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Abstract—In this paper we introduce a novel evaluation
criterion for spectrum allocation in cognitive cellular networks
that is the utility of base-station. Our intention is to allocate the
channels with different bandwidth to the end-users according
to diverse Quality-of-Service (QoS), which not only increases
the system’s profits but also improves the actual spectrum
utilization. We estimate the end-user’s behaviors and model
the spectrum demands basing on the statistical data in a past
period. The multidimensional bounded knapsack problem is
introduced to divide channels, of which the proposed balance
between value density and request probability strategy gets the
approximate solution. The simulation experiment results show its
good performance both in the utility and the spectrum utilization
of base-stations, especially when the resources are deficient.

I. INTRODUCTION

Cellular networks have succeeded in the last twenty years,
but they have to be put to the test in increasing rapidly data
traffic. The popularity of smart-phones which is not so much
the phones as the hand-held computers, integrates several
multimedia information services. In an open market report
of Ericsson, it is described that the data traffic of cellular
networks has doubled from the third quarter 2011 to the the
third quarter 2012, and mobile data traffic driven mainly by
video is expected to grow with a CAGR (Compound Average
Growth Rate) of around 50 percent in the time frame 2012-
2018, which entails growth of around 12 times by the end of
2018 [1].

Since the objective of cognitive radio (CR) technology is to
reallocate spectrum resources reasonably and efficiently, the
combination of these two technologies brings the promising
prospect [2]. The spectrum sharing in cognitive cellular (CGC)
networks is a two-phase procedure. In the first phase, the CGC
network gets spectrum resources from the PUs through sensing
[3] and borrowing [4], or auctions [5][6][7].

In the second phase, the base-stations (BSs) of CGC net-
work cells allocate the spectrum to the end-users. At present
there is few studies on spectrum allocation in the CGC
networks particularly, but some studies about the CR networks
are developing. A distributed resource allocation method is
proposed in [8], whose purpose is to balance the queue length
and promote the fairness. But as we know, the architecture of
CGC network is centralized, and the spectrum allocation from
a BS to end-users is planned by the BS rather than the end-
users voluntarily. The resource allocation standard in [9] is to

maximize the coverage of CR network through power control
method. Since in a CGC network the cell’s range is certain,
expanding the coverage doesn’t absorb much attention.

Moreover, the above achievements are all concentrating on
the technical property of CGC network. Since the econom-
ical benefits encourage the CGC network to value the end-
user’s requirements and devote itself to improve the QoS,
it’s the same important as the technical aspect. The better
user experience is always one of the most significant goals
of cellular networks. Such an absence is a shortage of the
study on spectrum allocation in CGC networks.

The resources allocation in a CR network is summarized to
a multidimensional knapsack problem and a greedy algorithm
is introduced [10]. Such a process is instructive for us to
consider the spectrum allocation in CGC networks. However,
the allocation in CGC network is not only a Bounded Knap-
sack Problem but also a Multiple Knapsack Problem, and the
mathematical model should be defined again firstly. Secondly,
in order to adopt the mathematical expression above, the end-
user actions should be modeled according to the empirical
data analysis. Thirdly the density of value greedy algorithm
only concerns the reward and cost that ignores the volatility
of end-user demands, so we make an improvement on it.

Our contributions are as follows:
• The BS’s utility in the second phase of two-phase spec-

trum sharing in a CGC network is discussed first, which has
been ignored in previous studies. The appropriate economic
stimulation will boost the CGC network to serve the end-users
more attentively. The relevance between profit and spectrum
also promotes the spectrum saving in resources reallocation.
• The balance between value density and request proba-

bility (BVDRP) algorithm is proposed. The existing heuristic
algorithms can not completely apply to the multidimensional
bounded knapsack problem. In BVDRP the pursuit for benefit,
the cost of system and the irregular of end-user requests are
all concerned.

The rest of paper is organized as follows: the system model
is introduced in section II. Section III does some theoretical
analysis to the model where we give the method to calculate
the parameters of it. In section IV, the system is evaluated
with simulation experiments. Finally, Section V summarizes
our conclusions.



II. SYSTEM MODEL

A cellular network distributes over land areas called cells,
each served by at least one fixed-location transceiver, known
as a BS. A BS is the center of his local communication cell.

For clear and simple description, in this paper a BS’s
spectrum programme is discussed in his local cell, so relevant
spectrum usage mode is simple. In a CGC network cell if a
user wants to communicate with another, he has to get an
available channel from the BS. The BS allocates different
users different channels. A complete graph Kn can be used to
describe the conflict of a BS’s users. The communication range
of a BS is not as large as the interference, so the spectrum
channels of a BS must be different from other adjacent ones.
In this paper we discuss the spectrum allocation of the single
BS.

III. PROPOSED ALGORITHM

We denote the spectrum resources that the BS acquires from
PUs by B. The system auctions or rents them from the PUs
or in the secondary markets, so they are not continuous but a
series of spectrum blocks Bi, which can be written as

B =

m∑
i=1

Bi (1)

where i = 1, 2, · · · ,m.
The n distinct kinds of channel width the system provides

to the end-users is denoted by wj , where j = 1, 2, · · · , n.
The every actual scale of wj could be decided by advance
surveys or experimental data collections. In the paper [11],
the authors describe the statistical results about the videos of
YouTube whose bit rates are nearly the same in the website.
Such a research proves that it is possible to fix on the width
of similar applications preliminarily. So a suitable series of
channel width {wj} could be confirmed according to several
kinds of major applications.

Suppose the amount of demands for channel width wj is
sj , for which the income is vj in a unit of time. The pricing
strategy is a market behavior and not formed by the technical
decision.

The technical problems faced to in this economical proce-
dure are following two: how to specify the demand quantity sj
for channel width wj , and how to divide the spectrum blocks
to available channels.

A. To specify demanded quantities

According to the CGC network’s characteristics, the system
only occupies the resources for a specific time, after which
they have to be returned to PUs. At that time the system will
rent some new blocks of spectrum. Such a process means that
the spectrum resources are updated regularly, in which the
period is called a spectrum period. The key to divide spectrum
blocks suitably is to predict end-user actions and calculate sj
accurately in the following spectrum period.

Denote the spectrum period as ∆t, the number of channel
requests S is

S =

∫ t0+∆t

t0

f(t) dt (2)

where f(t) is the probability density function of arrival rate
of end-user channel requests.

In CR network studies, the arrival of spectrum requests is
described with a Poisson process usually [12][13], which can
be defined as

P{X(t′0 + t′)−X(t′0) = k} = e−λt
′ (λt′)k

k!
(3)

where λ denotes the average arrival rate.
During the estimation of end-user actions, the parameter λ

is considered unaltered in a time period ∆t′, and another new
parameter λ is used in the next period. Such a period is a
natural period which is different from the spectrum period.
The parameters of λ are denoted as series {λt′}. Considering
the spectrum trading process, we regard that ∆t is not less
than ∆t′ and expressed with

∆t = ∆t0 + ∆t′1 + ∆t′2 + · · ·∆t′u + ∆tu+1 (4)

where ∆t0 is the time earlier than the natural period ∆t′1 and
∆tu+1 is the time laster than ∆t′u.

Since {λt′} are the average arrival series, we get

S ≈ ∆t0
∆t′0

λ0 + λ1 + · · ·+ λu +
∆tu+1

∆t′u+1

λu+1. (5)

Hence the estimation of S is translated to estimate the aver-
age arrival {λt′} which is considered as a discrete time series.
For such a nonstationary time series including seasonal fluc-
tuations and trend potentially, a ARIMA(p, d, q)(P,D,Q)s

model is adopted. The expressional forms are

Yt = (1−B)d(1−Bs)D, (6)

φ(B)Φ(Bs)(1−B)d(1−Bs)DYt = θ(B)Θ(Bs)et, (7)

where s is the seasonal periodicity. Meanwhile p is the
autoregressive order, q is the moving average order, and d
is the sum order. P , Q and D are corresponding seasonal
parameters. B is the backward operation. In following section,
an application example is given to illustrate the process.

After estimating the end-user requests S, the request ratio pj
for bandwidth wj in all spectrum requests has to been consid-
ered. Just like {λt′}, the bandwidth ratio series {pjt′} in natu-
ral periods is modeled with ARIMA(p′, d′, q′)(P ′, D′, Q′)s.
Then

pj ≈
∆t′0pj0 + ∆t′1pj1 + · · ·+ ∆t′upju

∆t
. (8)

The expected demand for the channel with bandwidth wj
is

sj = S ∗ pj , 1 ≤ j ≤ n. (9)

However, S is the number that the system expects to
provide. Usually it could not be realized because of the
limitations of spectrum resource, the uncertainties of market
behavior, as well as the irregularities of spectrum blocks. So



the system has to try its best to obtain as many resources as
it can. In such a case, it have to been considerd how to make
full use of vested spectrum and maximize the system’s utility.
This involves the next question: how to divide the channels.

B. To divide channels

To divide m discontinuous spectrum blocks into n different
channels, it’s not only a Bounded Knapsack Problem (i.e.,
BKP) but also a Multiple Knapsack Problem (MKP). So we
call it a Multiple Bounded Knapsack Problem (MBKP).

The decision problem form of the knapsack problem is
NP-complete [14], thus it is expected that no algorithm can
be both correct and fast (polynomial-time) on all cases. Our
interest is rapid-speed and low-complexity solutions, so the
greedy methods are concerned which devote to get the best
choice basing on the current situation in spite of the overall
conditions. These courses could get the satisfactory solution
instead of the optimal one at the expense of a lot of time
and space. Such heuristic strategies couldn’t get the optimal
solution necessarily, but achieve the desired objective quickly
[10]. It is suitable for our system where the channel division
is updated termly and the convenient acquisition is more
important.

The key of greedy algorithm is to appoint the greedy
strategy. The density of value greedy strategy sorts the items
in decreasing order of value per unit of weight, vi

wi
. In our

scenario, the value stands for the system’s profits from the
end-users while the weight represents the provided bandwidth.
So the density of value means the ratio of the item’s reward to
its cost. It is just the policy adopted in the paper [10]. Since
the amount of spectrum resources the system owned is limited
and the BS works in a commercial mode, the system wants
to gain more input with less output. So the density of value
greedy strategy is more suitable for channel division in the
CGC networks than other developed ones.

However we have to consider the probabilities the end-user
requests lie in the different spectrum periods. Though some
channels’ value densities are higher, they appear much less in
the requests. Such idle channels not only bring few incomes
for the system, but also waste the spectrum resources seriously.

On account of such considerations, an improved channel
division strategy is adopted that is a balance between value
density and request probability (BVDRP), whose space com-
plexity is O(n) and time complexity is O(n lg n).

Firstly we process the value density data, which perhaps are
many times more than the probabilities. After being processed
they could be in the same interval comparison. Denote the
polished data by hj which can be written as

hj = lg
vj
wj

(10)

where j = 1, 2, · · · , n.
Then we introduce the weighting factors, α and β, into the

improved greedy algorithm, which are defined as

α+ β = 1, α ≥ 0, β ≥ 0. (11)

The determination coefficient of channel division decides
the allocation order. The channel with greater coefficient will
be allocated earlier, which can be expressed as

dj = α ∗ hj + β ∗ pj (12)

where j = 1, 2, · · · , n.
The mathematical model is to select the proper channel

width from {wj}, with which the system divides the m
spectrum blocks to maximize the system’s utility. If ci,j
denotes the amount of channels which are divided from the
spectrum block Bi with bandwidth wj , such a problem can be
described as

max

m∑
i=1

n∑
j=1

djci,j (13)

subject to
n∑
j=1

wjci,j ≤ Si, i = 1, 2, · · · ,m, (14)

and
m∑
i=1

ci,j ≤ tj , j = 1, 2, · · · , n. (15)

The values α and β show the preference the system has
between the value density and bandwidth request probability.
Most often, they are values in the interval (0, 1). Two extreme
situations are as follows: When α = 1 and β = 0, the system
divides the channels following the density of value greedy
strategy completely in spite of the request probability. It means
the pursuit of maximum benefits and the assumption of vacant
channels risk. So it is a radical channel division strategy. On
the other hand when α = 0 and β = 1, the system cares about
the full use of resources and tries to maximize the channel
request probabilities, where the anticipation for incomes is
weak. Such a strategy is conservative.

In practical applications, the values of α and β are selected
according to the system load, the balance between income and
resource utilization, and other demands.

The algorithm to describe the BVDRP strategy, which takes
into account both the value density and request probability, is
shown as in Algorithm 1.

IV. EXPERIMENT AND EVALUATION

In view of end-user arrival rate, a cell of CGC network is
similar to a WiFi network. Then we use real WiFi network
data from CRAWDAD [15] to verify our prediction.

Firstly the autocorrelations of end-user arrival rate in previ-
ous 8000 hours in 2006 are calculated in which the 24th item
is the most. It can be associated with the natural law of hu-
man life immediately. A seasonal ARIMA(2, 0, 4)(1, 1, 1)24

model is chosen to predict the arrival rate of subsequent time.
The estimation results is shown in Fig. 1, which reflects the
real end-user arrival well.

Since the WiFi records don’t include bandwidth, the lack of
real data results in bandwidth request prediction absent. The
more real-network data collection will be our future work.



Algorithm 1 Algorithm of BVDRP for channel division
Require:

The weighting factors α and β;
The bandwidth of every spectrum block Si, i =
1, 2, · · · ,m;
The amount of every kind of provided channel tk, k =
1, 2, · · · , n;
The bandwidth of every kind of provided channel wk,
k = 1, 2, · · · , n;

Ensure:
1: Compute processed density of value hj = lg

vj
wj

, j =
1, 2, · · · , n;

2: Compute determination coefficients for provided channels
dk = α ∗ hk + β ∗ pk, k = 1, 2, · · · , n;

3: Initialize i = 1;
4: Assign j = l, when dl = max{dk}, k = 1, 2, · · · , n and
tk > 0;

5: Divide a channel ci,j and |ci,j | = wj , when tj > 0 and
|Si| ≥ wj ;

6: Update tj ← tj − 1 and Si ← Si − ci,j ;
7: Update dj ← −∞, and j ← l when dl = max{dk}, k =

1, 2, · · · , n, if tj = 0;
8: Update i← i+ 1, if |Si| < wj ;
9: Goto step 5 if i ≤ m;

10: return ci,j , i = 1, 2, · · · and j = 1, 2, · · · .

Fig. 1. Comparison of Arrival Rate Estimation with Real Data

Subsequently we validate the channel division approach this
paper put forward with simulation experiments. The BVDRP
is compared with other four strategies including the density of
value greedy, the value greedy, the channel width from small to
large, and the channel width from large to small. The reasons
that they are selected are as follows:
• Density of V alue Greedy : This strategy is introduced

in the paper [10] as a desirable heuristic strategy. Compared
with other previous ones, it’s a practical method with regarding
not only the reward but also the cost.
• V alue Greedy : It highlights the purpose to seek the

profits merely, which is the economical study on spectrum
allocation in CGC networks superficially.

TABLE I
CHANNEL DIVISION SIMULATION PARAMETERS

Weighting factor α = 0.5,

β = 0.5

Channel width 0.2MHz, 0.3MHz, 0.4MHz,

specifications 0.5MHz, 0.6MHz

Price per 2yuans, 2.9yuans, 3.7yuans,

channel 4.4yuans, 5.0yuans

Amount of channels 100

expected to allocate
A single spectrum 2MHz

block maximum
Total bandwidth of 2 ∼ 50MHz

spectrum resources
Poisson distribution λ = 100

parameters of request arrival
Exponential distribution µ′ = 1

parameters of service time
Gaussian distribution µ = 350,

parameters of bandwidth request σ2 = 100

Request sampling 5000

number

• Channel Width from Small to Large : This strategy
divides the channels as many as possible and accords with the
objective of [3] to enlarge the networks capacity.
• Channel Width from Large to Small : It is the

opposite to the third strategy above, so it is conducted for
reference.

We show their comparisons in the channel allocation effi-
ciencies, the utilities of system, and the spectrum utilizations.

The simulation experiment parameters are shown in Tab. 1.
Suppose the end-user requests coming with a Poisson process
whose parameter λ = 100, the service time following an
Exponential distribution with µ′ = 1, and the bandwidth
probability following a Gaussian distribution with µ = 350
and σ2 = 100. The weighting factors α is 0.5 and β is 0.5
too, which means the system values the value density and the
request probability uniformly.

The spectrum blocks are generated randomly, the amount of
which is from 2MHz to 50MHz increasingly. We divide the
channels using five different allocation strategies and calculate
the allocation efficiencies with allocated bandwidth divided by
total bandwidth.

As shown in Fig. 2, the five division methods are no obvious
difference in the allocation efficiencies. When the spectrum re-
sources reach 40 MHz totally, the five curves begin to overlap.
It illustrates that 40 MHz resources have satisfied the system’s
all demands, over which the allocation results are consistent
in spite of division difference. The allocation curves decrease
gradually over 40 MHz, because the superfluous resources are
wasted after the satisfaction of spectrum demands.

According to above simulation results it is known that the
different division strategies don’t reflect differences if the
spectrum resources acquired from primary users are sufficient.



Fig. 2. Channel Division Effect

Fig. 3. System Utility when S=10

Fig. 4. System Utility when S=20

It is understood that the base-stations in CGC networks could
not achieve a plenty of resources due to the unbalance. So we
select the spectrum scenes of 10 MHz, 20 MHz and 30 MHz
to compare the system utilities and the spectrum utilizations.
Such scenes reflect the spectrum resources from exceedingly
poor to relatively enough.

Fig. 3, 4 and 5 show that with different distributable
resources the system utilities increase linearly following time
growth. The incomes of the BVDRP, the density of value and
the bandwidth from small to large strategies are approximate,
which of the value greedy and the bandwidth from large to
small are lower.

Fig. 5. System Utility when S=30

Fig. 6. Spectrum Utilization when S=10

The value greedy strategy pursues value maximization too
much and ignores that more value means more bandwidth.
On the face of seeking incomes, this division approach brings
less utility to the system when the resources are limited. The
bandwidth from large to small strategy wants to divide the
channels in advance which need large bandwidth, until the
allocation is difficult. Then the remainder spectrum is divided
to smaller channels. Though the higher price is charged for the
larger channel, the spectrum spent is more and the number of
available channels is less. Finally the total utility of system is
less.

Among the three channel division strategies producing more
incomes, the density of value greedy wants to exchange less
bandwidth for more profits. The bandwidth from small to large
tries to divide more available channels when the spectrum
resources are certain, and exactly in the experiments the
smaller channels has the higher density of value. So they
obtain more utilities for the system.

The BVDRP strategy this paper proposed takes into account
both the value density and the request probability. Though
its density of value is not the highest, for which the channel
requests emerge more frequently. The divided channels are
vacant rarely that brings higher total earnings. When the lack
of spectrum resources is serious (S = 10 MHZ), the system
obtains the most profits following this process.

Fig. 6, 7 and 8 show the spectrum utilizations using the five



Fig. 7. Spectrum Utilization when S=20

Fig. 8. Spectrum Utilization when S=30

channels division strategies.
When S = 10MHZ, the system have resources scarcely. The

spectrum utilization rates are stable at around 63% with the
value greedy and the bandwidth from large to small strategies.
The usage of available channels divided by the density of value
and the bandwidth from small to large strategies are affected
according to the channel requests, the spectrum utilizations
of which fluctuate strongly within the interval 70% to 95%.
Our BVDRP strategy takes the full consideration of customer
requests, so it takes better place in the spectrum utilization
rate that is kept above 96% approximately.

When S=20MHz and S=30MHz, the available channels are
more and more due to the spectrum resources are trending
to abundance. So the customers queue is eased and there are
vacant channels sometimes, which leads to the spectrum uti-
lization rates reducing at some certain extents. They fluctuate
from 68% to 88% with the value greedy and the bandwidth
from large to small strategies, and from 76% to 97% with the
density of value and the bandwidth from small to large ones.
The BVDRP approach presents the highest utilization of five
strategies, which is about from 76% to 99%.

V. CONCLUSION

In this paper we propose a channel division approach
for the wireless service provider (the base-station) in CGC
networks. The end-user arrival rate and bandwidth probability

are estimated with ARIMA models. Then we adopt the bal-
ance between value density and request probability strategy
(BVDRP) to solve the multiple bounded knapsack problem
and divide the discontinuous spectrum blocks into channels.
At last the method is evaluated with real data and simulation
experiments. The results prove that in a CGC network our
process will not only bring more profits to the service provider
but also make better use of the spectrum resources. And the
advantage is more obvious while the resource is less.
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