
Synthesizing Solid-induced Turbulence for Particle-based Fluids

Xuqiang Shao, Zhong Zhou, Jinsong Zhang, Wei Wu

State Key Laboratory of Virtual Reality Technology and Systems
Beihang University

Beijing, China
shaoxuqiang@gmail.com

Abstract—Simulating the accompanying turbulent details of
fluid-solid coupling is still challenging, as numerical dissipa-
tion always plagues current fluid solvers. In this paper, we
propose a novel particle-based method to simulate turbulent
details generated behind objects in SPH fluids. A turbulence
production model, approximating the boundary layer theory
on the fly in SPH fluids, is proposed to identify which fluid
particles shed from object surfaces and are seeded as vortex
particles. Then the fluctuating velocities stemming from the
generated vorticity field are calculated using an SPH-like
summation interpolant formulation of the Biot-Savart law. And
the stable evolution of vorticity field is solved by introducing an
artificial dissipation term into the vorticity N-S equation. The
advantages of our turbulence synthesis method in computer
animation are demonstrated via various virtual scenarios.

Keywords-turbulence synthesis; SPH; fluid-solid coupling;
particle-based fluid; fluid simulation;

I. INTRODUCTION

In computer animation, particle-based SPH method is

becoming increasingly popular to create realistic animation

of many complex phenomena, such as water, smoke and

fire. Actually, more visually interesting natural phenomena

emerge when complex objects are coupled to fluids (Figure

1). For SPH fluid solvers, however, the realistic simulation of

turbulent details in fluid-solid coupling is still challenging.

The damping of turbulent details is inevitable due to both

numerical dissipations and limited resolution discretization

of fluid solvers. A popular approach to reduce the numerical

dissipations in Eulerian method is the use of higher order

advection schemes [1], [2]. But these methods are not

applicable to SPH fluid, because the advection term is not

needed for particle systems. Adaptive particle sampling [3]

and two-scale scheme [4] address the problem by refinement

of visually important regions. But the generated turbulence

is difficult to be preserved in the global flow with the

coarse computational nodes, when they move out of the

high-resolution region. In addition, the subdivision level

of particles is hard to be determined for the turbulence

recovering (Figure 1(b)).

A more effective method of modeling turbulent details is

to augment the basic fluid solver with synthetic turbulence

model [5]–[9]. These methods can simulate visually realistic

turbulence in fluids, however, the turbulence induced by

solid bodies are not their focus.

To simulate turbulence behind objects, Pfaff et al. [10]

present a physically plausible turbulence model to seed vor-

tex particles where the separated boundary layers will transit

into actual turbulence. This method successfully synthe-

sizes turbulence around rigid bodies for Eulerian grid fluid.

However, it is time-consuming to create a pre-computed

artificial boundary layer that captures the characteristics of

turbulence generation around objects. Several researchers

have paid attention to simulating turbulence around solid

bodies in SPH fluids. Bo et al. [11] present a new method

to create and preserve the turbulent details generated around

moving objects, in which a high-resolution overlapping grid

need to be bounded to each object and translates with

the object. Yuan et al. [12] propose a swirling incentive

particle (SIP) method, which introduces random swirling-

probability values to efficiently mimic the stochastic nature

of the turbulence. But sometimes unrealistic turbulence may

be created from an inappropriate choice of parameters,

especially when handling complex deformable boundaries.

From the comparison of three coupling results in Figure

1, we conclude that the simulation of turbulence around

objects (Figure 1(c)) makes the solid-fluid coupling more

visually realistic. In order to simulate turbulent details be-

hind the moving solid bodies, we propose a novel turbulence

synthesis model which can be incorporated into particle-

based solid-fluid coupling. By approximating the boundary

layer theory on the fly in SPH fluids, we can identify

which fluid particles shed from object surfaces and are

seeded as vortex particles. Then we propose an SPH-like

summation approximation of Biot-Savart law to calculate the

fluctuating velocities stemming from the vorticity field. The

stable evolution of vorticity field is solved by introducing

an artificial dissipation term into the vorticity N-S equation.

The results, as shown in the accompanying video,

demonstrate that the proposed turbulence synthesis method

achieves the realistic simulation of turbulent details behind

solid bodies, which can be regarded as a complementary for

a particle-based fluid simulator.

II. RELATED WORK

Since Müller et al. [20] used SPH to produce compelling

fluid simulations at interactive rates, SPH has been used to

model such phenomena as incompressible fluid [26]–[28],

2013 13th International Conference on Computer-Aided Design and Computer Graphics

978-1-4799-2576-6/13 $31.00 © 2013 IEEE

DOI 10.1109/CADGraphics.2013.40

252

(a)

(b)

(c)

Figure 1. Comparison. (a) Pure solid-fluid coupling. (b) Adaptive sampling [3] in the coupling. (c) Turbulence synthesis.

hairs [29], melting [30], viscoelastic material [31], sand [32]

and fluid-solid coupling [21]–[24], [34], [35].

The loss of turbulence due to inherent numerical dissipa-

tion is one of the prominent difficulties in fluid simulation.

Fedkiw et al. [13] propose vorticity confinement to amplify

existing grid vorticity in the fluid. However, if the uniform

simulation grid is not fine enough to capture the desired

details, vorticity confinement cannot recover them. The

numerical dissipation problem can also be alleviated by

using higher order advection schemes [1], [2], but turbu-

lence represented by these methods are still limited by the

underlying grid resolution. By solving the N-S equations

with higher-resolution grids in a local concerned space,

several adaptive methods [3], [4], [14] can model turbulence

formation around objects. When moving out of the high-

resolution region, the vortices are difficult to be preserved.

Procedure synthesis methods, which add further details in

a sub-grid by using noise functions, have been introduced.

Kim et al. [6] use a wavelet decomposition to detect where

small-scale detail is being lost, and apply an incompressible

turbulence function to reintroduce these details. Schechter

et al. [7] track bands of turbulent energy using a simple

linear model, and create the turbulent velocity using flow

noise. Narain et al. [8] present a fast and effective technique

for simulating turbulent fluids through a sub-grid turbulence

model that can be integrated into existing simulations and

tracks the production and evolution of turbulent flow au-

tomatically. The vortex particle method is more suitable

to synthesize turbulent details in fluids. Selle et al. [15]

make use of seeded vortex particles to introduce additional

vorticity into the grid fluid for highly turbulent flows. But

their method requires the artist to specify where these

particles are injected into the flow. Park and Kim [16]

model gaseous phenomena by entirely distributing vortex

particles on the whole grid and utilizing a pure Lagrangian

simulation with a vorticity transport equation. Some other

grid-particle methods [9], [17], [18] incorporating vortex

particles into Eulerian grid fluid can model visually realistic

turbulence effects. However, these methods mainly deal with

the preservation of vortices already represented in the overall

flow rather than the turbulence formation around objects.

Several works focus on the simulation of turbulence

generated around objects. Pfaff et al. [10] employ vortex par-

ticles in an Eulerian grid fluid to simulate obstacle-induced

turbulence. Based on boundary layer theory, their method

identifies areas where the separated layers will transit into

actual turbulence and seeds vortex particles. However, it is

time-consuming to create a precomputed artificial boundary

layer that captures the characteristics of turbulence gener-

ation around objects. Bo et al. [11] provide a physically

253

plausible method to model the turbulent details around both

rigid and deformable objects in SPH-based gaseous fluids,

in which a high-resolution overlapping grid is bounded

to each object and translates with the object. In order to

reduce numerical dissipations consuming turbulent details

in SPH fluids, Jang et al. [19] incorporate the Hermite-

interpolation scheme into a particle-advection process. And

for capturing multi-scale vortical motions efficiently, they

propose large-scale kernels and a small-scale vorticity (SSV)

model, respectively. By seeding swirling incentive particles

(SIPs) around objects immersed in SPH fluids, Yuan et

al. [12] introduce random swirling-probability values to

efficiently mimic the stochastic nature of the turbulence.

III. ALGORITHMIC OVERVIEW

A. Algorithm Architecture

Figure 2 shows the algorithmic flow of our turbulence

synthesis method. In each simulation loop, we update the

new position and velocity based on the results of last

simulation loop, and then employ a uniformly sampled

distance field to track the fluid surface and render the current

simulation results. We detail the algorithm as follows:

Figure 2. The pipeline of each simulation cycle.

Simulate the motions of fluids and solids. Respectively

employ predictive-corrective incompressible SPH (PCISPH)

and meshless shape matching (MSM) models to compute

velocities and positions of fluid and solid particles without

considering their interaction.

Two way coupling. Compute the two way coupling forces

between fluid particles and solid particles.

Vorticity production. Identify which fluid particles shed

from object surfaces and are seeded as vortex particles by

approximating the boundary layer theory in SPH fluids.

Turbulence synthesis. Calculate the fluctuating velocities

stemming from the vorticity field using an SPH-like sum-

mation interpolant formulation of the Biot-Savart law.

Vorticity evolution. Evolve the generated vorticity field

by calculating the vorticity stretching and diffusion terms.

Artificial vorticity dissipation. Dissipate the generated

vorticity field using an artificial dissipation term.

Update velocities and positions. Update velocities and

positions of fluid and solid particles according to the updated

coupling forces.

Surface construction and rendering. Construct the im-

plicit surfaces based on the method of [34], and render the

extracted triangle surfaces using Pov-ray.

B. SPH Fluids

Generally, the governing Navier-Stokes equations of La-

grangian fluid solvers are given as

du

dt
= −1

ρ
∇p+ μ∇2u+ f (1)

dρ

dt
= −ρ∇ · u (2)

where u denotes the velocity, ρ the density, p the pressure,

f the external force, and μ viscosity coefficient.

SPH method discretizes the continuum into a collection

of particles, and every particle carries individual properties.

A field variable A at location xi is estimated by a weighted

sum of neighboring particles j located within a distance h:

A(xi) =
∑
j

mj
Aj

ρj
W (xij , h) (3)

where mj is the mass, and xij = xi − xj . The function

W (xij , h), also written as Wij , is a smoothed and normal-

ized kernel with the support radius h [20].

We adopt the density model in [25] which allows large

density ratio to compute the particle density

ρi = mj

∑
j

W (xij , h) (4)

The symmetric pressure force F p and viscosity force F v

are formulated as:

F p
i = −mi

ρi

∑
j

mj

ρj

pi + pj
2

∇W (xij , h) (5)

F v
i =

μmi

ρi

∑
j

mj

ρj
(uj − ui)∇2W (xij , h) (6)

We adopt the PCISPH method [27], which enforces in-

compressibility and allows larger time steps, to iteratively

compute the pressure pi. In each iteration, the predicted

position x∗i (t+Δt) and velocity u∗i (t+Δt) of particle i are

computed based on xi(t), ui(t) and the predicted pressure

forces. And the predicted density ρ∗i (t + Δt) is calculated

using the updated interparticle distance x∗ij = x∗i (t+Δt)−
x∗j (t + Δt). Then, the particle pressure that corrects the

predicted density error ρ∗erri(t + Δt) = ρ∗i (t + Δt) − ρ0
is updated as

pi(t)+ = δρ∗erri(t+Δt) (7)

254

where δ is a precomputed value. Finally, the predicted pres-

sure force is used to recompute the positions and velocities

for all particles. This procedure is repeated until all predicted

density fluctuation ρ∗erri(t+Δt) is lower than a predefined

maximum value η.

C. Solid Deformation

The previous deformation methods [21], [23], [34] have

the instability problems for large deformations, and require

too restrictive time steps to handle stiff materials. We adopt

the meshless shape matching (MSM) method [33] to model

deformable objects. The idea is to replace energies by

geometric constraints and forces by distances of current po-

sitions to goal positions. These goal positions are determined

via a generalized shape matching of an undeformed rest

state with the current deformed state of the point cloud.

Specifically, given two sets of particles x0
i and xi, we find

the rotation matrix R which minimizes

∑
i

mi(R(x0
i − x0

cm)− (xi − xcm))2 (8)

where x0
cm and xcm are mass centers of the initial shape and

the current shape respectively. Then the goal position gi of

a particle i is gi = R(x0
i − x0

cm) + xcm. Finally, elastic

deformation is modeled by pulling a deformed geometry

towards the well-defined goal positions using

xi(t+Δt) = xi(t)+uiΔt+α(gi(t)−xi(t))+
(Δt)

2
f

mi
(9)

where α ∈ [0...1]. The method of [33] proves that the

way of treating the internal elastic forces keeps MSM

unconditionally stable, and allows relative larger time steps.

D. Two Way Coupling

We simulate the two-way coupling of PCISPH fluids and

MSM-based solids by combining the coupling method [34]

and [35]. The solid objects are uniformly sample with a band

of boundary particles, and the thickness of the boundary

particle band equals the support radius h of fluid particles.

Based on the method of [35], we consider the relative

contributions of the boundary particles to fluid particles

when computing densities and coupling forces for PCISPH

fluids.

IV. TURBULENCE SIMULATION

A. Vorticity Production

Objects immersed in the fluid are obvious turbulence

generators. According to boundary layer theory [36], the

friction of objects enforces a tangential flow velocity of zero

at the solid boundaries. This leads to the formation of a thin

layer with reduced flow speed, called the boundary layer.

The curl of tangential flow velocity utan in the boundary

layer leads to the creation of a thin sheet of vorticity

ω = ∇ × utan. At regions of high flow instability, the

boundary layer is separated from the solid surface, and

vorticity is ejected from the boundary layer and enters the

flow as turbulence.
Because the boundary layer is a very thin sheet, we make

an approximate assumption that the boundary layer of an

SPH-based fluid consists of fluid particles whose distances

to solid surface are less than a small threshold dT . In this

paper, we set dT = h, so the neighboring fluid particles of

all solid surface particles form the thin boundary layer. A

fluid particle of the boundary layer is called as BLFP.

Figure 3. Our vorticity production method. A BLFP j shedding from
the SP i obtains vorticity, and becomes a VP when having no neighboring
solid particles.

Then we detect the separation points (SP) where BLFPs

separate from the solid surfaces. Our approach is divided

into three steps. First, we use the gradient ∇Ci of the

smoothed color field Ci, which estimates the fluid-fluid

interface normal in [37], to calculate the normal ni of

solid particles on the solid-fluid interface. Second, by using

the formulation udiff
i =

∑
j

(ui−uj)W (xij ,h)

∑
j

W (xij ,h)
, we calculate

the smoothed relative velocity udiff
i of each solid surface

particle i relative to all its neighboring fluid particles. Third,

for each solid surface particle i, we compute the dot product

udiff
i ·ni between udiff

i and ni. If udiff
i ·ni < 0, the solid

particle i is determined as a SP.
In order to create turbulence induced by solid bodies, we

determine which BLFPs actually shed from its neighboring

SPs. For a pair of neighboring particles BLFP j and SP i,
we calculate the dot product xji · uji between their relative

position xji and their relative velocity uji. If xji · uji > 0,

the BLFP j is separating from solid boundary, and obtains

the vorticity ωj formulated as:

ωj = γ(utan
ji
× ni) (10)

where utan
ji

is the relative velocity along the tangent direction

of the solid surface. γ evaluates the effects of fluid viscosity

and solid material.
When a BLFP carrying the vorticity does not have neigh-

boring solid particles, it is regarded as a vortex particle (VP)

255

seeded into fluids. All vortex particles form the vorticity

field of the fluid flow. As shown in Figure 3, based on our

vorticity production method, the turbulent details gradually

form behind solid objects in a physically plausible way

instead of being randomly seeded [12], [15].

B. Fluctuating Velocity Computation

To incorporate turbulent fluctuations into PCISPH fluids,

we model the instantaneous velocity field u, which describes

the dynamics of fluid particles, by superposing the mean

velocity field U with a rapidly fluctuating component uv .

U is from the calculation of the momentum equation using

PCISPH method, which is described before; uv stems from

the vorticity field created by our vorticity production model.

The velocity field uv stemming from the vorticity field can

be recovered via the Biot-Savart law [38], which computes

uv at the position x that is a distance r = x − x′ from a

vortex element dx′ with vorticity ω by integrating over all

the space:

uv(x) =
1

4π

∫
ω(x′)× r

|r|3 dx′ (11)

For efficiently computing uv
i of each fluid particle, we

provide an SPH-like summation interpolant to approximate

the Biot-Savart law. Specifically, by discretizing the above

equation, we turn the integral into a summation formulation:

uv
i =

1

4π

∑
j

∫
Ωj

ω(x′)× r

|r|3 dx′

≈ 1

4π

∑
j

Vj
ω(xj)× r

|r|3

=
∑
j

mj

ρj
[ω(xj)× r]

1

4π|r|3

(12)

If the simulation has n vortex particles, a straightforward

summation would take O(nn) operations, which is too slow.

So instead, based on the principle of SPH method [20],

we only consider the influence of vortex particles within

a certain distance h. For an approximation, we replace the

term 1
4π|r|3 with the radial symmetrical smoothing kernel

W (r, h) of SPH method, and get the SPH-like summation

interpolant formulation of the Biot-Savart law:

uv
i =

∑
j

mj

ρj
[ω(xj)× r]W (r, h) (13)

where W we used is the isotropic gaussian kernel W (r, h) =
1

(2πh2)
3
2
exp(− |r|22h2).

C. Vorticity Evolution

The evolution of the generated vorticity field is described

by updating the vorticities of fluid particles according to the

Lagrangian vorticity form of the N-S equations:

dω

dt
= (ω · ∇)u+ μ∇2ω (14)

where (ω · ∇)u denotes vorticity stretching, μ∇2ω denotes

vorticity diffusion, and u is the instantaneous velocity.

We solve the vorticity stretching term by modifying its

direction with δt(ω ·∇)u [12]. The gradient of instantaneous

velocity field can be easily computed using SPH summation

interpolation method (Equation (3)).

A viscous flow rapidly dissipates vorticity according to

the vorticity diffusion term μ∇2ω. In our particle-based

turbulence method, the vorticity diffusion term is calculated

by the method of Particle Strength Exchange (PSE) [11],

[12], [16], which approximates the Laplacian operator ∇2

by spreading vorticity from a particle to its neighbors. For

each time step Δt, the vorticity increment of a particle i
according to the vorticity diffusion process is:

δωi = μΔt∇2ωi = μΔt
∑
j

mjωji

ρj
∇2W (xij , h) (15)

where ωji = ωj − ωi.

D. Artificial Vorticity Dissipation

The vorticity field evolved by the vorticity equation

(Equation (15)) has very little numerical dissipation in the

simulation. And under the action of the vorticity diffusion

term, all particles finally have the same non-zero vorticity

values. This leads to the non-zero vortical velocity field uv .

Thus, the simulated fluid keeps moving too long and cannot

calm down, which make solid-fluid coupling unrealistic and

unstable. The same problem exists in the previous methods

[11], [12]. To remedy this problem, we provide an artificial

vorticity dissipation term to gradually reduce the vorticity

strengths of fluid particles over time. Specifically, an SPH

particle i is assigned a lifetime value ti to record how

long the vorticity lasts, when it obtains the vorticity ωi or

becomes a vortex particle. Then we use a time-dependent

dissipation function τ(t) = exp(−β ∫ t2
t1

φ(t)dt), which is an

adaptation of the heat radiance function in [39], to calculate

the rest of the vorticity of particle i at time t+Δt:

ωi(t+Δt) = ωi(0) exp(−β
∫ t+Δt

0

φ(t′)dt′)

= ωi(0) exp(−β
∫ t

0

φ(t′)dt′) exp(−β
∫ t+Δt

t

φ(t′)dt′)

= ωi(t) exp(−β
∫ t+Δt

t

φ(t′)dt′)

(16)

where β is a user-defined constant, ωi(0) denotes the gener-

ated initial vorticity. We set β = 0.04, and use φ(x) = x for

computational efficiency. Figure 4 shows the value of our

time-dependent dissipation function τ(t) changes over time.

256

Figure 4. The time-dependent dissipation function τ(t).

Due to the introduced time-dependent dissipation function

τ(t), the strength of generated vorticity field will dissipate

quickly as time goes, which keeps the simulation stable, and

makes the fluid look more visually viscous and realistic.

V. RESULTS AND DISCUSSION

To assess the advantages of our method, testing cases

including both 2D and 3D have been implemented on a

PC with an Intel Dual-Core 2.8 CPU and 8GB RAM. In

3D animations, the implicit surface of the fluid is defined

using the approach presented in [34], and then the extracted

triangle meshes are rendered by Pov-ray. In 2D animations,

the effect of gravity is ignored. The parameter values of the

simulation are documented in Table I.

Table I
PARAMETER VALUES IN THE EXPERIMENTS

Properties 2D scene 3D scene Unit

Time step(Δt) 0.002 0.002 s
Initial spacing(r0) 0.008 0.02 m
Support radius(h) 0.016 0.04 m
Density(ρ0) 102-104 102-104 kg/m3

Viscosity(μ) 0.6 0.3 Pa · s

Figure 5 is an animation scenario that the fluid flows

past a fixed black cube, which demonstrates our turbulence

synthesis model. The velocity of fluid is 20m/s. Red

to yellow to blue colors illustrate that the magnitude of

ωi(t) changes from large to small. Our vorticity production

method approximating boundary layer theory in PCISPH

seeds vortex particles behind the cube (top left). The fluc-

tuating velocity uv , which is calculated by using SPH-like

summation interpolant formulation of the Biot-Savart law,

is enforced on the mean velocity field U (top right). The

spread of vorticities between fluid particles is solved by the

vorticity diffusion term(bottom left). Our artificial vorticity

dissipation term gradually reduces the vorticity strengths

over time (bottom right). In the simulation we used up to

6 k fluid particles and 210 solid particles, and the average

computational time per frame is 30 msec.

Figure 5. Our turbulence model. Vortex particle seeding (top left),
synthesis turbulence (top right), vorticity diffusion (bottom left), artificial
dissipation (bottom right).

In the 2D scenario shown by Figure 6, we employ the

turbulence synthesis method to simulate the turbulent details

induced by a fixed deformable propeller. It can be observed

that the generated turbulent details can significantly improve

the visual realism of the fluid-solid coupling.

Figure 6. Turbulent details induced by a fixed deformable propeller.

Figure 7 shows that a dolphin swims across the water

pool. Compared to the simulation only using the vorticity

diffusion term (top), the artificial vorticity dissipation term

dissipates the strength of generated vorticity field over time,

which makes the turbulence behind the dolphin more stable

and plausible (bottom). For the scenario with 100 k fluid

particles and 5 k solid particles, the average computational

time per frame is 1.5 s.

In Figure 8, we give the comparison of Yuan’s turbulence

method [12] (top) with our model (bottom). Due to the

stochastically seeded vortex particles, Yuan’s method creates

some turbulence ahead of the moving bar, which makes

the simulation unrealistic. Our method produces visually

plausible turbulence behind the elastic bar. In addition, the

artificial vorticity dissipation scheme make the turbulence

generated by our method more stable and realistic.

257

Figure 7. Dolphin swimming. Without (top) and with (bottom) artificial
vorticity dissipation.

Figure 8. 2D (top) and 3D (bottom) comparisons between Yuan’s method
[12] (left) and our method (right).

Figure 1 shows that a deformable bar interacts with

water. In Figure 1(a), the MSM-based bar is simply coupled

to PCISPH water without any turbulence model, which

produces too smooth water surface and lacks small-scale

details; Figure 1(b) shows the results of adopting adap-

tive sampling method [3] in our solid-fluid coupling. The

fluid particles around the bar are split into one tenth of

the original size. The coupling creates bigger waves and

more water splashes, however, the turbulent details still

cannot be simulated; Figure 1(c) shows the turbulent details

simulated by our method. Our turbulence synthesis model

produces visually plausible turbulence behind the elastic bar

by approximating the boundary layer theory. The artificial

vorticity dissipation makes the water calm down finally,

which can significantly improve the visual realism of the

simulation. For a better comparison, please see all these

animations in the supplemental video.

Limitations and Future Work We provide a visually

plausible way to stably model the turbulent details behind

solid bodies. However, the turbulence synthesis model does

not make energy be conserved in the generation and dissipa-

tion of the vorticity field. So our method cannot be applied

to virtual surgery systems which require physically accurate

coupling results.

Bubbles and foams in solid-fluid coupling are also crucial

for the realistic fluid simulation. In the future, we aim to

incorporate these details into our framework. In addition,

the computation will be implemented entirely on GPUs for

interactive rates.

VI. CONCLUSIONS

We have proposed a novel visually plausible method to

synthesize the turbulent details behind the objects in PCISPH

fluids. A vorticity production model, which approximating

the boundary layer theory in SPH fluid, is employed to create

visually realistic vorticities behind the moving objects. And

the fluctuating velocities from the vorticity field are enforced

on the global flow by an SPH-like summation interpolant

formulation of the Biot-Savart law. Under the influences of

an artificial vorticity dissipation term introduced into the vor-

ticity N-S equation, the vorticity field is stably evolved. Our

turbulence synthesis method successfully makes particle-

based fluid animations more visually realistic.

ACKNOWLEDGMENT

This work is supported by the National 863 Program of

China (grant no. 2012AA011803), and the National Natural

Science Foundation of China (grant no. 61300066).

REFERENCES

[1] B. Kim and Y. Liu and I. Llamas and J. R. Rossignac,
Flowfixer: Using BFECC for fluid simulation. In Proceedings
of ACM SIGGRAPH, 2005, 51-56.

[2] J. Molemaker and J. M. Cohen and S. Patel and J. Noh, Low
viscosity flow simulations for animation. In Proceedings
of ACM SIGGRAPH/Eurographics symposium on Computer
animation, 2008, 9-18.

[3] B. Adams and M. Pauly and R. Keiser and L. J. Guibas,
Adaptively sampled particle fluids. ACM Transactions on
Graphics, 2007, 48-54.

[4] B. Solenthaler and M. Gross, Two-Scale Particle Simulation.
In Proceedings of ACM SIGGRAPH, 2011, 811-818.

[5] R. Bridson and J. Houriham and M. Nordenstam, Curl-noise
for Procedural Fluid Flow. In Proceedings of ACM
SIGGRAPH, 2007.

[6] T. Kim and N. Thürey and D. James and M. Gross, Wavelet
turbulence for fluid simulation. ACM Transactions on
Graphics, 2008, 50-57.

[7] H. Schechter and R. Bridson, Evolving sub-grid turbulence
for smoke animation. In Proceedings of ACM SIG-
GRAPH/Eurographics symposium on Computer animation,
2008, 1-7.

258

[8] R. Narain and J. Sewall and M. Carlson and M. C. Lin, Fast
animation of turbulence using energy transport and procedural
synthesis. ACM Transactions on Graphics, 2008, 1661-1668.

[9] J. C. Yoon and H. R. Kam and J. M. Hong and S. J. Kang and
C. H. Kim, Procedural synthesis using vortex particle method
for fluid simulation. Computer Graphics Forum, 2009, 1853-
1859.

[10] T. Pfaff and N. Thurey and A. Selle and M. Gross, Synthetic
turbulence using artificial boundary layers. In Proceedings
of ACM SIGGRAPH Asia, 2009.

[11] B. Zhu and X. Yang and Y. Fan, Creating and preserving
vortical details in sph fluid. Computer Graphics Forum,
2010, 2207-2214.

[12] Z. Yuan and Y. Zhao and F. Chen, Incorporating stochastic
turbulence in particle-based fluid simulation. The Visual
Computer, 2012, 435-444.

[13] R. Fedkiw and J. Stam and H. W. Jensen, Visual simulation
of smoke. In Proceedings of ACM SIGGRAPH/Eurographics
symposium on Computer animation, 2001, 154-156.

[14] F. Losasso and F. Gibou and R. Fedkiw, Simulating water
and smoke with an oc-tree data structure. In Proceedings of
ACM SIGGRAPH, 2004, 457-462.

[15] A. Selle and N. Rasmussen and R. Fedkiw, A vortex particle
method for smoke, water and explosions. ACM Transactions
on Graphics, 2005, 910-914.

[16] Q. Yu and F. Neyret and E. Bruneton and N. Holzschuch,
Scalable real-time animation of rivers. In Proceedings of
EUROGRAPHICS, 2009, 125-131.

[17] T. Pfaff and N. Thuerey and J. Cohen and S. Tariq and
M. Gross, Scalable fluid simulation using anisotropic turbu-
lence particles. ACM Transactions on Graphics, 2010.

[18] I. Pars and M. J. Kim, Vortex fluid for gaseous phenomena.
In Proceedings of ACM SIGGRAPH/Eurographics symposium
on Computer animation, 2005, 261-270.

[19] T. Jang and H. Hwang and S. Cha and M. You, Simulating
Water Turbulence in SPH Fluids. In Proceedings of Computer
Graphics International, 2012.

[20] M. Müller and D. Charypar and M. Gross, Particle-based
fluid simulation for interactive applications. In Proceedings
of ACM SIGGRAPH/Eurographics symposium on Computer
animation, 2003, 154-159.

[21] M. Müller and S. Schirm and M. Teschner and B. Heidel-
berger and M. Gross, Interaction of fluids with deformable
solids. Computer Animation and Virtual Worlds, 2004, 159-
171.

[22] T. Harada and S. Koshizuka and Y. Kawaguchi, Smoothed
particle hydrodynamics on GPUs. In Proceedings of Com-
puter Graphics International, 2007, 63-70.

[23] L. P. Yang and S. Li and A. M. Hao and H. Qin, Realtime
Two-way Coupling of Meshless Fluids and Nonlinear FEM.
In Proceedings of Pacific Conference on Computer Graphics
and Applications, 2012, 2037-2046.

[24] H. Schechter and R. Bridson, Ghost SPH for Animating
Water. In Proceedings of ACM SIGGRAPH, 2012, 41-50.

[25] B. Solenthaler and R. Pajarola, Density Contrast SPH Inter-
faces. In Proceedings of ACM SIGGRAPH/Eurographics
symposium on Computer animation, 2008, 211-218.

[26] M. Becker and M. Teschner, Weakly compressible SPH
for free surface flows. In Proceedings of ACM SIG-
GRAPH/Eurographics symposium on Computer animation,
2007, 209-217.

[27] B. Solenthaler and R. Pajarola, Predictive-Corrective Incom-
pressible SPH. In Proceedings of ACM SIGGRAPH, 2009.

[28] X. He and N. Liu and S. Li and H. Wang and G. Wang, Local
Poisson SPH For Viscous Incompressible Fluids. Computer
Graphics Forum, 2012, 1948-1958.

[29] S. Hadap and N. Magnenat-Thalmann, Modeling dynamic
hair as a continuum. In Proceedings of EUROGRAPHICS,
2001, 329-338.

[30] K. Iwasaki and H. Uchida and Y. Dobashi, Fast particle-based
visual simulation of ice. In Proceedings of Pacific Conference
on Computer Graphics and Applications, 2010, 2215-2223.

[31] S. Clavet and P. Beaudoin and P. Poulin, Particle-based
viscoelastic fluid simulation. In Proceedings of ACM SIG-
GRAPH/Eurographics symposium on Computer animation,
2005, 219-228.

[32] M. Ihmsen and A. Wahl and M. Teschner, A Lagrangian
framework for simulating granular material with high detail.
Computer and Graphics, 2013, 800-808.

[33] M. Müller and B. Heidelberger and M. Teschner and
M. Gross, Meshless Deformations Based on Shape Matching.
In Proceedings of ACM SIGGRAPH, 2005.

[34] B. Solenthaler and J. Schlafli and R. Pajarola, A Unified
Particle Method for Fluid-solid Interactions. Computer
Animation and Virtual Worlds, 2007, 69-82.

[35] N. Akinci and M. Ihmsen and G. Akinci and B. Solenthaler
and M. Teschner, Versatile rigid-fluid coupling for incompress-
ible SPH. ACM Transactions on Graphics, 2012, 59-68.

[36] S. B. Pope, Turbulent flows. Cambridge university press,
2000.

[37] M. Müller and B. Solenthaler and R. Keiser and M. Gross,
Particle-based fluid-fluid interaction. In Proceedings of
ACM SIGGRAPH/Eurographics symposium on Computer an-
imation, 2005, 237-244.

[38] G. H. Cottet and P. D. Koumoutsakos, Vortex methods: theory
and practice. Cambridge university press, 2000.

[39] S. W. Hasinoff and K. N. Kutulakos, Photo-consistent recon-
struction of semitransparent scenes by density-sheet decompo-
sition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2007, 870-885.

259

