Robust Frame Registration for Multiple Camera Setups in Dynamic Scenes

Xu Zhao, **Zhong Zhou**, Ye Duan, Wei Wu State Key Laboratory of VR Beihang University

Outline

- Background
- Related Work
- Overview
- Frame Registration Algorithm
- Experimental Results
- Conclusion

Background

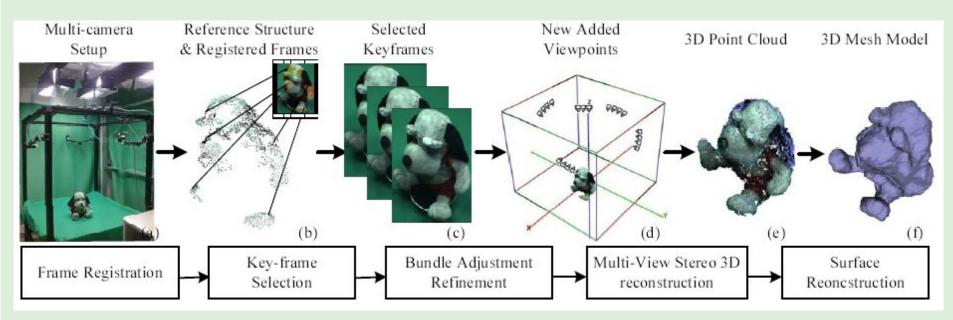
- 3D vision is very active recent years in Al
 - Image-based modeling
 - Visual Hull & Binocular stereo
 - Can real-time reconstruct 3D models
 - Multi-View Stereo (MVS)
 - Can achieve nearly the same accurate reconstruction result compared with the 3D scanner
 - Camera calibration
 - The first step for image-based modeling and 3D vision
 - Depend the reconstruction accuracy

Background

- Frame registration in multi-camera system
 - Monocular structure from motion / SLAM
 - Accumulative errors across multiple cameras will be introduced
 - It is hard to unify the depth scales of all cameras when lacking reference geometry
 - How many cameras at least are needed for accurate reconstruction in the multi-camera system?
 - MVS can produce accurate reconstruction results but need a moderate of calibrated images

Related Work

- Multi-camera setups
 - CMU virtual reality project
 - ETHZ Blue-C, INRIA GrImage, Tsinghua Dome etc.

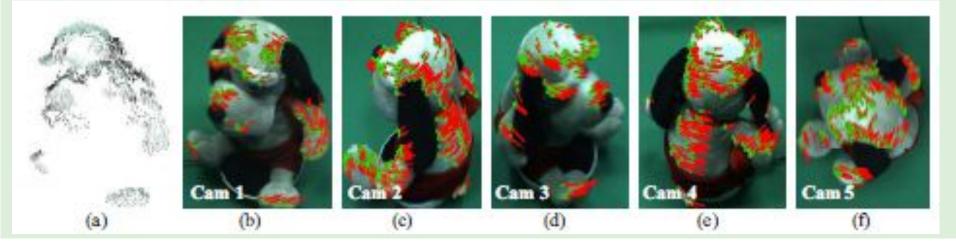

	Main purpose	Advantage	Disadvantage
Single camera setup (hand-held)	Urban or interior scene modeling	Cheapest	It needs user interaction and can only reconstruct static scene
Stereo camera setup (2-3 cameras)	Stereoscopic 3D production	Simple but practical in industry	It can only reconstruct rough depth image
Multi-camera setup (5-8 cameras)	Motion capture	More common in real scenes and systems	It can only reconstruct rough 3D models
Multi-camera setup (> 20 cameras)	Light field modeling	High quality 3D reconstruction	Expensive and for research purpose only

A COMPARISON OF DIFFERENT CAMERA SETUPS

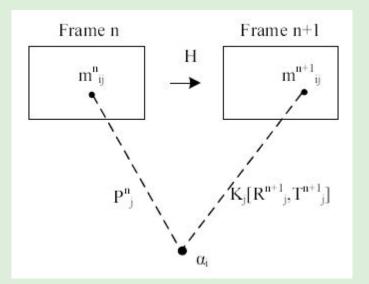
Related Work

- Frame registration algorithms
 - Select several key frames separately from multiple cameras' videos and then perform a global bundle adjustment for all images
 - matched 3D features are too sparse and noisy to estimate camera parameters
 - Perform a traditional structure from motion (SFM) or mono-SLAM algorithm for each camera, and then register all selected frames together
 - accumulative errors / different depth scales

Overview

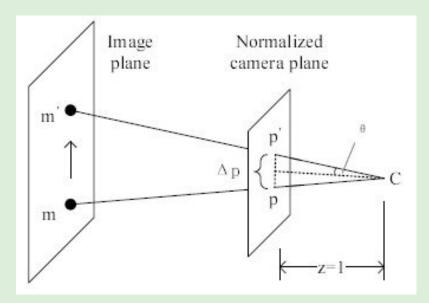


- 1. construct a global reference structure
- 2. use a RANSAC-based LM method to estimate frame poses
- 3. select key frames and combine other state-of-theart techniques to reconstruct high quality 3D models


Overview

- Contributions:
 - A robust frame registration method for multiple camera setups
 - A high-quality 3D reconstruction system which can select a moderate number of calibrated keyframes
 - A more economic approach to recording motion with a limited number of cameras

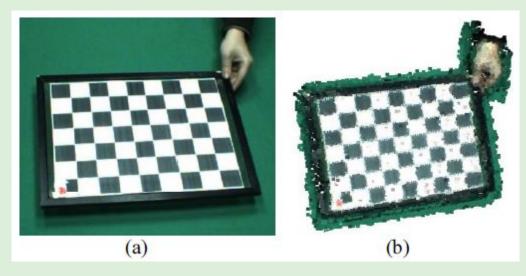
- Reference structure
 - Define it as a set of 3D patches
 - (position, visiblility, feature salience measure)
 - Use patch-based MVS method to construct
 - Project back to images and use Shi-Tomasi score to measure the salience of candidate features



- Frame Registration
 - Register during video tracking
 - Optical flow method
 - With the help of 3D patches and their track pairs, we derive a new frame pose optimizing equation
 - Use RANSAC-based LM method to solve it robustly

$$\begin{split} & [R_{j}^{n}, T_{j}^{n}]^{*} = \\ & \arg\min_{[R_{j}^{n}, T_{j}^{n}]^{*}} \sum_{\alpha \in \Phi} (f(\alpha_{i}, K_{j}[R_{j}^{n}, T_{j}^{n}]), m_{ij}^{n})^{2} \\ & s.t. \det(R) = 1, R^{T} = R^{-1} \end{split}$$

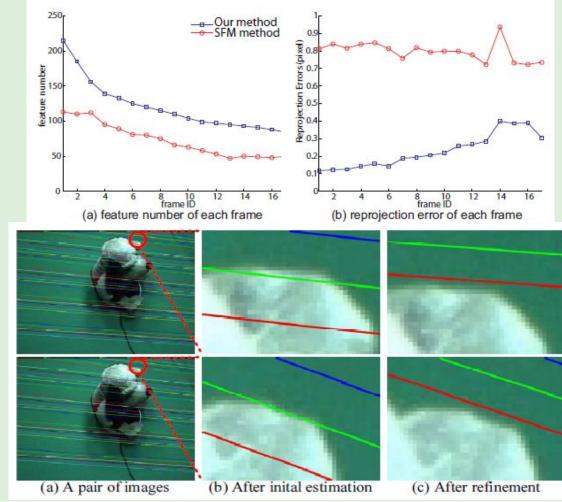
- Key-frame selection
 - A heuristic but effective scheme
 - Combine the narrow and wide baseline
 - Turn angular offset is used to measure the motion.
 - For each video sequence, we selected four to six key frames



$$\theta \approx \arctan\left(\frac{\Delta p}{2z}\right) = \arctan\left(\frac{|p'-p|}{2}\right)$$

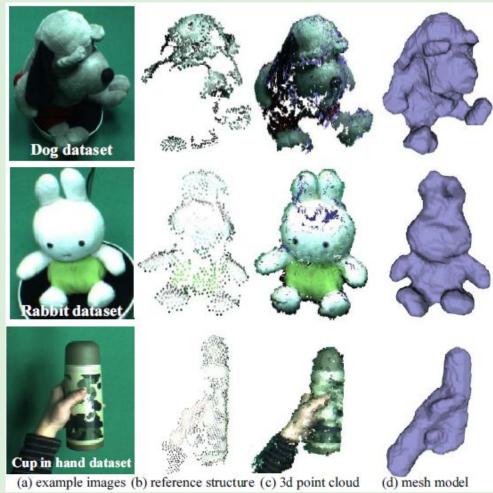
PROCEDURE FrameRegistrationForMultipleCameraSetups() recontructReferenceStructure() FOR each camera j captureFrame(j) FOR each frame i IF i=0 THEN determineTrackingFeatrues(i) ENDIF pyramidOpticalFlowTracking(i) estimateFramePoseRANSAC(i) //* used in the reconstruction system IF isKeyframe(i) = TRUE THEN saveFrameAndPose(i) ENDIF ENDFOR ENDFOR //* used in the reconstruction system bundleAdjustmentRefinement() END

Experimental Results


• Frame registration with ground truth

A COM	MPARISON	WITH THE G	ROUND TRU	U TH
	Position diff.(mm)		Principal axis diff.(°)	
	Mean	Std. Dev.	Mean	Std. Dev.
Our method	1.3880	0.7698	0.0699	0.0380
SFM method	12.951	9.0739	0.6995	0.3764

Experimental Results


Frame registration with real object

Experimental Results

• 3D reconstruction

15

Conclusion

- A robust frame registration algorithm
 - Frames are registered into one unified coordinate system
 - Avoiding accumulative errors compared with the separate SFM registration method
- A high quality 3D reconstruction system
 - Automatically select key-frames in dynamic scenes
 - Accurately reconstruction with a limited number of static cameras

Thanks for you listening!

Xu Zhao, **Zhong Zhou**, Ye Duan, Wei Wu State Key Laboratory of VR Beihang University