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Abstract. Interactive deformation of complex meshes is a challenging
task in modeling and animation, due to high computation and storage
requirements. The emerging cloud computing technology, as well as cloud
storage, provides a possible consumer-level solution so that interactive
mesh editing could work in light-weighted clients with public cloud ser-
vices. In this paper we present a system for efficient interactive editing of
complex models. Building over a client-server-based distributed architec-
ture, our system transfers computationally heavy tasks (e.g., computing
of blending weights, construction of handles) and storage from the client
to a cloud computing environment, and allows the user to edit a complex
mesh that stored in the cloud server by interactively modifying a sim-
plified mesh locally. When the user specifies coarse deformations on the
client, user manipulations are sent to the cloud server, and the original
complex mesh is deformed accordingly in the background. Experiments
conducted on various complex models show that our system achieves very
efficient performance, and the most important, remains fully compatible
with the classical WYSIWYG deformations.
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1 Introduction

The modeling and animation of complex geometric models has become a hot
topic today. Although much progresses have been made over the years on 3D
modeling systems, effective interactive deformation of complex objects is still
a challenging task, due to limitations of computation capability and storage
resources.

In previous research, a fair amount of techniques have been developed for
the purpose of overcoming these challenges. Among them, space deformation
and multi-resolution shape deformation are most representative. To reduce the
computational cost of shape deformation, space deformation methods deform
a low polygon-count polyhedron in which a shape is embedded, instead of ex-
plicitly deforming the shape itself. The main advantages of space deformation
techniques lie in the simplicity and speed. Multi-resolution shape deformation is
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another preferable choice for interactive mesh editing. Different from space de-
formation methods that introduce an additional ambient space, multi-resolution
techniques, such as subdivision surfaces, organize the objective meshes at differ-
ent levels of detail and perform hierarchical editing to achieve efficiency. However,
both space deformation methods and multi-resolution deformation techniques
still strongly depend on the local computing power, meaning that deformations
of large complex objects would be still not available on a device with low com-
puting power or storage.

Cloud computing has been a hot topic of computing paradigm in the last
years. It transfers heavy computing and storage from the client to a cloud com-
puting environment. Enterprises currently employ cloud services to improve the
scalability of their services and to deal with bursts in resource demands. In this
work, we are interested in an interactive mesh editing system based on cloud
services. In particular, we aim at enabling the user to edit large complex models
with the help of cloud server even using a terminal with low computing power
and storage. Furthermore, we desire our system to provide interactive manipu-
lation for users.

Our solution is a client-server-based system that transfers heavy computing
and storage from the client to the cloud server. Specifically, a coarse deformation
is specified on the client side by interactively editing a simplified model instead
of the original complex model, while computationally heavy tasks, such as the
computing of blending weights for handles and the deformation of the original
complex model, are performed on the cloud server.We propose efficient strategies
to classify and stream blending weights and user manipulations. As a result, the
system allows the user to deform a large complex mesh only by editing a small
simplified mesh interactively in local.

2 Related Work

In the past decades, a fair amount of research on surface deformation has been
developed. Variational methods [1,2] require post time optimization, which are
still too slow to deform high-resolution objects at high framerate. Variational
harmonic maps [3] restrict the degrees of freedom to harmonic deformations of a
specified cage although they are faster. Other methods using a weighted blend of
handle transformations such as least squares [4], dual quaternions [5], and linear
blend skinning (LBS) [6] which is most frequently used for real-time character
deformation, are fast at pose time. Bounded biharmonic weights [7] is one of the
techniques using LBS for efficient pose-time computation with great deformation
result. Each vertex is transformed according to the affine transformations of the
handles, which are linearly averaged with different weights.

Multi-resolution shape deformation is a very effective way to perform inter-
active mesh editing. B-spline is presented as a pioneering work on hierarchical
editing by Forsey and Bartels [8], in which the user should decide where to
add detail and to manipulate the corresponding controls. Wavelets enable multi-
resolution editing on objects that can be represented by the hierarchical basis
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functions [9]. Subdivision surfaces [10] is a preferable choice for interactive mesh
editing, due to the possibility to edit mesh at varying levels of detail. For purpose
of higher efficiency, a fair amount of research on simplification techniques has
long been developed. Progressive mesh, first proposed by Hoppe [11], is a multi-
resolution technique using edge collapse, which simplifies models by iteratively
contracting edges with precise results and high performance. Among numerous
edge collapse algorithms, quadric error metric (QEM) [12], which estimates the
error introduced by a pair collapse as the distance from a vertex to a quadratic
surface, is the one with high performance and usually the most precise results.

There have been numerous shape editing systems for designing of 3D models.
iWIRES [13] and LineFFD [14] are analyze-and-edit approaches. They detect
important features of a model to extract a descriptive set of lines and then users
can utilize the feature lines to deform the model. Systems like Teddy [15] and
FiberMesh [16] for quickly and easily designing freeform surfaces with a collection
of 3D curves provide convenience for users. A user draws several 2D freeform
strokes interactively on the screen and the system automatically convert them
to 3D curves and constructs plausible 3D polygonal surfaces afterwards. When
using Wires [17] or SilSketch [18], the user applies the deformation by giving
nothing but the ‘over-sketch’ of feature lines to the system. The lines have to be
drawn manually and the system will deform the shape according to them.

3 User Interface

The user interface of GhostMesh consists of a button panel and a rendering win-
dow (Fig. 1). The rendering window is embedded with controls for navigation
and the capability of drawing viewport-aligned strokes. By clicking option but-
tons on the button panel and holding some meta keys, the user can drag the
mesh along the horizontal and the vertical axies, rotate it and scale the current
projection by clicking (left or right) and dragging the mouse.

To edit a large mesh, the system first streams a simplified version of the
original large mesh from the cloud server to the client. The user determines an
appropriate view, places control handles on the surface. Then the system binds
the mesh to these handles. The user interactively manipulates these handles and
the system deforms the mesh accordingly.

The system has three main tools for the mesh editing: handle tool, ROI tool,
and deformation tool. The user switches between these tools via menu selection
or a keyboard shortcut.

3.1 Handle Tool and ROI Tool

The handle tool lets the user construct a number of handles on the mesh. We
aim to provide users a flexible and interactive way to manipulate large 3D mesh
on the client side. In our system, three common handle types are supported:
point, skeleton and control curve. A control curve is described as a set of points.
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Fig. 1. User interface of our system

Fig. 2. Our mesh editing tool in action. GhostMesh supports points, skeletons, and
control curves arranged in an arbitrary configuration. The user can specify transla-
tions, rotations and scales at handles (middle left). A sequence of point handles can be
selected automatically by drawing a stroke on the surface (middle right), which would
be deformed by drawing another control curve (rightmost).

To construct handles, the user clicks or drags on the simplified surface to specify
a number of points. Fig. 2 shows illustration of our handle tools.

The ROI tool lets the user specify a certain part of mesh to conduct deforma-
tions on. After constructing handles, an optional ROI around specified handles
can be computed by diffusion on the surface, and the ROI can be interactively
adjusted to fit the target deformation.

3.2 Deformation Tool

The deformation tool lets the user deform the mesh by manipulating handles.
One of our user interface for mesh deformation is a usual direct manipulation
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method: the user grabs and drags a point (i.e., point handle, point of a skeleton
and point on a curve), specifies translations, rotations and scales on the point,
and the mesh deforms smoothly within the specified ROI. Generally, interactive
manipulations of the handles (dragging a point or drawing a control stroke) are
usually carried out on a 2D plane due to the limitation of 2D input devices and
displays, as well as the 2D depth perception. Therefore, the current implemen-
tation always moves the points parallel to the screen. If the user wants more
control, new handles must be added on the surface.

Another of our deformation tools is drawing a control stroke to manipulate a
curve handle. Using this tool, the user draws a stroke which suggests a modifi-
cation of the curve, and the shape is deformed according to the deformed curve
handle. It is worth noting that because of the sketching strokes can contain
noise, our system allows the user to smooth a control stroke or the deformed
curve handle directly by brushing on the target curve with the mouse, which is
intuitive and convenient.

By manipulating handles with our deformation tools, the simplified mesh is
deformed in real-time, showing the user a coarse deformation. At the same time,
the system streams the manipulation to the server side, and the original large
mesh is deformed accordingly in the background.

4 Algorithm

To implement our interactive mesh editing and the described interfaces, we pro-
pose a cloud service which consists of four main parts: handle optimization,
weight computing, data transmission, and deformation computation.

Before describing our algorithms, we introduce notations. Let M = (V,E, F )
be a given triangular mesh. V denotes the set of vertices, E denotes the set of
edges and F denotes the set of faces. Let eij be the edge linking two distinct
vertices vi and vj . Let Hj (j = 1, ...,m) be the control handles.

4.1 Handle Selection and Optimization

In current implementation we choose some of the mesh vertices as handle mem-
bers. To select handle members, the user clicks or drags on the simplified mesh
MS to specify a number of points.

It is obvious that handles constructed on the original large mesh are more
close to the user intention (see Fig. 3). Therefore, when the user picks 3D points
on the simplified mesh MS , the system streams these points to the cloud server,
constructing handles on the complex surface.

When click or drag on MS, 3D intersection points pi are selected on faces
fpi of the simplified mesh (3D mouse picking). In current implementation, any
two of points pi are guaranteed not in the same face of the simplified mesh MS ,
avoiding redundancy. A path line L formed by a discrete set of points {pi} is
constructed (we take the single point selected by clicking as a line with size 1).
L is usually not a subset of the vertices of mesh MS and the original large mesh
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Fig. 3. Comparison between constructing handles on simplified (left) and original
(right) surface. In both left and right figures, red shapes are user interactions, and
blue points are the possible result handles.

Fig. 4. Initial parameters of collecting p′i

M . We define a line L′ = {p′i, p′i ∈ V } as minimizers of a shape-aware functional
subject to:

argmin
p′
i,i=1,...,|L|

|L|∑

i=1

∑

pj∈N+
i

‖p′i − pj‖2 (1)

with |L| the size of set L = {pi}, and N+
i the set of pi and its geodesic neighbors

in L. In practice we compute line L′ by collecting p′i through a flood filling
process performed on M , starting at the first vertex of face fpi and restricted to
the euclidean distance ε from it to pi (Fig. 4).

When the user draws a stroke on the surface, the sampling density of handle
members depends on that of the 3D mouse picking during dragging, and can be
controlled according to the practical requirement. A skeleton point is constructed
by moving a 3D intersection point inside into the volume.

4.2 Weight Computing

Real-time performance of weight computing for blending is critical for user ex-
perience as well. The less the user has to wait, the better the user experience
will be. In our system, to shorten time spent waiting for binding, weights are
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computed by the powerful cloud server. In current implementation, we use
bounded biharmonic weights [7], which produces smooth and intuitive defor-
mations, for real-time blending-based deformations. Since handles are selected
on the original mesh M , handle members are usually not a subset of the vertices
of the simplified mesh MS. As discussed in [7], this is not consistent with the
requirement of computation of bounded biharmonic weights. A direct solution
is recomputing a new collapse list for PM that keeps all p′i during edge collapse,
meaning more computation and re-streaming of a new simplified mesh. There-
fore, in current implementation, we directly discretize face fpi by adding edges
between each vertex of fpi and the handle member p′i.

As will be discussed further below, to make our system more efficient, some
of the weights are transmitted over unreliable channels. Then missing weight of
vertex vi is estimated by interpolation as the formula below:

wj(i) =
∑

k∈N (i)

μik · wj(k), (2)

where wj is the weight function associated with handle Hj , the function N (i)
is the 1-ring neighbors of vertex vi, and

∑
μik = 1. In current implementation,

the choice of neighbor weights

μik =

{
1

|N (i)|−1 ·
(
1− ‖vi−vk‖2∑

l∈N(i) ‖vi−vl‖2

)

0 if wj(k) is missing
(3)

defines the nature of wj .

4.3 Data Transmission

Since manipulations are carried out on the simplified mesh on the client, all of
them should be sent to the cloud server for the desired corresponding deformation
on the original mesh. In order to facilitate data transmission and maintenance,
we divide user manipulations into two types: intermediate and key manipulation.
There are mainly two cases producing intermediate manipulations. The first case
is the user chooses a subset of handles and specifies a same kind of manipulation
(i.e., translations, rotations or scales) on them multiple times to get a desire
deformation. The second case is the system records continuous changes of han-
dles caused by just one user manipulation, such as the trajectory of moving a
point by dragging. The relative key manipulation is the final result of a series
of intermediate manipulations. A single manipulation is also considered a key
manipulation. In fact, the same result of shape editing can be obtained by only
computing these key manipulations in order, and the intermediate manipula-
tions are only details of user editing process. Fig. 5 shows an illustration of the
user’s manipulations.

In our system, data transmission between the cloud server and the client
includes: progressive meshes, creation of handles, ROI, blending weights, manip-
ulations of handles and other auxiliary information such as weight computing
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Fig. 5. Illustration of different types of manipulations. A key manipulation is a single
manipulation or the final result of a series of intermediate manipulations of a subset of
handles.

progress. In order to make our system more efficient, we send these data differ-
ently on hybrid transmissions to take the advantages of both TCP and UDP.
The progressive meshes, creation of handles, ROI parameters, greater blending
weights, and key manipulations of handles are encoded and transmitted over
reliable channels, while the smaller blending weights and intermediate manipu-
lations are delivered over unreliable channels.

We use QEM [12] for streaming progressive meshes, a simplified mesh is firstly
streamed from the cloud server to the client. The user specifies handle selecting
and ROI parameters on this simplified mesh, and the system sends them to the
cloud server. Then the server constructs handles, computes blending weights
accordingly, and returns weights to the client.

In a typical mesh editing system, each handle has the maximum effect on
its immediate region and its influence disappears in distant parts of the object,
in other words, weights decay quickly. According to this phenomenon we send
weights greater than an user-defined threshold δ over reliable channels, otherwise
over unreliable channels (Fig. 6). There is no need to request retransmission of
lost weight data. In practice we interpolate the missing weights with formula 2
through a simple dynamic process starting at the vertex with the most neighbors
that have weight.

During editing, the client encodes the user manipulation, and sends them to
the server. The encoded manipulation data includes the following information:

• The manipulation ID (numbered in ascending order);

• The manipulation type (i.e., intermediate or key);

• IDs of manipulated handles;

• The result parameters of each handle.

Since the key and intermediate manipulations are transmitted via reliable and
unreliable channels respectively, two sorted lists are maintained on the server,
and they can be easily retrieved and traversed as one according to the manip-
ulation IDs. The cloud server processes only the key manipulations in order, or
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(a) plot of weights (b) plot of weight groups

Fig. 6. 3D plot of weights of a point handle on the tip of the Knife model and their
groups. Note that weights are smooth and local (a). Those smaller weights (in yel-
low) are transmitted over unreliable channels, and the others over reliable channels.
Parameter value δ = 0.2.

the intermediate manipulations as well, to computes the desired deformations of
the complex original mesh.

5 Evaluation

In this section, we introduce the experiments results to evaluate GhostMesh. We
implement the real-time 3D interactions and the proposed data transmission
algorithm on a Windows XP PC with Intel Core2 Xeon 3.07GHz CPU and
4GB DDR3 RAM, and a Core2 Duo Laptop with a 2.5GHz CPU and 4GB
RAM. Clients are tested on the Laptop. Laptop client communicates with the
PC server through Wi-Fi.

Table 1. Statistics for the various examples in the paper. The binding time is measured
in seconds. LOD is the percentage of visible vertices after mesh simplification.

Model # of # of Binding time per handle in different LODs
vertices faces 25% 50% 75% 100%

Heart 7349 14676 0.296 0.755 1.403 2.241
Sword 18001 35966 0.785 3.978 6.143 9.277

Dinosaur 56194 112384 3.446 11.167 19.681 30.193
Neptune 99996 200000 9.453 23.738 45.664 69.157

We list in Table 1 the binding time measurements of our unoptimized code.
The computational overhead of blending weights can be reduced significantly by
using a simplified mesh. The data size of weights is determined by the number
of vertices and handles. Take the simplified Neptune model with 50K vertices
and 100K triangles (LOD=50%) as an example, the data size of weights is about
0.19MB per handle without compression, and it takes an average of 0.561s to
send that of 25 handles from the server to the client in our experiment.

Fig. 7 gives a comparison of deformation results between the one using the
original weights and the other one using the interpolated weights. As is shown,
only small distortions can be seen at a loss ratio even as high as 50% (review
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Fig. 7. Comparison between deformation results of using the original weights (left) and
the interpolated weights (right). For parameters value of δ = 0.2 and the loss ratio is
50%.

Fig. 8. The geometric distortion of the deformed Sword model and weight interpolation
error with different data loss ratios. The geometric distortion is measured in Hausdorff
Distance (left). E-max and E-mean are respectively the max and mean absolute differ-
ence between our interpolation and the original bounded biharmonic weights (right).

(a) LOD=30% (b) LOD=40% (c) LOD=50%

(d) LOD=60% (e) LOD=70% (f) LOD=100%

Fig. 9. Editing results of simplified mesh with different LOD (a-e), and the correspond-
ing deformation result computed by the cloud server
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Fig. 10. The geometric difference between deformations of simplified and the original
meshes with different LOD, measured in Hausdorff Distance

Fig. 6(a) for the plot of weights). Fig. 8 shows our analysis results on the weight
interpolation and the geometric distortion according to different loss ratios. As
expected, errors and distortions are very limited, even though with the increasing
of data loss, the error and distortion raises as well.

Fig. 9 shows the editing results of simplified mesh with different LOD (a-e),
and the corresponding deformation result computed by the cloud server. As we
can see, deformation results are very similar. Furthermore, we show our analysis
results on the geometric difference between the client (Fig. 9(a-e)) and the server
(Fig. 9(f)) according to different LOD in Fig. 10. Consistent with Fig. 9, the
geometric differences are very small, meaning the system deforms the original
complex mesh in a way very close to user’s desire.

6 Conclusion and Future Work

We have presented a system for cloud-based interactive mesh editing, namely
GhostMesh. The system allows the user to edit a complex mesh that stored in
the cloud server by interactively modifying a simplified mesh locally. We pro-
posed efficient strategies to classify and stream blending weights and user ma-
nipulations. As a result, the system can transfer heavy computing and storage
from the client to a cloud computing environment, allowing the user to edit a
large complex model on the remote cloud server even using a lightweight termi-
nal with low computing power and small storage space. Mobile-based augmented
reality is an emerging technology that provides immersive experiences over wire-
less networks. In future work, we wish to extend our system to include multiple
mobile users in a collaborative virtual environments. We also plan to compare
with other applications and perform user studies in the future.
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