieved 10.7 FPS . Our entire GPU implementation shows significative improvements on
performance in comparison with the CPU implementation: impressive speedups of about 41.2 times
could be achieved for 126 k particles.

7. CONCLUSION AND FUTURE WORK

With the purpose of eliminating the need to define an interface for coupling different models, we have
proposed an interactive unified particle-based method on GPUs to simulate fluid–solid interaction with
large density ratio. In the method, the solid object is treated as a special fluid constrained to solid

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



272 X. SHAO ET AL.

motions; therefore, fluid–solid interaction as well as solid–solid interaction could be computed directly
by the multiphase SPH solver. For stability and accuracy, our method handles the discontinuities at
interfaces and employ a surface tension model that can obtain a stable and accurate surface curvature to
capture small-scale details in the fluid–solid interfaces. Accelerated by GPU, the fluid–solid interaction
with the number of particles up to 126 k can be performed at interactive frame rates. Our method is
beneficial to interactive applications such as games and virtual surgery.

Our method still has several limitations. Firstly, for stability reasons the maximum time-step of our
method is limited by several time-step criteria such as the CFD condition, the viscous condition, and
the surface tension condition. Secondly, the realistic rendering of water is not included in the GPU
implementation. Thirdly, our method does not handle the generation of bubbles during fluid–solid
interaction. We believe that the bubbles can be simulated by incorporating the method of [36] into
our framework. In the future, our uniform particle method will be extended to simulate more complex
phenomena such as interaction between fluid and permeable or erodible solid.

ACKNOWLEDGEMENT

This work is supported by the National 863 Program of China (grant no. 2012AA011803) and the National Natural
Science Foundation of China (grant no. 61300066). We thank Zhaohui Wu for writing the rendering code and
helping the image production. We also thank the anonymous reviewers for their constructive comments.

REFERENCES

1. Chentanez N, Goktekin TG,
Feldman BE, O’Brien JF. Simul-
taneous coupling of fluids and
deformable bodies, Proceedings
of the 2006 ACM SIGGRAPH/
Eurographics Symposium on
Computer Animation, Vienna,
Austria, 2006; 83–89.

2. G’enevaux O, Habibi A, Dischler
JM. Simulating fluid–solid inter-
action, Proceedings of Graphics
Interface, Halifax, Nova Scotia,
Canada, 2003; 31–38.

3. Mosher AR, Shinar T, Gretarsson
J, Su J, Fedkiw R. Two-way
coupling of fluids to rigid and
deformable solids and shells, Pro-
ceedings of ACM SIGGRAPH,
New York, NY, USA, 2008.

4. Keiser R, Adams B, Gasser D,
Bazzi P, Dutre P, Gross M. A uni-
fied lagrangian approach to solid-
fluid animation, Proceedings of
the Second Eurographics / IEEE
VGTC conference on Point-Based
Graphics, Stony Brook, NY, USA,
2005.

5. Solenthaler B, Schlafli J, Pajarola
R. A unified particle model for
fluid–solid interactions. Computer
Animation and Virtual Worlds
2007; 18(1):69–82.

6. Attardo EA, Francavilla1 MA,
Vipiana F, Vecchi G. Investigation
on accelerating FFT-based meth-
ods for the EFIE on graphics
processors. Int J Numer Modell

Electron Networks Devices Fields
2013; 26:324–336.

7. Donno DD, Esposito A, Monti
G, Catarinucci L, TArricone L.
GPU-based acceleration of com-
putational electromagnetics codes.
Int J Numer Modell Electron
Networks Devices Fields 2013;
26:309–323.

8. Van de Wiele B, Vansteenkiste A,
Van Waeyenberge B, Dupré L,
De Zutter D. Implementation of
a finite-difference micromagnetic
model on GPU hardware. Int J
Numer Modell Electron Networks
Devices Fields 2013; 26:366–375.

9. Hamada S. Performance com-
parison of three types of
GPU-accelerated indirect bound-
ary element method for voxel
model analysis. Int J Numer Mod-
ell Electron Networks Devices
Fields 2013; 26:337–354.

10. Zhang F, Shen X, Long X,
Hu L, Zhao B. A particle model
for fluid simulation on the
multi-graphics processing unit.
Int J Numer Model 2013; 26:
397–414.

11. Carlson M, Mucha PJ, Turk G.
Rigid fluid: Animating the inter-
play between rigid bodies and
fluid, Proceedings of ACM SIG-
GRAPH, New York, NY, USA,
2004; 377–384.

12. Müller M, Schirm S, Teschner M,
Heidelberger B, Gross M. Inter-
action of fluids with deformable
solids. Comput Anim Virtual
Worlds 2004; 15(3-4):151–171.

13. Müller M, Keiser R, Nealen
A, Pauly M, Gross M, Alexa
M. Point based animation of
elastic, plastic and melting
objects, Proceedings of the 2004
ACM SIGGRAPH/Eurographics
symposium on Computer ani-
mation, Grenoble, France, 2004;
141–151.

14. Toon L, Philip D. Unified sph
model for fluid-shell simulations,
Proceedings of ACM SIGGRAPH,
New York, NY, USA, ACM, 2008.

15. Iwasaki K, Uchida H, Dobashi
Y, Nishita T. Fast particle-based
visual simulation of ice melting.
Computer Graphics Forum 2010;
29(7):2215–2223.

16. Müller M, Solenthaler B, Keiser
R, Gross M. Particle-based fluid-
fluid interaction, Proceedings
of the 2005 ACM SIGGRAPH/
Eurographics symposium on
Computer animation, New York,
NY, USA, 2005; 237–244.

17. Solenthaler B, Pajarola R.
Density contrast sph interfaces,
Proceedings of the 2008 ACM
SIGGRAPH/Eurographics Sym-
posium on Computer Animation,
Aire-la-Ville, Switzerland, 2008;
211–218.

18. Desbrun M, Cani MP. Smoothed
particles: A new paradigm for
animating highly deformable
bodies, Proceedings of Euro-
graphics Workshop on Computer
Animation and Simulation’96,
1996; 61–76.

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



THE SOLID BOUNDARY HANDLING OF WCSPH FLUIDS 273

19. Stora D, Agliati PO, Cani MP,
Neyret F, Gascuel JN. Animat-
ing lava flows, Proceedings of
Graphics Interface’99, Kingston,
Canada, 1999; 203–210.

20. Müller M, Charypar D, Gross M.
Particle-based fluid simulation for
interactive applications, Proceed-
ings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium
on Computer Animation, Euro-
graphics Association, San Diego,
CA, USA, 2003; 154–159.

21. Clavet S, Beaudoin P, Poulin P.
Particle-based viscoelastic fluid
simulation, Proceedings of
the 2005 ACM SIGGRAPH/
Eurographics Symposium on
Computer Animation, New York,
NY, USA, 2005; 219–228.

22. Paiva A, Petronetto F, Lewiner T,
Tavares G. Particle-based vis-
coplastic fluid/solid simulation.
Journal of Computer-Aided
Design 2009; 41(4):306–314.

23. Becker M, Teschner M, Weakly
compressible sph for free surface
flows, Proceedings of the 2007
ACM SIGGRAPH/Eurographics
Symposium on Computer Anima-
tion, San Diego, CA, USA, 2007;
209–217.

24. Sin F, Bargteil AW, Hodgins JK.
A point-based method for
animating incompressible flow,

Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Sym-
posium on Computer Animation,
New Orleans, Louisiana, USA,
2009; 209–217.

25. Solenthaler B, Pajarola R.
Predictive-corrective incompress-
ible sph. ACM Transactions
on Graphics 2009; 28(3):
251–276.

26. Adams B, Pauly M, Keiser R,
Guibas L. Adaptively sampled
particle fluids. ACM Transac-
tions on Graphics 2007; 26(3):
48–56.

27. Goswami P, Schlegel P,
Solenthaler B, Pajarola R.
Interactive sph simulation and
rendering on the gpu, Pro-
ceedings of the 2010 ACM
SIGGRAPH/Eurographics Sym-
posium on Computer Animation,
Madrid, Spain, 2010; 55–64.

28. Zhang Y, Solenthaler B,
Pajarola R. Adaptive sam-
pling and rendering of fluids
on the gpu, Proceedings
of the Fifth Eurographics/
IEEE VGTC Conference on Point-
Based Graphics, Los Angeles,
CA, USA, 2008; 137–146.

29. Becker M, Ihmsen M, Teschner
M. Corotated sph for deformable
solids, Proceedings of Euro-
graphics Workshop on Natural

Phenomena, Munich, Germany,
2009; 27–34.

30. Monaghan J. Smoothed parti-
cle hydrodynamics. Reports on
Progress in Physics 2005; 68(8):
1703–1759.

31. Wang HM, Mucha PJ, Turk G.
Water Drops on Surfaces.
ACM Transactions on Graphics
2005; 24(3):921–929.

32. Adami S, Hu XY, Adams NA.
A new surface-tension formu-
lation for multi-phase SPH
using a reproducing divergence
approximation. Journal of Com-
puter Physics 2010; 13(6):
5011–5020.

33. Morris JP, Fox PJ, Zhu Y.
Modeling low reynolds number
incompressible flows using sph.
Journal of Computer Physics
1997; 13(6):214–226.

34. Espanol P, Revenga M. Smoothed
dissipative particle dynamics.
Physical Review E 2003; 67(2):
219–231.

35. Atish N, Harris M, Garland M.
Designing Efficient Sorting
Algorithms for Manycore Gpus.
NVIDIA Corporation, 2008.

36. Cleary PW, Pyo SH, Prakash M,
Koo BK. Bubbling and frothing
liquids, Proceedings of ACM SIG-
GRAPH, New York, NY, USA,
2007; 971–976.

AUTHORS’ BIOGRAPHIES

Xuqiang Shao, born in 1982, is a PhD student of State Key Laboratory of Virtual Reality
Technology and Systems, Beihang University, China. He is a student member of China Com-
puter Federation. His main research interests include computer graphics and virtual reality.

Zhong Zhou, born in 1978, is an associate professor of State Key Laboratory of Virtual
Reality Technology and Systems, Beihang University, China. He is a senior member of China
Computer Federation. His main research interests include computer vision, distributed virtual
reality, and visualization technology.

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:



274 X. SHAO ET AL.

Jinsong Zhang, born in 1987, is a PhD student of State Key Laboratory of Virtual Reality
Technology and Systems, Beihang University, China. He is a student member of China Com-
puter Federation. His main research interests include computer graphics and virtual reality.

Wei Wu, born in 1961, is a professor of State Key Laboratory of Virtual Reality Technology
and Systems, Beihang University, China. He is a senior member of China Computer Feder-
ation. His main research interests include wireless sensor network, distributed virtual reality,
and visualization technology.

Copyright © 2014 John Wiley & Sons, Ltd
DOI: 10.1002/jnm

Int. J. Numer. Model. 2015; 28 254–274:


	Lagrangian particle-based simulation of fluid–solid coupling on graphics processing units
	Introduction
	Related work
	Particle-based framework
	SPH
	Fluid simulation
	Solid simulation

	Fluid–solid coupling simulation
	Interaction forces
	Penetration prevention
	Handling discontinuities at interfaces
	Surface tension model

	GPU implementation
	Results and discussion
	Coupling results
	Stability analysis
	Time performance

	Conclusion and future work


