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Progressive Motion Vector Clustering for Motion Estimation
and Auxiliary Tracking

KE CHEN, ZHONG ZHOU, and WEI WU, Beihang University

The motion vector similarity between neighboring blocks is widely used in motion estimation algorithms.
However, for nonneighboring blocks, they may also have similar motions due to close depths or belonging to
the same object inside the scene. Therefore, the motion vectors usually have several kinds of patterns, which
reveal a clustering structure. In this article, we propose a progressive clustering algorithm, which periodically
counts the motion vectors of the past blocks to make incremental clustering statistics. These statistics are
used as the motion vector predictors for the following blocks. It is proved to be much more efficient for one
block to find the best-matching candidate with the predictors. We also design the clustering based search
with CUDA for GPU acceleration. Another interesting application of the clustering statistics is persistent
static object tracking. Based on the statistics, several auxiliary tracking areas are created to guide the object
tracking. Even when the target object has significant changes in appearance or it disappears occasionally,
its position still can be predicted. The experiments on Xiph.org Video Test Media dataset illustrate that our
clustering based search algorithm outperforms the mainstream and some state-of-the-art motion estimation
algorithms. It is 33 times faster on average than the full search algorithm with only slightly higher mean-
square error values in the experiments. The tracking results show that the auxiliary tracking areas help to
locate the target object effectively.
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1. INTRODUCTION

In most existing international video standards, such as the ISO MPEG series and the
ITU-T H.26X series, motion estimation has been adopted to remove temporal redun-
dancy within frames and provide coding systems with high compression ratio. The
simplest and most effective method for motion estimation is the full search (FS) algo-
rithm. It compares all the candidates in the search area and finds the best-matching
block. FS is the one with the minimum error but always with the highest computation
due to the thorough candidate matching.
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In order to reduce the searched candidates, many fast motion estimation algorithms
have been proposed. These algorithms apply different search patterns, search strate-
gies and motion vector predictors. They reduce the search computation, but the search
accuracy and the speed always ask for a trade-off. The motion vector similarity between
neighboring blocks, that is, the spatial correlation of motion vectors, is widely used by
these fast algorithms. However, those blocks that are not neighbors may also have
similar motions, due to close depths or belonging to the same object inside the scene.
The motion vectors usually have several kinds of patterns, and these patterns reveal a
clustering structure.

We take two adjacent frames in video sequence Park Joy (720p) [Xiph.org 2013] as an
example to illustrate the clustering features of motion vectors. Figure 1(a) shows two
adjacent frames of the Park Joy sequence. Figure 1(b) shows the histogram of motion
vectors computed by the FS algorithm with search range (−8, 7) and block size 16×16.
Each point in plane xoy denotes a motion vector (x, y), and the block count axis shows
the number of the blocks whose motion vectors are (x, y). We can see that the motion
vectors follow a two-dimensional discrete distribution, and they have several peaks,
that is, the counts of some vectors and their neighbors are much higher than the others.

The motion vectors of the frame have a structure of clustering. To illustrate it,
we manually select 20 different motion vectors, whose counts are more than 40, as
the cluster centers. Then, the K-means [MacQueen 1967] algorithm is employed to
classify the motion vectors into 20 clusters. Figure 1(c) gives the clustering results of
K-means. We use the same color to illustrate the blocks whose motion vectors belong
to the same cluster. As shown in Figure 1(c), due to the spatial correlation of block
motion, neighboring blocks usually belong to the same cluster. More importantly, the
nonneighboring blocks might also be classified into the same cluster, because these
blocks might also have similar motions. We calculate the blocks within each cluster
and sort these clusters by the block count. Figure 1(d) shows the block counts of the top
10 clusters. We can see that the motion vectors only have several clusters with high
counts. With the help of these clusters, it is possible to only search a few candidates
to find the best-matching block. It can be inferred that the results could be better
with more accurate cluster centers instead of manual selection. Then we can draw a
conclusion that, besides the spatial correlation, it is promising to explore the clustering
statistics of motion vectors.

In this article, we propose a progressive motion vector clustering algorithm. It peri-
odically counts the motion vectors of the past blocks to make incremental clustering
statistics. To the best of our knowledge, little work has been done before on the clus-
tering statistics of motion vectors for block matching. Our clustering-based search
integrates the spatial correlation and the clustering statistics of motion vectors. It uses
the clustering information of neighboring blocks to select predictors for block match-
ing. It is usually much more possible for one block to quickly find the best-matching
candidate with the clustering based predictors.

Another interesting application of the clustering statistics is the persistent tracking
for static objects, especially for the plate-shaped objects, such as traffic signs and
advertisement billboards. These statistics are useful for estimating the position of a
static target object. When the target disappears occasionally or its appearance changes
significantly due to camera movement, the position of the target still can be estimated.
Figure 2 shows the appearance changes of a road sign in a video sequence.

We count the pixels of the road sign and calculate its average YUV values. Figure 3
shows the number of pixels of the traffic sign in each frame. The pixels decrease in
the first 50 frames, reach the minimum at the 50th frame and then increase gradually.
When the pixels are quite few, a tracker usually fails to track and loses the target. It is
also very difficult for the tracker to recover due to severe changes of the target in color
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Fig. 1. The clustering statistics of motion vectors for adjacent frames.

Fig. 2. The appearance of the road sign changes in different frames.

appearance. Figure 4 shows the average YUV values of the road sign for each frame.
The change of the color appearance is discontinuous, and the sharp breaks occur from
the 45th frame to the 55th. The disappearances and the sudden appearance changes
make difficulties in persistent object tracking.
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Fig. 3. The number of pixels of the road sign. Fig. 4. The average YUV values of the road sign.

Fig. 5. Tracking an object persistently with the auxiliary tracking areas (red: auxiliary tracking areas,
yellow: tracking results).

However, static objects at close depths usually have similar motions, and the position
of the target can be roughly estimated by the others. Inspired by this, we create several
auxiliary tracking areas from the motion vector clustering statistics. The creation
does not need 3D calculation or depth analysis. As Figure 5 shows, with the help of
the auxiliary tracking areas, the target object (road sign) could be tracked effectively
despite severe appearance changes or even occasional disappearances.

This article is an extension of our conference paper [Chen et al. 2012] which focuses on
the clustering based search for motion estimation. In this article, we give a systematic
description of motion vector clustering and propose a progressive clustering algorithm.
We also extend our clustering based search and design its GPU-based algorithm. In
our other work [Zhou et al. 2012], we use the average motion vector of the target object
to create auxiliary tracking areas. Instead of the simple average motion vector, this
article improves the auxiliary tracking area creation by the clustering statistics.

The rest of this article is organized as follows. Section 2 reviews prior work. Section 3
gives the clustering definition and the proposed motion vector clustering algorithm.
Section 4 introduces the clustering based search and its GPU-based algorithm. Sec-
tion 5 presents the creation of auxiliary tracking areas. Our experiment results are
illustrated in Section 6, and Section 7 draws a conclusion.

2. RELATED WORK

2.1. Motion Estimation

Block matching motion estimation (BMME) divides the current frame into non-
overlapping blocks of size N × N, and each block is designated to a search area in the
reference frame. Then, each block is matched with the candidate blocks in the search
area to find the best-matching candidate. The displacement of the best-matching block
is the motion vector of the current block. The most straightforward method to find

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 3, Article 33, Publication date: January 2015.



Progressive Motion Vector Clustering for Motion Estimation and Auxiliary Tracking 33:5

the best-matching block is the full search (FS) algorithm. It matches all the candidate
blocks in the search area to find the global optimal candidate.

The FS algorithm comes up with the global minimum distortion block, but its com-
putation is exhaustive due to the thorough candidate matching. To overcome the com-
putation drawback, numerous fast motion estimation algorithms have been proposed,
which try to achieve what the FS algorithm does but with less computational efforts.
They apply different search patterns and search strategies to reduce the searched
candidates, such as three-step search (TSS) [Koga et al. 1981], new three-step search
(NTSS) [Li et al. 1994], four-step search (FSS) [Po and Ma 1996], diamond search (DS)
[Zhu and Ma 2000], hexagon search (HS) [Zhu et al. 2001] and iterative random search
(IRS) [Porto et al. 2013]. However, their accuracies inevitably degrade, especially in
video shots with large motions.

Fast motion estimation algorithms also use motion vector predictors to narrow the
search range and reduce the computation. Due to the spatial correlation, the motion
vector of a block could be predicted by those of its neighbors. Based on this, some
predictive motion estimation algorithms have been put forward, such as hybrid un-
symmetrical cross multi-hexagon grid search (UMHS) [Chen et al. 2002], predictive
line search (PLS) [Huang et al. 2003], predictive intensive direction searching (PIDS)
[Shi et al. 2010], and simulated annealing adaptive search (SAAS) [Shi et al. 2011].
These predictive algorithms use the motion vectors of the spatial/temporal neighboring
blocks to build initial predictors. They could narrow the search area as well as reduce
the computation, but the search accuracy and the speed always ask for a tradeoff. In
fact, more than the spatial correlation, those nonneighboring blocks may also have
similar motions, because they may have close depths or belong to the same object.

The 2D motion analysis has already received some attention in image segmentation
[Hennebert et al. 1996; Cucchiara et al. 2003]. The region-level motion-based graph
representation of the image partition is presented by Gelgon and Bouthemy [2000].
However, the block-based motion estimation usually has the restriction of independent
block matching to keep parallel possibilities, and thus avoids global optimization. Our
method is proposed on the basis of the prevailing block matching method for the video
coding standards. In this article, we investigate the clustering statistics on the past
motion vectors to provide effective predictors for the following blocks. Its computation
is quite fast and easy to be implemented.

2.2. Object Tracking

Object tracking is defined as a problem of estimating the trajectory of an object in the
image plane [Yilmaz et al. 2006]. In other words, a tracker is to repeatedly locate the
tracked object in successive frames. There are numerous tracking approaches, such as
the mean-shift tracking [Comaniciu et al. 2000], the layering tracking [Tao et al. 2002],
the SVM tracking [Avidan 2004] and so on.

Persistent Tracking is a challenging task due to severe appearance changes or
even occasional disappearances of the target. To deal with the problem of appearance
changes, some object tracking methods have been proposed. Ross et al. [2008] present
a tracking method that incrementally learns and updates a low-dimensional subspace
representation of the target object during visual tracking. Han et al. [2007] propose
a probabilistic sensor selection method and apply a mixture of kernel-based Bayesian
filters to object tracking. Du and Piater [2008] integrate multiple cues by Linked Hid-
den Markov Models and design a Sequential Auxiliary Particle Belief Propagation
algorithm to track target objects. Kwon and Lee [2010] propose a visual tracking de-
composition scheme for multiple observation and motion models as well as trackers.
Besides the algorithms for appearance changes, there are also some other tracking
methods to solve transient disappearances and occlusions. Comaniciu and Ramesh
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[2000] use a Kalman Filter to estimate the motion parameters of a target object in
the future frames. Okuma et al. [2004] develop a boosted particle filter that combines
mixture particle filters and the Adaboost algorithm. Yin and Collins [2008] solve the
problem of object detection via Adaptive Simulated Annealing and propose a tracking
method which can recover from some inevitable tracking failures. Wu et al. [2012] pro-
pose covariance matching for partial differential equation-based (PDE-based) contour
tracking.

Although these tracking methods can deal with appearance changes and transient
occlusions, they are apt to fail for the long period of object tracking, since the target may
not only significantly change the appearance, but also be minimized or even disappear
occasionally during its display lifetime. For a long period of disappearance, the target
object would probably move in a different way that is not modeled by these tracking
methods. In view of these factors, we make the immediate application of the motion
vector clustering to tracking. It is not only relying on the color or motion features,
but also some external static image partitions. This will help in such situations as
occasional disappearances and significant appearance changes.

3. PROGRESSIVE MOTION VECTOR CLUSTERING

3.1. Definition on Reachability Based Cluster

Let D be a dataset of motion vectors, and the motion vector clustering � = {C1, C2 . . . Cn}
is a partition of D, which separates the motion vectors into multiple disjoint clusters
based on some distance metrics. We choose the Manhattan distance [Krause 1987]
as the distance metric for clustering. The Manhattan distance is defined as d(p, q) =
|xp − xq| + |yp − yq|, where x and y respectively denote the horizontal and vertical
components of a motion vector. According to the Manhattan distance, the representative
vector rCi of cluster Ci is the vector with the minimum average distance within the
cluster.

The representative vector substitutes the other vectors within the cluster as the
predictor for motion estimation. The search window predicted by the representative
vector should overlap the search windows predicted by the other vectors as much
as possible. In consideration of search window overlapping, we define the reachable
relationships between two motion vectors p and q satisfying d(p, q) ≤ 2. Based on the
reachable relationships, the motion vector clusters are defined.

Definition 3.1 (Directly Reachable). If d(p, q) = 1, q is directly reachable from p,
denoted by p→q.

Definition 3.2 (Indirectly Reachable). If d(p, q) = 2 and there exists a vector s in D
subject to p→s and s→q, that is, d(p, s) = 1 and d(s, q) = 1, q is indirectly reachable
from p, denoted by p�q.

Definition 3.3 (Cluster). A cluster Ci is a nonempty subset of D satisfying the fol-
lowing conditions:

(1) ∀q ∈ D: if q → rCi , then q ∈ Ci;
(2) ∀q ∈ D: if q � rCi (∃p ∈ Ci, q → p, p → rCi ) and q � rC j ( j �= i), then q ∈ Ci,

where rCi and rC j denote the representative vectors of cluster Ci and cluster Cj , respec-
tively.

The direct reachability, indirect reachability and clusters are illustrated in Figure 6.
The distance between p and s is 1, that is, s → p. Similarly, q → s. Because q → s and
s → p, p is indirectly reachable from q, that is, q � p. Although the distance between
u and q is 2, u is not indirectly reachable from q. Let p and u be the representative
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Fig. 6. The direct reachability, indirect reachability and clusters.

Fig. 7. The process of the progressive motion vector clustering.

vectors of clusters C1 and C2 respectively. Then, s ∈ C1 because s → p, and q ∈ C1
because q � p through s and q � u.

3.2. Our Clustering Algorithm

We divide the blocks of a frame into groups by the diagonals, and conduct motion
estimation diagonal by diagonal. As Figure 7 shows, when the blocks on one diagonal
are finished with their motion estimation, the progressive motion vector clustering is
invoked to make the next incremental clustering statistics. It assigns the motion vectors
of the blocks on the current diagonal to the existing clusters, rather than generates a
completely new clustering structure. The clustering algorithm first assigns the motion
vectors to the existing clusters, and then creates several new clusters to accommodate
the remaining unassigned vectors. After that, it reselects the representative vector
for each cluster, and then a new loop begins. The clustering algorithm reassigns the
members of those clusters whose representative vectors are modified. Some of the
members may not be reassigned to any clusters and become unassigned motion vectors.
In this way, the algorithm repeats the assigning, creating and reselecting processes
several times to get the final clustering result.

Let M = {m1, m2 . . . mw} be the set of motion vectors to be clustered, and E =
{C1, C2 . . . Cn} be the set of existing clusters. At the beginning of the first iteration,
M is initialized as the motion vector set of the blocks on the current diagonal, by
aggregating the blocks whose motion vectors are the same. Each mj in M is a unique
motion vector, and the count of mj in M (denoted by nmj ) is the number of the current
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estimated blocks whose motion vectors are mj . In the end of this iteration, some of the
representative vectors might change. Then, we set M be the set of the motion vectors
within the representative-vector-modified clusters, excluding those ones in the clusters
whose representative vectors have no change. The proposed clustering algorithm makes
clustering statistics by repeating the following processes several times.

(1) Assigning to existing clusters. The motion vectors in M are assigned to the ex-
isting clusters by the Rule of Directly Reachable Clustering and the Rule of Indirectly
Reachable Clustering as follows. Only in the first iteration, the algorithm needs to
check whether a motion vector mj in M is already a member of cluster C. If so, it re-
moves mj from M and simply increases the count of mj in C (denoted by Nmj ) by nmj ,
that is, Nmj = Nmj + nmj .

The Rule of Directly Reachable Clustering. An unassigned motion vector m is assigned
to a cluster Ci if m satisfies m → rCi .

The Rule of Indirectly Reachable Clustering. An unassigned motion vector m is as-
signed to a cluster Ci if m � rCi , ∃ q ∈ C i (m → q, q → rCi ) and for ∀rC j , m � rC j (j �= i).

The Rule of Directly Reachable Clustering is prior to the Rule of Indirectly Reachable
Clustering. If a motion vector satisfies the same clustering rule for several clusters, the
motion vector is assigned to the cluster with the largest count. The clustering algorithm
first checks the Rule of Directly Reachable Clustering for all the motion vectors in M,
and assigns the qualified vectors to the corresponding clusters. Then, it checks the
Rule of Indirectly Reachable Clustering for the remaining ones. According to these two
rules, the algorithm assigns the motion vectors in M to the clusters in E.

(2) Creating new clusters. In some cases, not all the vectors in M could be assigned.
Let U be the set of the unassigned vectors in M. The vectors in U are sorted by their
counts in descending order. The proposed algorithm selects the first element u1st of
U and create a new cluster Cnew = {u1st} with rCnew = u1st. Then, it checks the rest of
U by the Rule of Directly Reachable Clustering and the Rule of Indirectly Reachable
Clustering, and finds the vectors that could be assigned to Cnew. After that, Cnew is
added to E and the members of Cnew are removed from U. The new cluster creation is
repeated several times until all the vectors in U are assigned.

The creation of a new cluster may change the membership of some indirectly reach-
able members within the existing clusters. The membership change makes these vec-
tors become the directly reachable members of the new cluster. When a new cluster
is created, the members of the existing clusters are tested by following rule, and the
qualified vectors are assigned to the new cluster.

The Rule of Membership Change. Let m be a member of cluster Ci, and Cnew be a new
cluster. If m satisfies m � rCi and m → rCnew , m is reassigned to Cnew.

The membership change reduces the distance between a motion vector and its repre-
sentative from 2 to 1. Therefore, the search window predicted by the new representative
vector could cover more area of the window predicted by the motion vector.

(3) Reselecting representative vectors. The representative vector of a cluster is se-
lected from the ones which are directly reachable from the previous representative
vector and generate the minimum average distance within the cluster. Its selection
meets the rule as follows.

The Rule of Representative Vector Selection. Vector p is selected as the representative
vector of cluster C if p = arg mini{cost(C, i)|i ∈ {rC} ∪ {q|q ∈ C, rC → q}} in which cost(C,
i) is defined as:

cost (C, i) = 1∑
j∈C,d(i, j)≤2 Nj

·
∑

j∈C,d(i, j)≤2

Nj · d (i, j) . (1)
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Fig. 8. A specific nonconvergence case of our clustering algorithm.

In Equation (1), Nj denotes the count of vector j and d(i, j) denotes the Manhattan
distance between vector i and vector j. cost(C, i) indicates the average distance within
cluster C when i is selected as the representative vector. The selection of representative
vectors may cause some vectors to become unassigned vectors, because the distances
between these vectors and their new representatives become more than 2. In order to
limit the number of the unassigned vectors, we restrict the candidate vectors within
the ones directly reachable from the previous representative.

Our clustering algorithm reassigns the members of those clusters whose represen-
tative vectors are modified. It repeats the given processes several times to get the final
results. We summarize the clustering algorithm and its pseudocode is described as
Algorithm 1. We also give an example to illustrate the clustering procedure in the
online Appendix A.

3.3. Discussion

In most cases, our clustering algorithm converges quickly after several iterations of
assigning, creating and reselecting processes. However, in a few cases, the clustering
algorithm could not converge. The main reason is that several motion vectors affect
the balance of some clusters. They will be assigned to different clusters alternatively
in each iteration. Figure 8 is a specific case to illustrate the nonconvergence of the
clustering algorithm. Let C1 and C2 denote two motion vector clusters, and {p, q, r, s,
t, u, v} denote motion vectors. The counts of motion vectors p, q, r, s, t, u and v are 9,
8, 2, 6, 3, 3 and 2 respectively. Initially, C1 = {p, q} with rC1 = q and C2 = {r, s, t, u, v}
with rC2 = u. In the first iteration, p becomes the representative vector of C1 because
cost(C1, p) < cost(C1, q) (cost(C1, p) = 0.47 and cost(C1, q) = 0.53). Similarly, t becomes
the representative vector of C2. The other motion vectors {q, r, s, u, v} are reassigned
to C1 and C2. After the first iteration, C1 = {p, q, s, v} with rC1 = p and C2 = {r, t, u}
with rC2 = t. In the second iteration, q is selected as the representative vector of C1,
because cost(C1, q) = 0.53 is smaller than cost(C1, p) = 0.88 and cost(C1, v) = 1.24. For
the same reason, u is selected as the representative vector of C2. Then, motion vectors
{p, r, s, t, v} are reassigned to C1 and C2. After the second iteration, C1 = {p, q} with
rC1 = q and C2 = {r, s, t, u, v} with rC2 = u. Clusters C1 and C2 return to their initial
status.

To evaluate the stability of the clusters, we measure the percentage of the clus-
ters whose representative vectors are modified. In the evaluation, we use five test
video sequences (Aspen, Blue Sky, Park Joy, Ducks Take Off and In To Tree [Xiph.org
2013]), and calculate the percentage of the representative-vector-modified clusters.
Figure 9 illustrates the average percentage of the representative-vector-modified
clusters versus iteration times. With the times of iteration increasing, the percentage of
the representative-vector-modified clusters significantly decreases. When the iteration
times are more than 5, the average percentage of the representative-vector-modified
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ALGORITHM 1: Progressive Motion Vector Clustering Algorithm
Input: The motion vector set of the blocks on the current diagonal (M = {m1, m2 . . . mw}), and
the set of existing clusters (E = {C1, C2 . . . Cn}).
Output: The motion vectors in M are assigned to the clusters in E.
// Initialization
for each motion vector mj in M do

if mj∈Ck then // mj is already a member of Ck
Nmj = Nmj + nmj ;
M = M – {mj};

end
end
// Iteration
iteration times = 0;
do

// Assign to existing clusters
DirectlyReachableClustering(M, E);
IndirectlyReachableClustering(M, E);
U = the unassigned motion vectors in M;
// Create new clusters
SortbyCount(U );
while U �= ∅ do

u1st = the first element of U;
Cnew = {u1st};
U = U – {u1st};
DirectlyReachableClustering(U, Cnew);
IndirectlyReachableClustering(U, Cnew);
MembershipChange(E, Cnew);
E = E ∪ Cnew;

end
// Iteration times check
if iteration times ≥ T1 then return end; //Usually T1 = 5
// Reselect representative vectors
ReselectRepresentativeVector(E);
M = the set of the motion vectors within the representative-vector-modified clusters;
iteration times = iteration times + 1;

while M �= ∅

clusters is nearly 0.5%. We restrict the maximum iteration times of our clustering al-
gorithm within 5 (i.e., T1 = 5 in Algorithm 1). The clustering iteration will be forced to
stop with the maximum iteration times.

4. CLUSTERING BASED SEARCH AND ITS GPU-BASED ALGORITHM

4.1. Clustering Based Search Algorithm

The clustering based search algorithm periodically invokes the progressive clustering
algorithm to assign the motion vectors of past blocks to the existing clusters, and
then make incremental clustering statistics. These statistics are used as the predictors
for the next blocks. Figure 10 illustrates the process of the clustering based search
algorithm. The proposed search algorithm separates the blocks of a frame into multiple
groups by the diagonals, and makes motion estimation group by group. For a frame
consisting of W×H blocks, the blocks are separated into W+H–1 groups. As shown in
Figure 10, the blocks with the same number belong to the same group. When one group
is completed, the progressive clustering algorithm is invoked. We use the same color
to represent the blocks whose motion vectors belong to the same cluster. The bottom

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 3, Article 33, Publication date: January 2015.



Progressive Motion Vector Clustering for Motion Estimation and Auxiliary Tracking 33:11

Fig. 9. The average percentage of the representative-vector-modified clusters versus iteration times.

Fig. 10. The process of the clustering based search.

pictures in Figure 10 show the clustering statistics of 36, 66, and 96 block groups.
With the help of the clustering statistics, some effective and efficient motion vector
predictors are provided for block matching.

The block matching process integrates the spatial correlation and the clustering
statistics to select motion vector predictors. The spatial correlation indicates the motion
of a block has a big possibility to be close to that of its neighbors. We infer that the
motion vector of a block might belong to one of the clusters which hold its neighboring
blocks’ motion vectors. The representative vectors of these clusters are chosen as the
predictors. Figure 11 illustrates the predicted search areas and the entire search range
for a block.

In Figure 11, mcL and mcU are the representatives of the clusters, which hold the
left neighboring and the upper neighboring blocks’ motion vectors respectively. mcmax
is the representative of the cluster with the highest count. We use mcL, mcU and mcmax
as the predictors to narrow the search range and reduce the candidates to be tested.
Matching in the predicted search areas is probable to find the best-matching candidate,
but if it fails, matching in the entire search range is performed. The matching process
includes two phases.
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Fig. 11. The predicted search areas and the entire search range for a block.

Fig. 12. High-level block diagram of the GPU-based
algorithm.

Fig. 13. Block Groups for the GPU-based algorithm.

(1) With the clustering based predictors, only the candidates in the three size s (s � w)
areas are tested by the FS algorithm to find a local minimum block distortion
(MBD) point;

(2) If the distortion of the local MBD point is lower than a certain threshold, the dis-
placement of the local MBD point will be regarded as the motion vector; otherwise,
the candidates in the entire search range are tested by the line search algorithm
[Huang et al. 2003] to obtain the motion vector.

We choose the line search algorithm as the strategy for the entire search range be-
cause of its effectiveness. The line search algorithm starts from searching all candidates
in the three lines, and then searches additional lines in the direction of descending dis-
tortion. It stops when the MBD point is not on the boundary of searched lines.

The block matching process is applied to each block in a group. After that, the
progressive clustering algorithm assigns the motion vectors of the blocks in the group
to the existing clusters. Then, the clustering statistics provide predictors for the next
group of blocks. We summarize the clustering based search algorithm as Algorithm 2.

4.2. GPU-Based Algorithm

The clustering based search algorithm performs motion estimation group by group.
The matching process of one block is independent to those of the others in the same
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ALGORITHM 2: Clustering Based Search Algorithm
Input: The blocks (B) of a frame.
Output: The motion vector of each block.
GroupByDiagonal(B);
for each block group G do

for each block b in G do
//The block matching process for b
local MBD point = SearchWithPredictors(mcL, mcU , mcmax);
if Distortion(local MBD point) ≤ T2 then

the motion vector of b = Displacement(local MBD point);
else

the motion vector of b = LineSearch();
end

end
//Progressive motion vector clustering
M = the motion vector set {m1, m2 . . . mw} of the blocks in group G;
E = the set of existing clusters {C1, C2 . . . Cn};
ProgressiveClustering(M, E);

end

group. The blocks in a group can be processed in parallel. We implemented our search
algorithm on a Graphics Processing Unit (GPU) with Compute Unified Device Archi-
tecture (CUDA). The high-level block diagram of the GPU-based algorithm is shown
in Figure 12. The reference frame and the current frame are loaded into the global
memory of GPU at the beginning of motion estimation, while the clustering statistics
are periodically loaded as the predictors for block matching. The blocks in the same
group are estimated parallel in GPU. Then, their motion vectors are sent to CPU to
make progressive clustering statistics.

The GPU-based algorithm is hardware-dependent. In order to make better use of
GPU’s parallelism, the hardware architecture should be taken into account. Figure 13
takes G80 architecture with CUDA 1.0 as an example to illustrate the parallel pro-
cessing of blocks in a frame. Unlike the CPU-based implementation, a video frame
is divided into 16 subframes, and the blocks in each subframe are separated by the
diagonals. As shown in Figure 13, the blocks with the same number belong to the same
group. The number of subframes is related to the number of Stream Multiprocessors
(SM) in GPU. For each time, a group of blocks are launched, and their motion vectors
are estimated in parallel.

Each block is processed by a CUDA thread-block, which consists of multiple CUDA
threads. The number of thread-blocks (TBN) depends on the number of the blocks in
a group, that is, TBN = |The blocks in a group|. The number of threads (TN) in a
thread-block is defined by TN = max(3 · s2, w), where s is the size of the predicted
search areas and w is the size of the entire search range. In the three predicted search
areas, each candidate is tested by a CUDA thread to find the local MBD point. If the
local MBD point fails in distortion check, a parallel line search algorithm is performed
to find the motion vector, and the candidates in the same search line are processed by w
CUDA threads in parallel. The details of the parallel matching process for a block are
described in Algorithm 3, and its procedure is illustrated by an example in the online
Appendix B.

5. CLUSTERING BASED AUXILIARY TRACKING AREA

The clustering statistics are also useful for predicting the position of static objects.
When a target object severely changes in appearance or disappears for some time, its
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ALGORITHM 3: Parallel Matching Process for a Block
Input: A block (b) and its clustering based predictors (mcL, mcU and mcmax).
Output: The motion vector of b.
local MBD point = ParallelSearchWithPredictors(mcL, mcU , mcmax);
if Distortion(local MBD point) ≤ T2 then

the motion vector of b = Displacement(local MBD point);
else // Parallel line search for the entire search range

p = 0;
MBD point = ParallelSearch(line p–1, line p, line p+1);
if Location(MBD point) ∈ line p+1 then

do
p = p+1;
MBD point = ParallelSearch(line p+1);

while Location(MBD point) ∈ line p+1
else if Location(MBD point) ∈ line p–1 then

do
p = p–1;
MBD point = ParallelSearch(line p–1);

while Location(MBD point) ∈ line p–1
end
the motion vector of b = Displacement(MBD point);

end

position still could be roughly estimated. Based on the clustering statistics, several
auxiliary tracking areas are created to guide the object tracking.

We divide a frame into multiple blocks of the same size, and use the clustering based
search for backward motion estimation. Then, depending on the motion vectors, the
blocks are separated into multiple clusters. Each block is assigned to its motion vector’s
cluster. For each cluster, we count its member blocks that cover the target object. The
cluster with the largest count is considered as the cluster of the target. An auxiliary
tracking area is a block-based region, in which most of the blocks belong to the target’s
cluster. For simplicity, an auxiliary tracking area S is defined as a rectangle area.
Suppose that S contains n blocks and wherein m ones belong to the target’s cluster. S
should satisfy the following criteria.

Size Criterion. The number of the blocks in S is larger than a threshold n0.

Reliability Criterion. The ratio of the blocks which belong to the target’s cluster
exceeds a certain threshold p0, that is, m/n ≥ p0.

The two criteria guarantee that the size of an auxiliary tracking area is relatively
large, and most of its blocks belong to the target’s cluster. We first find the areas which
satisfy the Reliability Criterion. Then, among these areas, we choose the ones satisfying
the Size Criterion as the candidate tracking areas. Let B be the set of the blocks within
the target’s cluster and R denote the set of candidate tracking areas. The creation of R
is described as Algorithm 4.

We sort the candidate areas in R by the reliability value of m/n, and choose the first k
candidates as the auxiliary tracking areas t1, t2 . . . tk. An example of auxiliary tracking
areas selection is illustrated in Figure 14. The blocks of the original frame (Figure 14(a))
are divided into multiple clusters. The blocks in the target’s cluster are shown in
Figure 14(b). Then, several candidate tracking areas are created in Figure 14(c), and
only three of them are selected as the auxiliary tracking areas in Figure 14(d).

For each ti, we compute the average motion vector mvi of its interior blocks which
belongs to the target’s cluster. Then, we use the average value of mv1, mv2 . . . mvk to
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Fig. 14. The selection of auxiliary tracking areas (yellow: target object, green: candidate tracking areas,
red: auxiliary tracking areas).

ALGORITHM 4: Candidate Tracking Area Creation Algorithm
Input: The blocks within the target’s cluster (B = {b1, b2. . . bn}).
Output: The set of candidate tracking areas (R).
R = ∅

// Sort B by the row-major order
SortByRow(B)
// Find the areas satisfying the Reliability Criterion
for each block bi in B do

R’ = ∅ // The set of the extended candidate tracking areas
for each area rk in R do

r’k = ExtendArea(rk, bi) // Extend rk exactly enough to cover bi
m’k = the total number of blocks in r’k
n’k = the number of blocks belonging to the target’s cluster in r’k
if CheckReliability(r’k) then

R’ = R’ ∪ {r’k}
end

end
if R’ = = ∅ then

rnew = {bi} // create a new candidate area
R = R ∪ {rnew}

else
// Find the area in R’ with the largest value of m’k/n’k
r’m = FindMaxReliabilityArea(R’)
rm = r’m
InsertBlockToArea(bi, rm)

end
end
// Remove the areas which do not satisfy the Size Criterion
for each area rk in R do

if !CheckSize(rk) then
R = R – {rk}

end
end

estimate the position of the target in the next frame. The estimation result is applied
to a predictive mean shift method [Comaniciu and Ramesh 2000] for object tracking.
Because of significant appearance changes and occasional disappearances, periodic
analysis of the target object and update of the target model should be taken into
account. We introduce an adaptive Gaussian mixture model [McKenna et al. 1999] to
boot-strap the mean shift tracker for object detection and reinitialization.
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Fig. 15. The example frames of the test video sequences [Xiph.org 2013].

6. EXPERIMENT EVALUATION

6.1. Motion Estimation

To evaluate the performance of the clustering based search algorithm, we apply it
to several standard high resolution video sequences from Xiph.org Video Test Media
dataset [Xiph.org 2013], such as Aspen (1080p), Blue Sky (1080p), Park Joy (720p),
Ducks Take Off (720p), In To Tree (720p), Station 2 (1080p), Rush Hour (1080p) and
Tractor (1080p). The example frames of the test video sequences are shown in Figure 15.
In our experiments, the size of a block is fixed at 16 × 16, the search range is (−16, 15),
and the size of the small search areas is 3 × 3. As 1080 is indivisible by 16, we only take
the 1920 × 1072 pixels of the 1080p videos into account, and the rest 8 rows of pixels are
omitted. The Sum of Absolute Difference (SAD) is used as the block distortion metric.
For each video sequences, we use 50 frames within it, and conduct several experiments
on a computer of Intel Core2 CPU at 2.66 GHz and 2G RAM.

In the experiments, the block distortion threshold T2 of our search algorithm is set
as 2048 (see more details in the online Appendix C). We choose the mean-square error
(MSE) as the criterion for measuring the performance of motion estimation algorithms.
The MSE compares the motion compensated frame with the original frame. The lower
the MSE, the smaller the prediction error, and therefore the more effective the motion
estimation algorithm is. We compare our search algorithm with the mainstream search
algorithms, including FS, UMHS [Chen et al. 2002], DS [Zhu and Ma 2000] and PLS
[Huang et al. 2003], and some state-of-the-art search algorithms, such as SAAS [Shi
et al. 2011] and IRS [Porto et al. 2013]. Table I shows the MSE performance for each
algorithm on the test sequences. For the sequences which involve only small motions,
such as Aspen and Station 2, the MSE performance of the seven algorithms are very
close. On the other hand, for the sequences with large motions (such as Blue Sky, Park
Joy and Tractor), our algorithm obviously outperforms the other fast search algorithms,
only with negligibly higher MSE values than FS. This means that our clustering based
search is very robust. Even when large motions are involved in the video sequences, the
MSE performance of our algorithm stays very close to that of FS. The MSE values of
the other fast search algorithms rise significantly for the large-motion video sequences.
Especially, the MSE values of DS are nearly 2 times larger than those of ours. The
MSE performance of our search algorithm is benefited from the progressive motion
vector clustering, which makes incremental clustering statistics and provides efficient
predictors for block matching. With the help of these predictors, most of the blocks
could find their best-matching candidates.

We test the time cost per frame for each algorithm on the test sequences, and Table II
shows the results. The time cost of our clustering based search algorithm is the sum of
the block matching time and the clustering time. Compared to FS, our algorithm only
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Table I. MSE Performance Comparison

Search Algorithm
Video Sequence Ours FS UMHS DS PLS SAAS IRS

Aspen 21.1 18.24 21.18 23.15 19.15 21.7 20.81
Blue Sky 32.16 26.46 51.27 77.22 33.36 53.61 54.71
Park Joy 283.58 269.8 336.31 562.57 344.39 342.9 428.29

Ducks Take Off 102.83 102 102.31 134.33 103.56 106.7 123.05
In To Tree 35.64 31.39 32.79 84.14 32.13 35.32 45.82
Station 2 12.67 11.42 15.87 22.28 13.9 17.82 16.75

Rush Hour 32.1 31.41 35.64 51.63 33.78 38.51 43.62
Tractor 62.27 58.41 66.94 103.7 64.27 70.12 82.14
Average 72.79 68.64 82.78 132.37 80.56 85.84 101.89

Table II. Comparison of the Time Cost per Frame (ms/frame)

Search Algorithm
Video Sequence Ours FS UMHS DS PLS SAAS IRS

Aspen 77.78 3283 368.67 75.86 399.76 165.6 139.79
Blue Sky 77.87 3255 355.45 116.55 381.35 157.2 185.6
Park Joy 89.96 1460 171.67 54.12 183.34 75.4 106.3

Ducks Take Off 47.49 1440 127.78 25.86 139.39 57.5 48.61
In To Tree 29.89 1445 145.65 28.39 152.86 64.8 53.13
Station 2 74.93 3236 439.83 98.38 364.52 152.6 133.42

Rush Hour 104.36 3245 434.91 85.25 432.41 172.45 170.21
Tractor 121.03 3238 390.36 129.81 403.46 191.68 208.05
Average 77.91 2575.3 304.29 76.77 307.14 129.65 130.63

takes 3% of its time cost to obtain approximate MSE values. On average, the speedup
ratio of our algorithm is nearly 33 times. Our algorithm also shows a faster speed than
UMHS, PLS, SAAS and IRS. Specifically, it performs 4 times faster than the UMHS
and PLS algorithms, and 1.6 times faster than SAAS and IRS. The DS algorithm makes
a tradeoff between the speed and the MSE performance. Although DS is a little faster
than our algorithm on average, the MSE values of DS are much higher, especially for
the large-motion video sequences.

For further complexity evaluation, we calculate the searched candidates per block for
the test video sequences. Table III shows the comparison results between our search
algorithm and the other algorithms. The average number of the searched candidates
by our algorithm is 28.7. Compared with the FS algorithm, which searches the 1024
candidates in the search range, our algorithm saves 97.2% search overhead but achieves
very close MSE performance. On average, the candidates searched by our algorithm
are much fewer than those by UMHS (107.5), PLS (116.3), SAAS (47.1) and IRS (47.7).
Only the DS algorithm searches slightly fewer candidates (28.6) than ours, but it
causes a serious MSE rise. UMHS, PLS and SAAS straightforwardly apply the motion
vectors of neighboring blocks as the predictors. Compared with them, the effectiveness
of applying clustering statistics could be clearly seen. The candidates searched by our
algorithm are significantly reduced by the clustering based predictors. For most of the
blocks, our algorithm only needs to test the candidates in the three predicted search
areas to find their motion vectors.

From these experiment results, it is clear that, our search algorithm has the capabil-
ity to significantly reduce the searched candidates, only with a negligible increase in
MSE. The performance of our search algorithm is attributed to the predictors provided
by the clustering statistics (see more comparison results with K-means [MacQueen
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Table III. Comparison of the Searched Candidates per Block

Search Algorithm
Video Sequence Ours FS UMHS DS PLS SAAS IRS

Aspen 21.1 1024 107.5 21 123.2 48.3 38.7
Blue Sky 21.3 1024 103.8 35 117.4 45.9 54.1
Park Joy 59.6 1024 116.5 40.7 126.1 51.2 73.4

Ducks Take Off 31.2 1024 85.6 24.3 96 38.5 31.2
In To Tree 18.7 1024 94 20 104.6 41.8 33.6
Station 2 18.2 1024 122.1 27.6 110.3 45.2 38.3

Rush Hour 27.1 1024 122.5 23.8 131.1 50.3 50.2
Tractor 32.4 1024 108.1 36.5 121.3 56.2 62.1
Average 28.7 1024 107.5 28.6 116.3 47.1 47.7

Table IV. Time Cost of Clustering per Frame versus Time Cost of Total Motion
Estimation (ms/frame)

Time Cost
Video Sequence Total motion estimation Clustering Percentage

Aspen 77.78 5.4 6.94%
Blue Sky 77.87 4.9 6.29%
Park Joy 89.96 2.1 2.33%

Ducks Take Off 47.49 0.9 1.90%
In To Tree 29.89 1.4 4.68%
Station 2 74.93 3.7 4.94%

Rush Hour 104.36 4.8 4.60%
Tractor 121.03 6.5 5.37%
Average 77.91 3.71 4.70%

1967] and DBSCAN [Ester et al. 1996] in the online Appendix C). In order to measure
the overhead of our progressive clustering, we test the time cost of clustering per frame.
Table IV shows the time cost of clustering and the time cost of total motion estimation.
The time cost of clustering only measures the clustering time per frame, and the time
cost of total motion estimation is the sum of the block matching time and the cluster-
ing time. As shown in Table IV, the time cost of clustering only occupies 4.7% of total
motion estimation on average. The overhead of clustering is very low, but the motion
estimation performance is significantly improved by the clustering statistics.

We also calculate the blocks which are only searched with the clustering based
predictors, and the other blocks which are searched by the line search. As Table V
shows, for the majority of the test video sequences, more than 90% of the blocks benefit
from the clustering statistics, and they are only searched in the three predicted search
areas to obtain the motion vectors. Especially for Aspen, Blue Sky, In To Tree and
Station 2, only less than 3% of the blocks use the line search. However, the percentage
of the blocks searched by the line search obviously rises for Ducks Take Off (13.1%) and
Park Joy (28.3%). The main reason is that Ducks Take Off involves severe deformations
and Park Joy involves heavy occlusions. For some blocks, severe deformations and heavy
occlusions may affect the displacements of their best-matching candidates, and their
motion vectors may not reflect the actual movement of the scene. In such cases, the
clustering information of these blocks could not provide appropriate predictors for their
neighbors, and the percentage of the blocks searched by the line search is increased.
Although, the usage of the line search rises for Ducks Take Off and Park Joy, our search
algorithm still shows superior performance to the other algorithms in terms of MSE
and search speed.
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Table V. Blocks Only Searched with the Clustering-Based Predictors versus Blocks Searched
by the Line Search

Blocks only searched with the Blocks searched by the line
Total blocks clustering based predictors search

Video Sequence per frame Count Percentage Count Percentage
Aspen 8040 7894 98.1% 146 1.9%

Blue Sky 8040 7867 97.8% 173 2.2%
Park Joy 3600 2583 71.7% 1017 28.3%

Ducks Take Off 3600 3130 86.9% 470 13.1%
In To Tree 3600 3566 99.0% 34 1.0%
Station 2 8040 8004 99.5% 36 0.5%

Rush Hour 8040 7772 96.6% 268 3.4%
Tractor 8040 7325 91.1% 715 8.9%
Average 6375 6018 94.4% 357 5.6%

Table VI. Comparison of the Performance between CPU and GPU

CPU GPU
Video Sequence MSEa TCb MSEa TCb Speedup

Aspen 21.1 77.78 20.5 20.1 3.9
Blue Sky 32.16 77.87 32.64 18.9 4.1
Park Joy 283.58 89.96 285.42 29.2 3.1

Ducks Take Off 102.83 47.49 102.57 11.3 4.2
In To Tree 35.64 29.89 33.96 7.6 3.9
Station 2 12.67 74.93 13.2 19.1 3.9

Rush Hour 32.1 104.36 31.76 25.4 4.1
Tractor 62.27 121.03 60.83 31.8 3.8
Average 72.79 77.91 72.61 20.4 3.8

aMean-Square Error. bTime Cost per frame (ms/frame).

Furthermore, we implement our search algorithm on a NVIDIA 8800GTX graphics
card with CUDA. CPU makes progressive clustering statistics, while GPU executes
parallel block motion estimation. As shown in Table VI, the experiment results in the
GPU implementation get around 4 times faster. Table VI also shows a slight difference
between the MSE performance of the CPU and GPU implementations. The main reason
is that some of the blocks use different predictors. We use different ways to group the
blocks in the CPU and GPU implementations. As a result, the clustering statistics in
the two implementations are different.

6.2. Persistent Static Object Tracking

In order to evaluate the effectiveness of auxiliary tracking areas, we capture several
videos by a vehicle-mounted camera on the roads in our campus, and choose the road
signs in the videos as the target objects. The resolution of each video is 640 × 480.
The video frames are divided into size 16 × 16 blocks for motion estimation, and the
parameters for the auxiliary tracking areas are set as follows: n0 = 8, p0 = 0.8 and
k = ∼3. The tracking experiments are performed on a computer of Intel Core2 CPU at
2.66 GHz and 2G RAM.

Figure 16 shows our tracking results and the auxiliary tracking areas created by the
clustering statistics. The target object is a road sign with different appearances on the
two sides. As the camera moves, the target object almost disappears in some frames.
Our method uses the auxiliary tracking areas to estimate the position of the road sign.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 11, No. 3, Article 33, Publication date: January 2015.



33:20 K. Chen et al.

Fig. 16. Our tracking results for Road Sign #1 (red: auxiliary tracking areas, yellow: tracking results).

Even when the appearance of the road sign changes severely or it almost disappears,
the road sign still could be tracked.

We compare our tracking method with other on-line tracking methods, such as the
original mean-shift tracking [Comaniciu et al. 2000], the adaptive color-based particle
filter [Nummiaro et al. 2003], the on-line boosting tracking [Grabner and Bischof 2006]
and our previous work [Zhou et al. 2012]. We test these tracking methods on three road
sign video sequences. Figure 17 shows the tracking results of the different methods
(see more results in the online Appendix D).

As Figure 17 shows, the original mean-shift tracking, the adaptive color-based par-
ticle filter and the on-line boosting tracking fail to track and lose the target road
sign. Due to camera movement, the appearance of the road sign changes significantly.
The color histograms and the color features on the two sides of the road signs are
quite different. Moreover, the road sign almost disappears in some frames. The pixels
of the road sign are insufficient to provide valid color histograms and features. It is
very difficult for them to track the road sign persistently. Compared with our previ-
ous work, the tracking results with the clustering based auxiliary tracking areas are
shown to be more accurate in terms of target position. This is because the clustering
based auxiliary tracking areas could provide a more precise estimation of the road sign
position.

For further comparison with our previous work, we test the time cost of tracking
for different auxiliary tracking area creation approaches. As shown in Table VII, the
time cost of the auxiliary tracking area creation has a minor increase, when the clus-
tering statistics are used. On average, the creation time rises by 4.76 ms/frame. The
clustering based auxiliary tracking areas estimate the target position more accurately,
and the time cost of the mean-shift tracking is reduced. In general, the clustering
statistics improve the target position estimation only with a negligible tracking time
increase.

7. CONCLUSION

Besides the spatial correlation of motion vectors, those nonneighboring blocks may
also have similar motions due to close depths or belonging to the same object inside the
scene. Therefore, the motion vectors usually have several patterns, and these patterns
indicate that the motion vectors have a clustering structure. This article gives a sys-
tematic description of motion vector clustering and proposes a progressive clustering
algorithm. The clustering algorithm periodically counts the motion vectors of the past
blocks to make incremental clustering statistics.

The clustering statistics are used as the motion vector predictors. It is proved to
be much more efficient for one block to find the best-matching candidate with these
predictors. From the experiment results, we can see that the MSE performance of our
clustering based search algorithm is very close to that of the FS algorithm while the
speed of our algorithm is 33 times faster on average. It is also shown that our algorithm
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Fig. 17. The tracking results of Road Sign #1 with different tracking methods. The first, second, and third
columns show frame #2, frame #51, and frame #85, respectively.

outperforms the UMHS, DS, PLS, SAAS and IRS algorithms, especially for the video
sequences with large motions. We design the GPU-based algorithm for our clustering
based search which achieves nearly 4 times speedup.

The clustering statistics are also applied in persistent static object tracking. Based
on them, several auxiliary tracking areas are created to guide the object tracking.
Even when the target object has significant changes in appearance or occasionally
disappears, its position still can be estimated by the auxiliary tracking areas. The
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Table VII. Time Cost of Tracking for Different Auxiliary Tracking Area
Creation Approaches (ms/frame)

The average motion vector approach
Auxiliary tracking Mean-shift

Video Sequence areas creation tracking Total
Road Sign #1 23.2 12.9 36.1
Road Sign #2 29.8 13.5 43.3
Road Sign #3 28.5 12.7 41.2

Average 27.17 13.03 40.2
The clustering statistics approach

Auxiliary tracking Mean-shift
Video Sequence areas creation tracking Total
Road Sign #1 27.8 9.4 37.2
Road Sign #2 35.1 10.3 45.4
Road Sign #3 32.9 9.8 42.7

Average 31.93 9.83 41.77

tracking experiments demonstrate that the auxiliary tracking areas help to locate the
target object effectively.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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