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Abstract—Non-rigid structure-from-motion (NRSfM) is the
process of recovering time-varying 3D structures and poses
of a deformable object from an uncalibrated monocular
video sequence. Currently, most NRSfM algorithms utilize a
non-degenerate assumption for non-rigid object deformations
whereby the 3D structures of a non-rigid object can be as-
sumed to be a linear combination of basis shapes with full rank
three. Unfortunately, this assumption will produce extra de-
grees-of-freedom when the non-rigid object has some degenerate
deformations with shape bases of rank less than three. These extra
degrees-of-freedom will yield spurious shape deformations due
to non-negligible noise in real applications, which will cause sub-
stantial reconstruction errors. To solve this problem, we propose
a low-rank shape deformation model to represent 3D structures
of degenerate deformations. When modeling degenerate defor-
mations, the proposed model exploits the rank-deficient nature
of degenerate deformations in addition to the low-rank property
of non-rigid objects’ trajectories, thus providing a more accurate
and compact representation compared with existing models.
Based on this model, we formulate the NRSfM problem as two
coherent optimization problems. These problems are solved with
iterative non-linear optimization algorithms. Experiments on syn-
thetic and motion capture data are conducted. The results exhibit
the significant advantages of our approach over state-of-the-art
NRSfM algorithms for the 3D recovery of non-rigid objects with
degenerate deformations.

Index Terms—Degenerate deformations, low-rank shape defor-
mationmodel, non-rigid structure frommotion, 3D reconstruction.

I. INTRODUCTION

T HE RAPID development of portable video recording
devices has led to the mass production of video resources,

which users find increasingly convenient to access through the
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Internet. Against this background, a large number of algorithms
and systems have been proposed for video content analysis and
retrieval [28], [29]. Among these, recovering 3D structures of
objects in videos is an active research area, and the recovered
depth information is potentially useful in various applications,
such as human-computer interaction, object/action recognition,
3D facial reconstruction and augmented reality [25]–[27], [34].
This paper focuses on the non-rigid structure-from-motion
(NRSfM) problem that recovers time-varying 3D structures and
poses of a deformable object from an uncalibrated monocular
video sequence using feature tracking points. Compared with
3D reconstruction algorithms for non-rigid objects that require
input videos frommultiple and/or calibrated cameras (e.g., [30],
[31]), NRSfM enables 3D reconstruction using single-camera
videos; thus, it has broader applicability.
An underlying assumption of NRSfM is that the movement

of points on the surface of a deforming object is not random or
unpredictable; instead, the movement has inherent spatio-tem-
poral correlations. In the seminal work on NRSfM [2], Bre-
gler et al. exploited this spatio-temporal correlation to propose
a low-rank shape model that represents 3D structures of a de-
formable object as a linear combination of a small number
of 3D basis shapes (see Fig. 1 for an illustration). This low-rank
shape model [2] proved to be effective, and it was followed by
many researchers [3], [4], [6], [8]–[11]. However, all of these
algorithms are based on a non-degenerate assumption, where
the non-rigid object is deformed with non-degenerate shape
bases of full rank 3. Therefore, these NRSfM algorithms are
mainly suitable for the 3D recovery of non-rigid objects with
non-degenerate deformations. Unfortunately, many objects in
the real world have non-rigid deformations along 1 or 2 dimen-
sions, which can only be compactly represented by degenerate
shape bases of rank less than 3. Such non-rigid objects are re-
ferred to as degenerate deformations [17]. For example, if a
scene contains pedestrians walking independently along straight
lines, the shape bases referring to those 1D translations are de-
generate and may have a rank merely equal to 1. In facial ex-
pression analysis, the deformations of a face are dominant in
the horizontal and vertical directions and are relatively subtle in
the depth direction, which will also cause degeneracy problems
in facial recovery. Under degenerate deformations, the non-de-
generate assumption in traditional NRSfM algorithms will in-
troduce extra degrees-of-freedom (DoFs) that are usually not
constrained by input data and that will end up as fitting noise.
In real cases, because of various video limitations, such as low
resolution, motion blur, jerky camera motion and non-uniform
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Fig. 1. Illustration of the proposed low-rank shape deformation model and the low-rank shape model [2]. The “Shark” sequence of [9] is taken as an example.
In these two models, the red and green points correspond to the 3-D structures in frames 1 and 60, respectively, while the blue points refer to the 3-D structures
in other frames. Note that the low-rank shape model uses three 3-D basis shapes to linearly represent non-rigid 3-D structures. Our model describes a deforming
object as the mean shape plus the associated deformations, and represents the deformation component as a linear combination of two 1-D basis deformation modes.

illumination, 2D feature points tracked from a video usually in-
clude non-negligible noise, which may produce spurious shape
deformations and cause significant reconstruction errors when
traditional NRSfM algorithms are applied.
For the problem of the non-degenerate assumption, a

low-rank shape deformation model is proposed to represent 3D
structures of degenerate deformations. We first use the inherent
low-rank property of trajectories to express 3D structures of a
deforming object as a linear combination of non-degenerate
basis shapes. Then, the ambiguity between shape bases and
coefficients is eliminated with Discrete Cosine Transform
(DCT) vectors. The shape bases are decomposed into a mean
shape component and a deformation component. Finally, the
rank-deficient nature of degenerate deformations is exploited
to further decompose the deformation component into a linear
combination of a small number of 1D basis deformation modes
(see Fig. 1 for an illustration).
As shown in Fig. 1, the main difference between our model

and the low-rank shape model is that our model uses a set of 1D
basis deformation modes, whereas the low-rank shape model
uses 3D basis shapes to linearly represent non-rigid 3D struc-
tures. This results in the flexibility of our model whereby the x,
y and z components of non-rigid 3D structures can be described.
More importantly, in our model, shape bases of any rank can be
compactly represented using a combination of 1D basis defor-
mation modes, whereas in the low-rank shape model, a shape
basis always has to be of rank 3. Therefore, the proposed model
has the ability to compactly represent 3D structures of degen-
erate deformations, and it can be applied when modeling spe-
cial non-degenerate deformations. Subsequently, based on our
proposed low-rank shape deformation model, we formulate the
NRSfM problem as two coherent optimization problems: one
problem is to recover the 3D structures of a deformable object,
and the other problem is to estimate the object’s rotations rela-
tive to the camera. Iterative non-linear optimization algorithms

are then designed to solve the problems. In the experiments, we
compare our method against a set of state-of-the-art NRSfM al-
gorithms on both synthetic and motion capture data. The experi-
mental results demonstrate that our method significantly outper-
forms other methods in terms of both accuracy and robustness
when recovering 3D structures and poses of non-rigid objects
with degenerate deformations.
The paper is organized as follows. Section II reviews related

work. The background of NRSfM research and the motivation
of our work are introduced in Section III. In Section IV, we pro-
pose a new low-rank shape deformation model to represent the
3D structures of degenerate deformations. Section V describes
our new NRSfM algorithm based on the proposed low-rank
shape deformation model and Section VI discusses the exper-
imental results of using our algorithm with synthetic, motion
capture and real sequences.

II. RELATED WORK

Over the last two decades, a considerable number of al-
gorithms have been proposed to recover time-varying 3D
structures and poses of non-rigid objects from monocular
videos. In this section, we first review shape-based and tra-
jectory-based NRSfM algorithms. We then review existing
NRSfM algorithms applied to degenerate deformations and
introduce the difference between these algorithms and our
algorithm.

A. Shape-Based NRSfM Algorithms

Most NRSfM algorithms are based on a low-rank shape
model that represents 3D structures of a deformable object as a
linear combination of a small number of 3D basis shapes. The
low-rank shape model was first proposed by Bregler et al. [2].
Based on this model, Bregler et al. employed an SVD-based
approach to factorize a 2D tracking matrix and then exploited
the orthonormality of camera rotation matrices to recover 3D
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structures and poses of non-rigid objects. Subsequently, Xiao
and Kanade [3] proved that enforcing the orthonormality con-
straint only is ambiguous and demonstrated that it can lead to
incorrect solutions; in response, they introduced a uniqueness
constraint on the shape bases and proved that imposing both
the shape basis and the orthonormality constraints results in a
closed-form solution. Brand [4] argued that this closed-form
solution to NRSfM in [3] is sensitive to noise and to the se-
lection of shape bases and proposed an optimization method
for the NRSfM problem that can tolerate noisy input to some
extent. Contrary to the conclusion in [3], Brand’s method
only uses the orthonormality constraint but can yield exact
3D reconstruction results with noiseless input. Akhter et al.
[5] provided theoretical support for Brand’s method [4] by
proving that the orthonormality constraint alone is sufficient
for the correct recovery of non-rigid structures. Akhter et al.
[5] further indicated that solving the NRSfM problem based
on orthonormality constraint alone will lead to a complicated
non-linear optimization problem, which is difficult to solve
reliably. To avoid this type of problem, other approaches
introduced additional constraints to the NRSfM problem. For
example, Torresani et al. [6] imposed a Gaussian prior on shape
coefficients based on an assumption that the reconstructed 3D
shapes at each frame are similar to each other. The authors also
added a linear transition constraint on the shape coefficients
to model the temporal dynamics in shapes. Olsen et al. [7]
designed a temporal regularizer to constrain camera trajectories
and shape coefficients to behave smoothly. They also designed
a spatial regularizer to constrain neighboring image point tracks
to have similar 3D spatial structures. Dai et al. [10] proposed
exploiting inherent rank constraints on the low-rank shape
model in [2] to facilitate 3D structure recovery. In [32], Del
Bue introduced a known 3D shape as a priori information for
the rigid component of a non-rigid 3D object. Tao et al. [33]
integrated the diffusion map method to determine and apply
the a priori shape that constrains reconstructed shapes. Agudo
et al. [35] proposed using a modal analysis approach based on
continuum mechanics to constrain the shape bases as a set of
physically meaningful deformation modes.

B. Trajectory-Based NRSfM Algorithms

In contrast to the above shape-based NRSfM algorithms,
Akhter et al. [12], [13] proposed a low-rank trajectory model
that represents trajectories of a deformable object as a linear
combination of several basis trajectories. Akhter et al. [13]
proved that the low-rank trajectory model is equivalent to the
low-rank shape model in [2] in terms of their representative-
ness. Furthermore, Akhter et al. [12], [13] proposed exploiting
the inherent temporal smoothness of shape deformations to
predefine the trajectory bases as DCT bases. This results in
a considerable simplification of the underlying optimization
process of NRSfM. In this way, the trajectory approach ex-
hibits a much greater numerical stability and allows one to
reconstruct more complicated non-rigid deformations with less
error. Subsequently, Gotardo et al. [14] indicated that Akhter’s
low-rank trajectory model cannot describe the high-frequency
components of shape deformations and that the results are
often over-smoothed. To solve this problem, Gotardo et al.

[14] proposed the 3D shape trajectory model that subsumes the
low-rank shape and trajectory models by constraining shape
coefficients with DCT bases. Later, Gotardo et al. [15] pro-
posed the Kernel Shape Trajectory Approach (KSTA), which
uses a kernel trick to capture non-linear relations between the
3D structures of a non-rigid object and its shape coefficients
in the 3D shape trajectory model. As a result, KSTA is able
to describe 3D structures of non-linear deformations more
compactly than the 3D shape trajectory model. Based on the
repetition of 3D structures of non-rigid objects, Khan [16]
imposed a uniqueness constraint on shape coefficients of the
3D shape trajectory model. Consequently, the number of basis
shapes required to represent the non-rigid shape is significantly
reduced, making the NRSfM problem easier to solve. In addi-
tion, for solving the NRSfM problem with missing data input,
the researchers in [14] and [20] proposed utilizing DCT bases
to estimate missing entries in 2D input data.

C. NRSfM Algorithms Applied to Degenerate Deformations

A common attribute of the above shape- and trajectory-based
NRSfM algorithms is that they all assume that shape defor-
mations are non-degenerate. However, degenerate deformations
often occur in the real world. Under degenerate deformations,
Xiao and Kanade [17] proved that the ill-posed nature of the
NRSfM problem is more serious; therefore, they introduced a
positive semi-definite constraint to achieve the desired results.
To solve the problem of sequential NRSfM in amore convenient
manner, Paladini et al. [18] proposed the 3D implicit low-rank
shape model that represents the 3D structures of degenerate de-
formations using a linear combination of PCA basis vectors.
In [10], Dai et al. proposed the block matrix method, where a
stronger but more meaningful low-rank constraint is imposed on
the 3D structures of non-rigid objects. In this way, the non-de-
generate assumption on shape deformations can be relaxed to
some extent. Although failing to provide a solution, Angst et al.
[19] demonstrated that recovering 3D structures of degenerate
deformations is a non-trivial problem in NRSfM.
A new NRSfM algorithm that aims to recover 3D structures

and poses of non-rigid objects with degenerate deformations is
presented in this study. In our approach, we seek to address
the fundamental problem of degenerate deformation recovery.
Therefore, rather than introducing additional constraints simi-
larly to [10] and [17], we propose a novel low-rank model to
represent 3D structures of non-rigid objects with degenerate
deformations. The main advantage of our model over the 3D
implicit low-rank shape model [18] is that our model exploits
the inherent low-rank property of trajectories of non-rigid ob-
jects when modeling degenerate deformations and thus provides
a more compact representation. Then, based on the proposed
model, we employ the factorization technique to recover 3D
structures and poses of non-rigid objects. The factorization tech-
nique is the most common framework used in NRSfM [2]–[4],
[8]–[10], [12], [14], [15], [17], and it originated from the fac-
torization method proposed by Tomasi and Kanade for recov-
ering rigid 3D structures [1]. Because of its more accurate and
compact representation, our NRSfM algorithm achieves a much
better performance when applied to degenerate deformations
compared with existing NRSfM algorithms.
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Fig. 2. Illustration of the NRSfM problem under the orthographic camera
model. The “Shark” sequence of [9] is taken as an example.

III. BACKGROUND AND MOTIVATION

A. Notation

We use uppercase letters (e.g., ) to denote matrices; the ex-
ceptions are (the number of video frames), (the number
of feature points), and (the number of shape bases or tra-
jectories bases). Bold lowercase letters (e.g., ) and the usual
lowercase letters (e.g., ) denote vectors and scalars, respec-
tively. and denote the matrix Frobenius norm and
the vector norm, respectively. and represent the compo-
nent-wise product and Kronecker product of matrices, respec-
tively. denotes an identity matrix of order . denotes
the column-wise matrix vectorization operator. in-
dicates that is a matrix with rows and columns.

B. Problem Statement

We assume that a deformable object consists of
time-varying 3D points , where is the
index over the points and is the index over the image frames.
These time-varying 3D structures represent object deformation
in a local coordinate system. Assuming that at each instant ,
these points undergo a rigid motion and orthographic projection
to 2D

(1)

where is the 2D projection of the point at time ,
is the first two rows of the orthographic projection

matrix at time , and is a displacement vector from
the origin of the local coordinate system to the origin of the
camera coordinate system at time .
Given 2D feature points of the non-rigid object tracked

from an uncalibrated monocular video with frames,
. Our goal is to

recover the object’s 3D structures,
, and its rotations relative to the

camera, (see Fig. 2 for an illustration).
In the remainder of this paper, the relative rotations between
non-rigid objects and the camera is called “camera rotation”
for brevity. We assume that the camera rotation is sufficient for
the successful recovery of a non-rigid object’s 3D structures.

C. Background of Non-Rigid Factorization

Clearly, without any a priori information and constraints, the
above problem would be under-constrained and could not be
solved. In the low-rank shape model proposed by Bregler et al.
[2], the 3D structures of non-rigid objects are assumed to be
represented as a linear combination of a small number of 3D
basis shapes (see Fig. 1 for an illustration),

(2)

where is the 3D structure of a
non-rigid object at frame , is the th shape basis,
and is the th shape coefficient of .
Instead of using the shape basis representation, Akhter et al.

[13] proposed the use of a set of basis trajectories to linearly
express trajectories of a non-rigid object. Specifically, they de-
fined the x, y and z trajectories of the th point of a non-rigid
object as , and

. Then, a shape matrix of
the non-rigid object can be formed by stacking all trajectories
vertically

...
. . .

...
...

. . .
...

...
. . .

...

(3)
From (2), the 3D structures of non-rigid objects are con-

strained to lie within a linear space spanned by shape bases.
It follows that the shape matrix should have rank . Thus,
one can obtain

(4)

where is the th trajectory basis, and ,
and are the th trajectory coefficients of , and

, respectively.
Akhter et al. [13] proved that (2) and (4) are dual to each

other, i.e., the bases in one are equivalent to the coefficients in
the other and vice versa. Therefore, the representations of these
two models for a given non-rigid object are equal. Additionally,
by exploiting the inherent temporal smoothness in trajectories
of most naturally deforming objects, the trajectory bases in (4)
can be predefined as DCT bases. In the remainder of this paper,
we set in (4) as the th DCT basis, and its th component is
denoted by as follows:

(5)

where and for .
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Fig. 3. First row: the shape bases of the “Shark” sequence of [9]. The shape bases are computed by PCA. Second row: mean shape and basis deformation modes
of our model for the “Shark” sequence.

D. Motivation

In the low-rank shape model in (2), the deformation of a
non-rigid object is assumed to be non-degenerate, i.e., all of its
shape bases are assumed to be of full rank 3. However, in prac-
tice, the degenerate deformations are deformed not only with
non-degenerate shape bases of full rank 3 but also with degen-
erate shape bases of rank less than 3. The degenerate shape bases
usually correspond to 1D or 2D deformations of the non-rigid
object. The first row in Fig. 3 illustrates the shape bases of the
“Shark” sequence of [9]. In this sequence, the shark’s deforma-
tion occurs only in a 2D plane and is thus degenerate. As is vis-
ible, the “Shark” sequence has 3 shape bases. The first basis, ,
is a non-degenerate shape basis of full rank 3. The second and
third bases, and , both correspond to 2D deformations of
the shark and are thus degenerate shape bases.
Under degenerate deformations, because of the non-degen-

erate assumption, the low-rank shape model in (2) actually
uses the non-degenerate shape basis to approximate degen-
erate shape bases and introduces extra DoFs. In addition, the
low-rank trajectory model in (4) also lacks the ability to com-
pactly represent degenerate deformations because it is dual to
the low-rank shape model in (2). During reconstruction, these
extra DoFs are usually not constrained by input data and will
end up fitting the non-negligible noise in real applications. As a
result, the results of NRSfM algorithms based on (2) or (4) will
usually contain spurious shape deformations and substantial
reconstruction errors. Furthermore, when modeling non-rigid
objects with higher degrees of degeneracy, (2) and (4) will be
more unreliable; thus, the NRSfM algorithms based on these
two models are prone to greater errors.
The main objective of this paper is to solve the degenerate

deformation problem in two steps. First, we propose a new low-
rank shape deformation model that has the ability to compactly
represent 3D structures of degenerate deformations. An illus-
tration of our model is shown in Fig. 1. Second, based on the

Fig. 4. Flowchart of our NRSfM algorithm.

proposed model, we propose a new NRSfM algorithm to re-
cover camera rotations and 3D structures of non-rigid objects.
Fig. 4 shows the flowchart of our NRSfM algorithm.

IV. NEW LOW-RANK SHAPE DEFORMATION MODEL

In this section, we propose a novel low-rank shape defor-
mation model to compactly represent the 3D structures of a
non-rigid object with degenerate deformations. A matrix is first
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formed by horizontally stacking the 3D structure of this non-
rigid object at each frame

...
. . .

... (6)

For simplicity and without confusion, we also name
in (6) the shape matrix of the non-rigid object. Then,

by utilizing the trajectory model in (4), can be factorized as
follows:

...
. . .

... (7)

By partitioning the matrix in (7) into sub-matrices,
, (7) can be rewritten as

follows:

...
. . .

...
... (8)

Subsequently, from (8), the 3D structure of the non-rigid ob-
ject at each frame can be represented as follows:

(9)

According to the duality between (2) and (4), it can be con-
cluded that the role of in (9) is identical to that of in (2). It
follows that is the th shape basis of the non-rigid object, and
the components of the vectors are the corresponding shape
coefficients. Under degenerate deformations, suppose that of
shape bases bases are of rank 1, are of rank 2, and are
of rank 3. Then, the matrix is of rank .
From (7), we can see that the rank of should also be .
Next, from (8), we can obtain

...
...

. . .
...

... (10)

Then, noting that from (5), is

(11)

where is the mean shape of the
non-rigid object over frames. Subsequently, by combining (7)
and (11), we can obtain

...
... (12)

From (11) and (12), we observe that the first shape basis
and the other shape bases have different mean-
ings in terms of modeling the non-rigid object. Specifically,

represents the mean shape of the non-rigid object, while
can be interpreted as the deformation com-

ponents of . Generally, the mean shape of a deforming ob-
ject over a certain time period is approximately the same as its
shape at rest. Thus, is of full rank 3, and the case of rank
deficiency only exists in . Therefore, we set

, and the matrix is of
rank .
By utilizing SVD, can be further decomposed into a sub-

unitary matrix , a diagonal matrix
, and a sub-unitary matrix

(13)

Let denote ; then, . By de-
noting the th row of as , (12) can be reformulated as

...
...

(14)
From (14), the 3D structure of the non-rigid object at each

frame can be represented as

(15)

where and is the th row
and the th column element of .
Equation (15) is our proposed novel low-rank shape defor-

mation model for degenerate deformations. Fig. 1 illustrates an
example of our model as applied to the “Shark” sequence of [9].
Our model describes the 3D structures of a deforming object
as the mean shape plus the associated deformations. Further-
more, in our model, the deformation component of a non-rigid
3D object is represented as a linear combination of a few basis
deformation modes, . By modeling degen-
erate shape bases with a combination of these 1D vectors , our
model provides the ability to compactly represent 3D structures
of degenerate deformations. The second row in Fig. 3 shows
the mean shape and basis deformation modes of our model for
the “Shark” sequence of [9]. In particular, when denotes a
non-degenerate deformation, its rank will equal . At this
time, will become an identical matrix, and our model will be
equivalent to the low-rank trajectory model in (4).
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V. NRSFM WITH LOW-RANK SHAPE DEFORMATION MODEL

Given 2D inputs, all we need to compute are the camera rota-
tions, the matrix , the mean shape and the basis deformation
modes . In this section, we first estimate the camera rotations,

, and compute , , and . Then, the 3D
structures of the non-rigid object can be recovered by our model
in (15).

A. Estimating the Camera Rotations

First, by stacking all 2D inputs of a non-rigid object horizon-
tally, a measurement matrix is formed as follows:

...
. . .

... (16)

Following the standard framework of [2], we then compute
a mean column vector of and subtract it from each column
of to obtain a registered measurement matrix . In the case
of incomplete 2D input we use the Column Space Fitting algo-
rithm in [14], referred to as CSF0, to fill in the missing entries.
According to (1), can be decomposed as the product of a
camera matrix and a shape matrix

. . .
...

. . .
... (17)

By exploiting our model in (15), can be further decom-
posed into the product of and

(18)
Under the assumption of non-degenerate camera motion, we

can conclude from (17) that the rank of equals the rank of
, i.e., . Thus, (18) is a full-rank factorization of . By uti-
lizing SVD, we can obtain another full-rank factorization of
as . There exists a non-singular matrix
satisfying

(19)

Let us denote the first triple columns of by . From (18)
and (19), we have

... (20)

By exploiting the orthonormality of the camera rotation ma-
trices , an error function on can be
formed as follows:

(21)

where is the two rows of at positions and
. Equation (21) is a quartic polynomial on . We utilize

the Levenberg-Marquardt (LM) algorithm in [21] to compute
and subsequently compute the camera rotation matrices

with (20).

B. Estimating the Non-Rigid 3D Structures

In this subsection, an error function of the 3D structures of the
non-rigid object is first designed. Then, an iterative nonlinear
optimization algorithm is presented to minimize the error func-
tion and estimate the non-rigid 3D structures. We define a mask
matrix to indicate which entries in the measure-
ment matrix are missing, i.e., has entries of only 1 (for
observed entries in ) or 0 (for missing entries in ). Only
the observed entries in are used to estimate the non-rigid 3D
structures. Based on the Euclidean distance between the input
2D feature points and the estimated feature locations from (18),
an error function of , , and can be formed as follows:

(22)
Through minimizing (22), , and can be computed,

and subsequently, the non-rigid 3D structures can be recovered
by our model in (15). Next, noting that ,
we recast the minimization of (22) as a bilinear optimization
problem on and . To solve this problem, we first introduce
several notations to rewrite the error function in (22) in a simpler
form without . Without loss of generality, the number of ob-
served entries in the th column of is set to ( ),
as denoted by . Then, a row-truncated identity
matrix is defined such that

includes the rows in that correspond to the rows
of entries in . We use to denote the th column
of . Therefore, (22) can be rewritten as follows:

(23)

where is the residual between the observed
and estimated 2D trajectory of the th feature point.
For computing and , we present an iterative nonlinear

optimization algorithm, as described in Algorithm 1, to mini-
mize (23); its initialization is given below. In each iteration of
Algorithm 1, we alternately fix one factor and update another
factor to minimize the error function in (23). Therefore, each it-
eration can reduce the error in (23); thus, the optimum solution
around the initialization values can be obtained when the algo-
rithm converges. Moreover, to achieve both convergence and
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computational efficiency, we adopt the Gaussian-Newton and
least squares methods to compute and , respectively.

Algorithm 1 Iterative non-linear optimization algorithm for
minimizing (23).

Input: The initial estimation of , .

1.Repeat
2. Fix , compute with (24).
3. Fix , compute gradient and Hessian

with (25).
4. Repeat
5. .
6. Compute with .
7. Until .
8. , .
9. Orthogonalize the columns of
10. Until convergence

Output: The optimized and .

In Algorithm 1, is an identity matrix of order
. Equations (24) and (25) have the

following form:

(24)

where is a block diagonal ma-
trix that is formed by .

(25)

where is
the Jacobian matrix of the residual with respect to :

. is the fourth to the last rows
of . .
After , , and are computed, the 3D structures of the

non-rigid object can be recovered by our model in (15).
Initialization. By denoting as ,

(18) can be written as

(26)

Based on the assumption that the mean shape is the dominant
rigid component of a non-rigid 3D object, can be initialized
as the best rank-3 approximation of . Specifically, we approx-
imate as , where denotes the
Moore-Penrose pseudo-inverse [22]. Then, can be approx-
imated as

(27)

Finally, we perform SVD on : , and initialize
with the first columns of .

VI. EXPERIMENTS

A. Experimental Setup

In this section, we first quantitatively evaluate our method as
applied to synthetic and motion capture data. In the quantitative
experiments, the performance of our method is compared with
that of the state-of-the-art NRSfM algorithms, which include
the following: (1) the 3D point trajectory approach (PTA) [13];
(2) the Column Space Fitting method, which explicitly models
complementary rank-3 spaces (CSF2) [14]; (3) the Kernel
Shape Trajectory Approach (KSTA) [15]; (4) the block matrix
method (BMM) [10]; (5) the Metric Projections (MP) algorithm
[8]; (6) the EM algorithm based on the linear dynamics model
(EM-LDS) [6]; and (7) the sequential NRSfM algorithm based
on the 3D-implicit low-rank shape model (SLR) [18]. We do
not consider the shape NRSfM algorithm in [17] because its
results are highly inferior to those of PTA. In addition, we
qualitatively evaluate the performance of our method.
Following the methodology in [13]–[15], we perform PTA,

CSF2, KSTA, BMM, MP and EM-LDS with different values
of and report the best results. The number of
DCT bases in CSF2 and KSTA is set to for the “Shark”,
“Handshake” and “High-five” sequences. And, it is set to
for the “Face1” and “Face2” sequences. The dimension of the
shape space in KSTA is set to . To provide a fair com-
parison, we perform our method with different values of

and report the best results. Another parameter,, in
our method is set to for the “Shark”, “Handshake” and
“High-five” sequences. And, is set to for the “Face1”
and “Face2” sequences. In SLR, the width of the sliding window
is set to 5 frames, the reprojection threshold is set to 0.018
pixels, and the number of starting frames used to estimate the
mean shape is set to .
To evaluate the reconstruction quality of the NRSfM algo-

rithms, we first compute the relative reconstruction errors for
the camera rotations and 3D structures at each frame and sub-
sequently record the average value of the errors over all frames.
We thus set the error metrics as follows:

(28)

where and are the average relative reconstruction errors
for the camera rotations and 3D structures, respectively; and

are the ground-truth and reconstructed camera rotation ma-
trices at time , respectively; and and are the ground-truth
and reconstructed 3D structures of the non-rigid object at time
, respectively.

B. Quantitative Evaluation Using Synthetic Data

Here, we use the “Shark” sequence (240/91) from [9] to
perform our quantitative evaluation, where ( ) denotes the
number of frames ( ) and the number of feature points ( ).
Based on Fig. 3, the deformation in this sequence is degenerate
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Fig. 5. Reconstruction errors for the “Shark” sequence when the noise level increases from 0 to 0.4. (a) and (b) show reconstruction errors for camera rotations;
(c) and (d) show reconstruction errors for 3-D structures. The reconstruction errors for camera rotations of CSF2 are not plotted in (a) and (b) because they are
identical to those of KSTA. (a) and (c) compare all methods discussed here, and (b) and (d) provide close observations for (a) and (c) by excluding SLR.

and deformed with one non-degenerate shape basis and two
degenerate shape bases.
We first evaluate the reconstruction accuracies and robust-

ness of the NRSfM algorithms when different levels of noise
are added to the registered measurement matrix . Noise is
assumed to be Gaussian, and its level is computed as the ratio
between the Frobenius norm of the noise and the registered mea-
surement, i.e., . Fig. 5(a) and (c) show the rel-
ative reconstruction errors for camera rotations and 3D struc-
tures, respectively, of the eight NRSfM algorithms when the
noise level increases from 0 to 0.4. The performance of SLR
is significantly lower than that of other NRSfM algorithms be-
cause SLR addresses a more difficult problem, i.e., incremental
3D reconstruction, compared with the other methods, which are
all batch methods [18]. Thus, to provide a better visual compar-
ison, we plot the reconstruction errors of all algorithms expect
for SLR in Fig. 5(b) and (d). As Fig. 5 shows, among all of the
compared algorithms, the overall performance of our algorithm
is the best. Specifically, when the noise level is 0, our method
recovers the exact camera rotations and 3D structures with zero
error. Furthermore, our method exhibits superior robustness to
noise when recovering 3D structures. As a result, even when
contaminated by noise as high as level 0.4, the reconstructed 3D
structures of our method are still satisfactory and significantly
better than those of other NRSfM algorithms (see Fig. 6).
We then evaluate the performance of the NRSfM algorithms

when some feature points are missing in some frames.We do not
test PTA and BMM because they lack the ability to handle in-
complete 2D input. In the field of NRSfM, the missing data case
is important to test because it is very common in real tracking
that a point cannot be tracked during an entire video sequence.
We simulate missing data by randomly discarding a particular

percentage of entries in the measurement matrix . Fig. 7 il-
lustrates relative reconstruction errors of the six NRSfM algo-
rithms when the percent of missing entries in increases from
0% to 60%. As is visible in the figure, the reconstruction ac-
curacies of our method, CSF2 and KSTA show little variation
over all the tested levels of missing entries and are significantly
better than those of MP, EM-LDS and SLR.
Finally, we evaluate the performance of the NRSfM algo-

rithms when they are used to recover dynamic scenes with dif-
ferent numbers of degenerate shape bases. Five dynamic scenes
are generated, and they are, respectively, composed of 2 to 6
sharks of the “Shark” sequence. In each scene, the sharks move
independently along different straight lines in the xz-plane and
with different velocities. There are degenerate shape bases
in the scene containing sharks: two bases come from the defor-
mation of the shark itself, and the others refer to the 1D trans-
lation of the sharks. For each scene, we generate synthetic
camera rotations that are 2 degrees per frame around the z-axis
and subsequently project the 3D data using these rotations to
obtain the 2D inputs. Fig. 8(a) and (b) show the relative re-
construction errors of all algorithms when applied to the five
dynamic scenes. As expected, our method provides exact re-
constructions with zero error for all the tested dynamic scenes,
whereas the performances of SLR, BMM,MP and EM-LDS are
very poor. Meanwhile, we note that PTA, CSF2 and KSTA also
provide reasonable results for all dynamic scenes. The good per-
formances of PTA, CSF2 and KSTA should be attributable to
the noise-free CG data of the five sequences. Furthermore, we
compare our method with PTA, CSF2 and KSTA when applied
to the sequences with an added noise level of 0.01 and show
the results in Fig. 8(c) and (d). Even with very small amount
of noise, the performances of PTA, CSF2 and KSTA quickly
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Fig. 6. 3D reconstruction results of the “Shark” sequence when level 0.4 noise is added. The first, second, third, fourth, and fifth rows show the ground-truth (blue
dots) and the reconstruction results (red circles) generated by our method, BMM, PTA, CSF2, and KSTA, respectively.

Fig. 7. Reconstruction errors for the “Shark” sequence when the percent of missing entries in increases from 0% to 60%. (a) shows reconstruction errors
for camera rotations; (b) shows reconstruction errors for 3-D structures. The reconstruction error for camera rotations of CSF2 is not plotted in (a) because it is
identical to that of KSTA. The values of relative errors greater than 100% are truncated to 100% to provide a better visual comparison.

degrade as the number of degenerate shape bases increases. In
contrast, our method still provides high-quality reconstruction
results for all tested sequences.

C. Quantitative Evaluation Using Motion Capture Data

To test the power of our method when applied to degenerate
deformations, we first introduce two typical degenerate defor-
mations from the CMUmotion capture database:1 “Handshake”
(303/82) and “High-five” (233/82). These two sequences both

1[Online]. Available: http://mocap.cs.cmu.edu

describe two people walking independently along straight lines.
When they meet, they shake hands or high five each other. Then,
two face sequences that have been used in previous studies are
tested: “Face1” (316/40) from [6] and “Face2” (74/37) from [8].
As discussed in Section I, facial expressions are close to being
degenerate. Among the four motion capture datasets, “Face1”
and “Face2” are rotating themselves in the sequences; therefore,
we obtain 2D inputs by extracting the x and y coordinates of 3D
marker measurements. For the “Handshake” and “High-five”
datasets, we generate synthetic camera rotations and project 3D
data using these rotations to obtain 2D inputs. Following the
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Fig. 8. Reconstruction errors for five dynamic scenes that contain four to eight degenerate shape bases. (a) and (c) show reconstruction errors for camera rotations;
(b) and (d) show reconstruction errors for 3-D structures. (a) and (b) show reconstruction errors when the noise level is 0; (c) and (d) show reconstruction errors
when the noise level is 0.01. The reconstruction errors for camera rotations of CSF2 are not plotted in (a) and (c) because they are identical to those of KSTA. The
values of relative errors greater than 100% are truncated to 100% to provide a better visual comparison.

TABLE I
QUANTITATIVE COMPARISON OF OUR METHOD WITH PTA [13], CSF2[14],
KSTA [15], BMM [10], MP [8], EM-LDS [6], AND SLR [18] WHEN
APPLIED TO MOTION CAPTURE DATA. (A) AND (B), RESPECTIVELY,
SHOW COMPARISON ON THE ORIGINAL DATA AND THE ORIGINAL

DATA ADDED WITH LEVEL 0.4 NOISE

methodology in [13], the camera rotation is set to 2 degrees per
frame around the z-axis, while the overall camera motion is os-
cillatory with a pan of degrees.
Table I shows a quantitative comparison between our method

and other NRSfM algorithms when applied to the four motion
capture sequences. As observed from Table I(a), when the
original data are tested, our method achieves the best overall

performance among all the compared algorithms. Specifically,
the reconstruction quality of our method for 3D structures is the
best, while for camera rotations, it is only slightly inferior to
BMM’s reconstruction quality for the “Handshake” sequence.
It can be further observed from Table I(b) that when a noise
of level 0.4 is added, the advantage of our method over other
NRSfM algorithms becomes more evident. The average im-
provement of our method on shape recovery increases from
1.37% to 27.24% for the “Face1” sequence, from 1.92% to
21.25% for the “Face2” sequence, from 39.06% to 47.36% for
the “Handshake” sequence, and from 35.12% to 45.97% for the
“High-five” sequence. The average improvement of our method
on camera rotation recovery increases from 5.88% to 10.24%
for the “Handshake” sequence, and from 7.97% to 11.55%
for the “High-five” sequence. The results in Table I clearly
demonstrate that our method has significant advantages over
state-of-the-art NRSfM algorithms when applied to degen-
erate deformations. From Table I, it can be observed that our
reconstruction errors for camera rotations are comparable to
but slightly higher than BMM’s errors for the “Handshake”
sequence. Note that regardless of the addition of noise, our
reconstruction accuracies are distinctly better than BMM’s
accuracies for camera rotations in the “High-five” sequence.
The difference between the “Handshake” and “High-five”
sequences is that the persons’ arm actions in the latter are faster
and more substantial, and they result in high-frequency defor-
mations. Therefore, we suspect that BMM’s preferable results
for camera rotations in the “Handshake” sequence might be
attributed to the relatively slower and smoother deformations
contained in this sequence. Generally, a slower and smoother
deformation can be represented more effectively by linear
models; thus, it fits the rank-3 constraint used by BMM to
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Fig. 9. 3-D reconstruction results of the “Handshake” sequence when level 0.4 noise is added. The first, second, third, fourth, and fifth rows show the ground-truth
(blue dots) and the reconstruction results (red circles) generated by our method, BMM, PTA, CSF2, and KSTA, respectively.

Fig. 10. Reconstruction errors of our NRSfM algorithm using different values of and applied to the synthetic and motion capture data. (a) and (b) show
reconstruction errors for camera rotations and 3-D structures, respectively, when increases from 4 to 39; (c) shows reconstruction errors for 3-D structures when
increases from to .

estimate camera rotations better. From Table I(b), we can also
observe that our reconstruction accuracies for camera rotations
are slightly inferior to MP’s and EM-LDS’s accuracies for the
“Handshake” and “High-five” sequences. The performances
of MP and EM-LDS in the estimation of camera rotations are
mainly from the iterative refinement between camera rotations
and 3D structures [6], [8], while our method does not involve
this process for reasons of efficiency.
Compared with other NRSfM algorithms, our method

is computationally efficient. Taking the “Face1” sequence
(without added noise) as an example, the runtime of our method
averaged over 100 runs is 7.23 seconds ( , ),

which is slightly slower than the 3.65 seconds of PTA ( )
and faster than the 8.69 seconds of MP ( ), 42.40 seconds
of EM-LDS ( ), 86.50 seconds of CSF2 ( ,

), 90.14 seconds of KSTA ( , ), 198.34
second of BMM ( ), and 215.43 seconds of SLR. All the
time data were collected on a PC laptop with a 2.6 GHz Intel
Core i5 processor and 4 GB of RAM.
Fig. 9 shows the 3D reconstruction results of our method,

PTA, BMM, CSF2 and KSTA for the “Handshake” sequence
when noise with a level of 0.4 is added. The reconstructed 3D
structures of our method are significantly better than those of
the other NRSfM algorithms.
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Fig. 11. 3-D reconstruction results of our method on the recorded “Face” sequence. First row: five out of 150 frames of the “Face” sequence. In each frame, the
tracked 2-D feature points are overlaid in green. Second and third rows: two orthogonal views of the recovered 3-D structures. The lines are not part of our model;
they are shown for visualization purposes only.

Fig. 12. 3-D reconstruction results of our method on the “1R2TCR” sequence in the Hopkins155 dataset. First row: five out of 26 frames of the “1R2TCR”
sequence. In each frame, the 2-D feature points are overlaid in green. Second and third rows: two orthogonal views of the recovered 3-D structures.

D. Quantitative Evaluation on Different Parameters

We next test the relation between the reconstruction quality
of our NRSfM algorithm and two parameters of our model. We
run our method on the “Shark”, “Face1”, “Face2”, “Handshake”
and “High-five” sequences by changing one parameter while
keeping the other fixed. Fig. 10 shows our reconstruction errors
as a function of the parameters and . We do not plot the
correlation between the estimation errors of the camera rotations
and because the process of estimating camera rotations is
independent of in our method.
From Fig. 10(a) and (b), the reconstruction quality of our

method applied to sequences such as “Handshake” and “High-

five” is significantly influenced by the choice of . In essence,
the parameter equals the rank of the registered measure-
ment matrix . This finding may be further exploited to com-
pute using the spatio-temporal regularity of the observed 2D
shapes. From Fig. 10(c), we observe that when is below a
particular threshold (e.g., for “Face1” or for “Hand-
shake”), the reconstruction accuracies of our method are rela-
tively poor. This is because if the chosen is too small, our
model will not be able to fully capture the data variability. In
contrast, when exceeds the threshold, the reconstruction ac-
curacies of our method remain consistently stable. The robust-
ness should be mainly attributed to the DCT constraint imposed
on the deformation coefficients in our model in (15). During
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the process of estimating the non-rigid 3D structures, the in-
creasing DoFs from larger will be constrained by a set of pre-
defined DCT basis vectors. As a result, the overfitting problem
typically caused by parameter overestimation can be effectively
suppressed.

E. Qualitative Evaluation of Real Video Sequences

Finally, we qualitatively evaluate the proposed NRSfM al-
gorithm using two real video sequences. The first sequence is a
close-up video of a face that was recorded in our laboratory. The
“Face” sequence contains 150 frames, and each frame contains
68 feature points that are tracked by the 2D Active Appearance
Model (AAM) [23]. With and , the solution
of our method for this sequence has a mean (maximum) 2D re-
projection error of 0.0216 (0.5473) pixels. The second sequence
is the “1R2TCR” sequence from the Hopkins155 dataset [24],
which consists of 26 frames. In this sequence, the deformations
formed by two foreground objects are degenerate: one object
translates along a straight line and forms a rank-1 degenerate
shape basis, and the other object rotates around an axis and ap-
proximately forms a rank-2 degenerate shape basis. Therefore,
we only consider the two foreground objects, which contain
219 feature points. The 2D coordinates of these feature points
have been provided by the author of the Hopkins155 dataset.
With and , the solution of our method for the
“1R2TCR” sequence has a mean (maximum) 2D reprojection
error of 0.0675 (0.4497) pixels. Fig. 11 and 12 show various
3D reconstruction results of the proposed NRSfM algorithm on
the “Face” and “1R2TCR” sequences, respectively. Our method
produces reasonable reconstructions for these two real video
sequences.

VII. CONCLUSION

In this study, we proposed a new NRSfM algorithm to ad-
dress the problem of degenerate deformation recovery. In most
existing NRSfM algorithms, the deformations of non-rigid ob-
jects are assumed to be non-degenerate. However, we find that
such an assumption causes these algorithms’ reconstructions to
be inaccurate and sensitive to noise when applied to degenerate
deformations. We thus propose a novel low-rank shape defor-
mation model to represent 3D structures of degenerate deforma-
tions. The main advantage of our model over the previousmodel
on degenerate deformations, i.e., the 3D implicit low-rank shape
model [18], is that our model exploits the inherent low-rank
property of trajectories of non-rigid objects when modeling de-
generate deformations and can thus provide a more compact
representation. Moreover, our model is the first in batch NRSfM
to provide the ability to represent 3D structures of degenerate
deformations, whereas the 3D implicit low-rank shape model is
proposed to solve the sequential NRSfM problem. Then, based
on the proposed low-rank shape deformation model, we formu-
late the NRSfM problem as two coherent optimization prob-
lems and solve them with iterative non-linear optimization al-
gorithms. We perform a series of comparison experiments be-
tween our method and state-of-the-art NRSfM algorithms using
synthetic and motion capture data. The experimental results il-
lustrate that ourmethod has significant advantages over state-of-

the-art NRSfM algorithms in terms of both accuracy and robust-
ness when recovering degenerate deformations. In the future,
we plan to relax the assumption of non-degenerate camera mo-
tion in ourmethod and aim to reconstruct 3D scenes in which the
overall rigid motion of deformable shapes relative to the camera
is small. Another future direction is to generalize the camera
model in our algorithm for applicability to full perspectives.
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