
A UNIFIED FRAMEWORK FOR JOINT VIDEO

PEDESTRIAN SEGMENTATION AND POSE TRACKING

YANLI LI, ZHONG ZHOU* and WEI WU

State Key Laboratory of Virtual Reality Technology and Systems

Beihang University, Beijing 100191, P. R. China
*zz@vrlab.buaa.edu.cn

Received 12 July 2012

Accepted 21 August 2013
Published 8 October 2013

Pedestrian segmentation and pose tracking are performed to infer human silhouettes and ske-

letons, respectively. Although the two tasks are complementary in nature, few works have been
done on combining them together to improve each other, and some related methods are limited

to still images. In this paper, we propose an approach to jointly solving them in monocular

videos via a uni¯ed framework. Basically, the framework is built on EM-based maximum

likelihood estimation, in which pose tracking is ful¯lled through Bayesian ¯ltering using body
silhouette as an observation cue, and pedestrian segmentation is inferred by guided ¯ltering

with constraint of body skeleton. The two sets of parameters are alternatively updated along the

video. In the initialization of the framework, we utilize a hierarchical shape matching scheme to
obtain the silhouette and skeleton in the ¯rst frame. Experiments on challenging pedestrian

datasets verify the approach's e®ectiveness to cluttered backgrounds, moving camera and

various articulated bodies, and the performance is improved signi¯cantly by solving the two

tasks together.

Keywords : Pedestrian segmentation; pose tracking; hierarchical shape matching; particle
¯ltering; guided ¯ltering.

1. Introduction

In the past decades, pedestrian segmentation and pose tracking remain hot topics

due to their versatile applications in areas of surveillance, human–computer inter-

action, humanoid robot, computer animation and so on. Pedestrian segmentation is

to infer human silhouettes, i.e. to determine which pixels in the image are generated

by the foreground human, and pose tracking is to estimate human skeletons, i.e. to

parse human body into several parts and estimate each part's motion. Human body

analysis is notoriously di±cult since body parts are highly articulated and people are

dressed with various clothes that obscure the important cues to distinguish body
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parts. Uneven lighting, cluttered and dynamic backgrounds cause more variations

and uncertainties.

Although pedestrian segmentation and pose tracking are often studied indepen-

dently, they are in fact inseparable. For example, most pose tracking methods, e.g.

Refs. 30 and 34, take human segmentation as a preprocessing step. This precondition

restricts the use of these techniques to static backgrounds where good segmentation

is made available by background substraction.7,15 On the other hand, object seg-

mentation without any prior knowledge is a well-known ill-posed problem. It is no

surprise that most reliable segmentation methods employ higher level knowledge

(such as object category,18 shape,10 or interactive scribbles20,33) to make the seg-

mentation problem well posed. Realizing the complementary merits of pedestrian

segmentation and pose estimation, some authors have combined them together to

iteratively update each other.5,17,22 However, these combined methods are only

limited to still images. The question is then, how to extend these methods to handle

video pedestrian segmentation and pose tracking using all available information.

In our early work,21 we have tackled the two problems together within a uni¯ed

framework. The main idea is to sequentially estimate human pose via a physics-based

Bayesian ¯ltering, and perform pedestrian segmentation by solving a Markov

random ¯eld (MRF) energy function. The major limitation of that method is high

computation time. This paper is built on the early work.21 For speeding up, we make

two advancements: (1) instead of using ine±cient mincut4 to solve the energy

function, we introduce guided ¯ltering16 for pedestrian segmentation, which has been

proven more e±cient for handling MRF-based vision problems27; (2) instead of

performing shape matching with all templates in the initial stage, we employ a

hierarchical template matching scheme, which can prune out some unmatched

templates and reduce computation time.

The structure of this paper is organized as follows. After reviewing the related

works in Sec. 2, we outline the framework in Sec. 3. The stages of framework

initialization, pose tracking and pedestrian segmentation are described in Secs. 4, 5

and 6, respectively. Experimental results are demonstrated in Sec. 7, and we con-

clude the paper in the last section.

2. Related Works

Pedestrian segmentation and pose tracking lie in the ¯elds of video object segmen-

tation and tracking, respectively. In this context, simultaneous video object seg-

mentation and tracking is the most related theme to our work, referring to the

problem of sequentially segmenting foreground objects in an unannotated video,

where pedestrian is the major actor. Existing methods can be roughly classi¯ed into

contour-based methods12,25,26,32 and region-based methods.1,3,20,23,33,35

Contour-based methods take object boundary as the main discriminative cue, in

which template matching12,32 and active contour25,26 are two popular techniques.

Template matching methods segment objects by matching the edge maps of the

Y. Li, Z. Zhou & W. Wu

1355012-2



frames with shape templates. For example, Gavrila12 performs global template

matching using Distance Transformation and Chamfer matching. The matching

involves simultaneous parameter estimation and edge matching. Thayananthan

et al.32 present a method for shape tracking by building one-to-many mapping from

image features to 3D templates, in which a multivariate relevance vector machine is

learned to select a sparse set of templates. Template matching methods,12,32 how-

ever, require to store a set of templates. Considering the high variability in the shape

and appearance of pedestrians, it is hard for the limited templates to capture all

detailed information for a particular pedestrian.

Active contour methods,25,26 also called level set, extract objects by attaching

points of the edge maps to body boundaries using a global energy function in a level-

set space. Over recent years, active contour-based methods have become very pop-

ular for object segmentation. For pedestrian segmentation, Niebles et al.26 present a

method which combines top-down prior model and bottom-up appearance cues to

extract human regions. Temporal propagation of the identi¯ed regions is performed

with bottom-up cues in a level-set framework, which takes advantage of the sparse

top-down information. The framework of Mitzel et al.25 employs an e±cient level-set

tracker in order to follow individual pedestrian over time. This low-level tracker is

initialized and periodically updated by a pedestrian detector and is kept robust

through a series of consistency checks. However, the pedestrians with weak edges

often cause edge-based active contour methods to leak out into surrounding area.

Furthermore, for highly- articulated pedestrians, the body boundaries tend to dis-

appear in the case of self-occlusion, and hence it may produce drifting problem.

Region-based methods group foreground pixels together to formulate object

regions. They can further be divided into interactive methods20,33 and appearance-

based methods.1,3,23,35 Interactive methods require users to provide interactions like

bounding boxes or scribbles for initialization. Those hard constraints con¯ne object

segmentation within the user-selected regions. For example, Li et al.20 provide brush

tools for users to control object boundaries, in which objects are extracted via per-

forming 3D graph cut-based segmentation on spatial-temporal video volumes. Sim-

ilarly, Wang et al.33 provide a painting-based user interface that allows users to easily

indicate foreground objects across space and time. The mincut solver with hierar-

chical mean-shift superpixels is utilized to optimize the MRF function. Obviously,

the interactive ¯gure-ground methods involve cumbersome interactions for indicat-

ing the ¯gure and ground regions.

Appearance-based approaches segment foreground regions by representing object

appearances with probabilistic models and classifying foreground pixels into indivi-

duals based on these models. In Aeschliman's method,1 the appearance model learnt

in the previous frame is used in the next frame to identify which pixels have high

probabilities of being part of the target. The ensemble tracker3 is based on the similar

idea but uses AdaBoost classi¯er to determine which pixels make up the target.

Considering that object segmentation without any prior knowledge is an ill-posed

problem, some top-down cues are introduced. Malcolm et al.23 use a distance penalty
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term to constrain objects in regions of interest, and hence human segmentation is

biased to remain in the object area. Various object category-speci¯c methods, e.g.

Ref. 35, utilize prior object shapes to obtain object-like segmentation. Basically, our

framework belongs to appearance-based video object extraction. The main di®erence

compared with other appearance-based methods1,3,23,35 is the utilization of pose

information to constrain human regions, which can be considered as strong top-down

information, and thus the framework can clearly extract human bodies, avoiding the

commonly existing drift problem.

3. Problem Formulation

Given an input video with multiple pedestrians, the goal of our approach is to

segment pedestrians and estimate their pose. We ¯rst obtain human bounding

box sequences, each encircling an individual human by the tracking-by-detection

method,14 and then handle each sequence respectively as follows.

Mathematically, de¯ning the sequence of pedestrian frames by fItg; t ¼ 1; . . . ;T , T

is the frame number, the task is to infer three pieces of information �t ¼ f�t;�t;�tg.
�t speci¯es the segment matte, in which �tðxÞ 2 f0; 1g indicates that the pixel x

belongs to the foreground (�tðxÞ ¼ 1) or the background (�tðxÞ ¼ 0).�t denotes the

pose parameter set, which will be described in detail in Sec. 5.1. �t is the latent

appearance parameter set. In our work, the observation data include the color and

motion parts, i.e. It ¼ fI c
t ; I

m
t g, and hence the appearance parameters involve two

sets of latent parameters, �t ¼ f� c
t ;�

m
t g, which are used to model the color and

motion distributions respectively. We formulate the task as computing the maximum

a posterior (MAP) in a ¯rst-order MRF, such that:

��
t ¼ argmax

�t

pð�tjI1; . . . ; It;��
1; . . . ;�

�
t�1Þ

¼ argmax
�t

pð�tjI1; . . . ; It;��
t�1Þ: ð1Þ

Obviously, maximizing the above posterior with respect to all parameters is in-

tractable as the state space is expensively huge. Considering that the three sets of

parameters are interrelated, we have presented a uni¯ed framework21 to iteratively

solve them. This framework is based on the early one,21 but makes two improvements

to reduce computation time: (1) using hierarchial shape matching to replace brute-

force matching in the initial stage; (2) performing pedestrian segmentation with

guided ¯ltering instead of mincut. More speci¯cally, the framework (as shown in

Fig. 1) is performed as follows:

1. E-Step I (Initialization): The initial pose and latent parameters of the ¯rst

frame are estimated with a hierarchical shape matching scheme, which will be

stated in Sec. 4.

2. M-Step (Body segmentation): The segment matte �t is derived by guided

¯ltering16 under the constraints of f�t;�tg, which will be stated in Sec. 6.
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3. E-Step II (Updating the latent parameters): Based on the re¯ned segment

�t, the latent parameters �t are re-estimated.

4. E-Step III (Pose tracking): We predict the pose and latent parameters f�tþ1;

�tþ1g in frame tþ 1 through a Bayesian ¯ltering process using the previous

segment matte �t and parameters f�t;�tg, which will be described in Sec. 5.

5. Repeat the above steps 2, 3, 4 along the video.

4. Hierarchical Shape Matching

Shape matching is used to search the best matched template from a set of templates

and extract pedestrian model in the ¯rst frame. In general case, it is the edge map

instead of the original image to be aligned with the templates. In our approach, the

edge map is given by the Pb edge detector,24 which encodes the real valued mag-

nitude and orientation information. We use Chamfer distance to measure the simi-

larity between the templates and the edge maps. Given two point sets, E ¼ feg for

the edgelets of the edge map, S ¼ fsg for the sample points of the shape template,

the Chamfer distance is a function of relative position p:

dðS;E; pÞ ¼ 1

jSj
X
s2S

min
e2LðsþpÞ

ðd1ðs; e; pÞ þ � � d2ðs; e; pÞÞ; ð2Þ

where d1ðs; e; pÞ ¼ jjðsþ pÞ � ejj2, d2ðs; e; pÞ ¼ ĝðeÞ þ ĵoðsþ pÞ � ôðeÞj, ĝð�Þ and ôð�Þ
denote the normalized magnitude and orientation value of the Pb edge, respectively,

� is a weighting constant. LðsÞ is the one-dimensional normal line segment for

the sample point s: LðsÞ ¼ flði; sÞji ¼ �MS ; . . . ;MSg, where lði; sÞ ¼ hi � sinðoðsÞÞ;
i � cosðoðsÞÞi, 2MS þ 1 is the total length of the line segment (in pixels), and oð�Þ
indicates the orientation value. The parameters in the above formula are empirically

set to � ¼ 3:0 and MS ¼ 10.

To e±ciently choose the best matched template, we organize the set of shape

templates in a hierarchial tree, in which similar templates are grouped together and

represented with a prototype. Note that all the templates and masks have been

aligned and scale normalized. Taking each shape template as a node of an undirected

complete graph (UCG) G ¼ hV ; Ê;Wi, in which V is the node set, Ê is the edge set

and W is the weighting set corresponding to the edge set. The edge weight is de¯ned

as: wði; jÞ ¼ d̂ði; jÞ þ d̂ðj; iÞ, d̂ði; jÞ ¼ dði; j; 0Þ. The construction of the tree can be

Frame

Pose tracking

Segmentation

E-Step I E-Step III E-Step III

M-StepM-Step M-StepE-Step IIE-Step II E-Step II

t = 1 t = 2  t = T

Fig. 1. The uni¯ed framework for pedestrian segmentation and pose tracking.
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considered as a problem of hierarchical graph clustering. This is a well-studied

NP-hard problem in graph theory, involving some bottom-up clustering methods,

e.g. Ref. 11, and top-down partition methods, e.g. Ref. 29. Here, we employ spectral

clustering,29 which partitions the graph into K subsets according to the normalized

cut criterion:

NcutK ¼
XK
i¼1

cutðAi;V �AiÞ
assocðAi;V Þ ; ð3Þ

where assocðA;BÞ ¼ cutðA;BÞ ¼Pu2A;v2Bwðu; vÞ.
An approximate solution is obtained using the K eigenvectors of the K largest

eigenvalues in: WX̂ ¼ �̂DW . Here X̂ is the eigenvector matrix, �̂ is the eigenvalue

matrix and Dði; iÞ ¼Pjwði; jÞ is a diagonal matrix.

Following spectral clustering,29 we recursively divide the graph to construct a

hierarchical tree. At ¯rst, nodes in the graph G are divided into K1 subsets. Then,

each subset is further divided into K2 sub-subsets. The process is recursively

implemented until the number of clustering nodes is lower than a constant value Kn.

The prototype of each subset is taken as the template with the smallest mean sim-

ilarity score to other templates in the subset. Taking each subset with its prototype

as a subtree, the hierarchical tree is constructed.

As shown in Fig. 2, shape matching is implemented as a process of traversing the

tree to ¯nd the best matched prototype. At the nonleaf level, it is the derived

prototypes to be aligned with the edge map, whereas at the leaf level, all template

exemplars are to be matched. If the similarity score of a prototype is above a

threshold, all of its subtrees would not be visited, otherwise, the prototype is added

to the list and its subtrees are traversed recursively. At last, we choose the template

with the minimum similarity score in the visiting list as the best matched shape,

NULL

Fig. 2. The hierarchical shape tree.
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meanwhile obtain the pedestrian silhouettes it represents. Besides, in the learning

phase, we have manually clicked joints of all templates, which can be directly

transferred to the frame for initializing the pose model�1. Figure 3 demonstrates the

shape matching results for an input frame, in which Fig. 3(b) is the Pb edge map of

Fig. 3(a), Figs. 3(c) and 3(d) are the corresponding silhouette and skeleton generated

after hierarchical shape matching.

5. Bayesian Filtering for Pose Tracking

Hierarchical shape matching provides initial pose information in the ¯rst frame. To

further estimate spatial-temporal poses at the remaining frames, we utilize Bayesian

¯ltering to ¯nd the best pose with the given observations. Under the assumption

that the pose at time t is only dependent on the previous pose while the observations

at time t are only dependent on the current pose, a recursive Bayes formula is

derived as:

pð�tjI1:tÞ / pðItj�tÞ
Z

pð�tj�t�1Þpð�t�1jI1:t�1Þd�t�1; ð4Þ

where pðItj�tÞ is the observation likelihood and pð�tj�t�1Þ is the temporal transition

prior.

The multi-modality of the posterior distribution has pushed current methods

towards sample techniques, in which we employ the mostly implemented particle

¯lter. In the particle ¯lter, the posterior is approximated by a ¯nite set of particles

with associated normalized weight f�i
t; �

i
tg. The posterior is generated through three

steps: (1) the particles at time t are sampled from the posterior at time t� 1, i.e.

�
ðiÞ
t / pð�tj� ðiÞ

t�1Þ; (2) the weights at time t are updated according to the likelihood

function, i.e. �
ðiÞ
t ¼ �

ðiÞ
t�1pðItj� ðiÞ

t Þ; (3) normalizing all weights to make sureP
i�

ðiÞ
t ¼ 1. The approximated posterior is taken as

P
ið� i

t �� i
tÞ.

(a) (b) (c) (d)

Fig. 3. The results obtained after initialization. (a) The input image; (b) the obtained edge map is used

for shape matching; (c) the derived silhouette (in yellow) of the matched template is overlaid on the image;

(d) the skeleton (in yellow) of the matched template is transferred to the human body (color online).
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In the past decades, kinds of pose tracking methods have been presented based on

the above general inference procedure. Their di®erences lie in the de¯nition of the

pose state, or the observation likelihoods, or the dynamic prior. Here, we build the

prior mainly on the bipedal walking motion,6 while present a novel observation

likelihood in conjunction with a physical-based pose representation.

5.1. Pose representation

This physical-based pose is 2.5D, modeled with six rigid body regions, including the

head, torso, upper/lower stance legs, upper/lower swing legs and parameterized with

� ¼ f�f ;�vg. �f ¼ fsl; rp1; rp2; lu; llg, as a ¯xed model, is set according to the

skeleton in the ¯rst frame, in which sl indicates the walking step length, rp1 and rp2
are the relative positions of the head and neck joints with respect to the body center,

lu and ll are the upper and lower leg lengths. �v is a variation model, �v ¼
fv; �hb; �ut; �uw; d�ut; d�uw; �lt; �lwg. It is used to simulate human walking, in which v

denotes the walking speed, �hb is the turning angle of the body, �ut and �uw are the

angles for the upper stance and swing legs, respectively, d�ut and d�uw are the cor-

responding angular velocities for �ut and �uw, respectively, �lt and �lw are the angles

for the lower stance and swing legs.

Using the variation model �v, we build a dynamic process to simulate human

walking, i.e. sampling the particle state �
ðiÞ
t based on the prior pð�tj� ðiÞ

t�1Þ. We build

the prior mainly on the 2D physical formulations,6 in which v and �hb both follow the

normal distributions, that is, vt � Nðvt�1; �vÞ, �hb;t � Nð�hb;t�1; �hbÞ. ð�ut; �uw; d�ut;
d�uw; �ltÞ are induced by sl and v according to the physical Motion Laws.6 The lower

swing leg angle �lw is initialized by the skeleton in the ¯rst frame and modeled as:

�lw;t � Nð�lw;t�1 þ "ð�lw;t�1 � �lw;t�2Þj�ut;t � �uw;tj; ��wlÞ: ð5Þ

Here, we use �v ¼ 7:0, �hb ¼ 3:0, " ¼ 0:3, ��wl ¼ 8:0.

5.2. Observation likelihoods

The observation likelihoods are derived with multiple cues, including the color cue

I c
t , the motion cue I m

t and the silhouette cue I s
t . We build an independent likelihood

for each cue and combine all likelihoods together to form the ¯nal likelihood:

pðItj�tÞ ¼ wcpðI c
t j�tÞ þ wmpðI m

t j�tÞ þ wspðI s
t j�tÞ: ð6Þ

Here, wc;wm and ws are the weighting values corresponding to the likelihoods. We

now describe the likelihoods according to the cue type in the following.

Color likelihood. The color likelihood is evaluated with a stable component ps
and a wandering component pw. The likelihood for a new observation conditioned on

the previous observation is formulated by:

pðI c
t j�tÞ ¼ �spsðI c

t jI c
1; �

c
sÞ þ �wpwðI c

t jI c
t�1; �

c
wÞ;
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where psð�Þ and pwð�Þ both follow the Gaussian distributions. We set � c
s ¼ 0:5,

� c
w ¼ 0:5, �s ¼ 0:8 and �w ¼ 0:2. I c

1 and I c
t�1 are the 3D Lab histograms of the leg

regions determined by �1 and �t�1, respectively.

Motion likelihood. The motion likelihood is built on the motion ¯eld obtained

by Ref. 31, which can provide the motion information about the tracked limbs

between two successive frames. The likelihood of the motion cue is given by the mean

square distance (MSD) of the projected positions fpsig and the hypothesized posi-

tions fhsig for a set of sample points:

pðI m
t j�tÞ / exp �

X
i

jjpsi � hsijj= ~N
 !

: ð7Þ

Here ~N is the number of sample points.

Silhouette likelihood. Silhouette is a binary map indicating human foreground

region, which is derived from the projection of previous silhouette �t�1 (see Sec. 6)

with optical °ow.31 The negative likelihood for silhouette cue is calculated as the

mean square error (MSE) of the predicted values fssig and the observed values fbsig
for a set of sample points inside the limb region.

pðI sj�tÞ / exp �
X
i

jjssi � bsijj= ~N

 !
: ð8Þ

Here ~N is the number of sample points.

Based on the above de¯nitions, we use particle ¯lter to sequentially estimate the

pose states. Figure 4 demonstrates the tracking results for a walking cycle.

6. Guided Filtering for Segmentation

Existing object segmentation tasks are mostly formulated as global labeling pro-

blems. That is, given a collection of pixels X ¼ fxig in the image and the binary

variant set f�ðxiÞg associated with X, if xi belongs to the foreground region,

Fig. 4. The pose tracking results. The top row shows the input frames, and the second row demonstrates

the corresponding poses.
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�ðxiÞ ¼ 1, otherwise �ðxiÞ ¼ 0. Segmenting objects is to solve an energy function

based on the MAP in Markov random ¯eld19:

EðXÞ ¼
X
i

’ðxiÞ þ
X
i;j

 ðxi;xjÞ: ð9Þ

’ðxiÞ is the data term which penalizes individual label that is not obeyed with

some inherent models, and  ðxi;xjÞ is the smooth term which encourages neigh-

boring pixels being assigned to the same label.

The energy function is then minimized via a global energy solver such as mincut.4

A major limitation of such scheme is high computation. In this section, we utilize an

alternative scheme — guided ¯ltering16 to tackle pedestrian segmentation. Com-

paring with global energy solutions, guided ¯ltering is a local optimization method,

which can be considered as a spatially smoothing operator. It achieves similar results

to global methods under the assumption that the data term plays a dominant role in

the energy function. Besides, the ¯ltering has the ability to preserve edges.

The main idea of guided ¯ltering is to perform edge-preserving smoothing under

the guide of an input map, in which the ¯lter output q is locally linear to the

guidance map I: qi ¼ axIi þ bx, 8i 2 wx, where wx is a window with radius r centered

at the pixel x, ðax; bxÞ are the linear coe±cients to be constant in wx. By minimizing

the di®erence between the ¯lter input p and output q, i.e. Errðax; bxÞ ¼
�i2wx

ððpi � qiÞ2 þ �a2
xÞ, we can obtain ax, bx and the ¯lter out q.

Here, we take the unary potential ’ðxiÞ as the ¯lter input. It allows us to utilize

multiple cues for human segmentation. In this work, four cues are integrated into the

unary potential, referring to: (1) the color term ’cðxÞ, (2) the motion term ’mðxÞ,
(3) the pose term ’pðxÞ, and (4) the segment coherence term ’sðxÞ, and thus the

unary potential can be rewritten as:

’ðxÞ ¼ �c’cðxÞ þ �m’mðxÞ þ �p’pðxÞ þ �s’sðxÞ; ð10Þ
where f�c; �m; �p; �sg are the weighting values.

Color term. The color distribution across human body is typically compact,

thus it is considered as a vital cue for segmentation. We de¯ne the color model as

K-Means clusters: � c
t ¼ f� c;J

k;t jk ¼ 1; . . . ;Kc; J 2 fB;Fgg, in which Kc is the color

cluster number (set to 3 in experiments) and � c;J
k;t is the mean color of the cluster

ðk;JÞ, B indicates the background while F indicates the foreground. The color term

is de¯ned by:

’cðxÞ ¼
dF
c ðxÞ=ðdF

c ðxÞ þ dB
c ðxÞÞ; �ðxÞ ¼ 1

dB
c ðxÞ=ðdF

c ðxÞ þ dB
c ðxÞÞ; �ðxÞ ¼ 0:

(

Here, dJ
c ðxÞ ¼ minkjjI c

t ðxÞ � � c;J
k;t jj, I c

t ðxÞ denotes the color data in Lab color

space.

Motion term. Pedestrians typically preserve relative motion with the static

background scene. Motion cue, which is invariant to illumination changes, seems to
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be more natural and robust. For building the motion models, we ¯rst obtain the

motion ¯eld31 by comparing the current frame with its subsequent frame, and then

estimate the mean motion values within the foreground and background regions,

obtaining the motion model �m
t ¼ f�m;J

t jJ 2 fB;Fgg, in which �m;J
t is the mean

motion value. The motion term is calculated as:

’mðxÞ ¼
dF
mðxÞ=ðdF

mðxÞ þ dB
mðxÞÞ; �ðxÞ ¼ 1

dB
mðxÞ=ðdF

mðxÞ þ dB
mðxÞÞ; �ðxÞ ¼ 0:

(

Here, dJ
mðxÞ ¼ jjI m

t ðxÞ � �m;J
t jj, I m

t ðxÞ involves the motion vector in pixel x.

Pose term. The pose cue ensures that pixels falling near to the skeleton would

more likely be assigned with human label and vice versa. In our case the skeleton is

modeled as a puppet of skeleton lines. As shown in Fig. 5(d), we use the distance ¯eld

along the skeleton to represent the pose term. The pose term takes the form:

’pðxÞ ¼ minðjjx� q�jj=ðrijLq � jÞ; 1:0Þ: ð11Þ

Here, q� ¼ arg minq2fLigjjx� qjj. fLiji ¼ 1; . . . ; 6g are the skeleton lines, indicat-

ing the head, torso, two upper legs and two lower legs. jLij is the line length, frig is

the width/height ratio for the skeleton region, empirically set to f1:0; 0:5; 0:34; 0:34;
0:3; 0:3g in our experiments.

Segment coherence term. This term is used to maintain temporal coherence of

segmentation along the video sequence, which is de¯ned by:

’sðxÞ ¼
cs; �ðxÞ ¼ �ðx 0Þ
1� cs; �ðxÞ 6¼ �ðx 0Þ;

�

where x 0 is the matched pixel of x in the subsequent frame, cs is a constant value

(empirically set to 0.3). Note that the coherence term ’sðxÞ in the ¯rst frame is

unavailable.

Based on guided ¯ltering,16 we perform body segmentation with three steps: (1)

obtaining the foreground likelihood map LF ¼ f’ðxÞg and the background likelihood

map LB ¼ f1� ’ðxÞg; (2) taking the grayscale image of I as the guidance map, the

(a) (b) (c) (d) (e)

Fig. 5. The human segmentation results. (a) the input frame; (b) the color map; (c) the motion map;

(d) the pose map; (e) the ¯nal re¯ned segmentation result.
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two likelihood maps are ¯ltered respectively (denoting the ¯lter outputs as L̂F ðxÞ and
L̂BðxÞ); (3) de¯ning the body matte �ðxiÞ as: �ðxiÞ ¼ �ðL̂F ðxiÞ < L̂BðxiÞÞ.

At E-Step II, we re-estimate the mean values �t ¼ f� c;J
k;t ; �

m;J
t jk ¼ 1; . . . ;Kc; J 2

fB;Fgg within the segment matte as follows: (1) sampling some pixels in the fore-

ground and background regions individually; (2) the foreground and background

pixels are clustered into Kc components using the K-Means method; (3) for each

component, its parameters f� c;J
k;t ; �

m;J
t g are statistically obtained.

The re-estimated parameters �t are used to re¯ne segmentation again. For fur-

ther re¯ning the extracted silhouette, we invoke the Bayesian matting8 to soft-

segment an eroded narrow region along the silhouette boundaries. Figures 5(b)–5(d)

demonstrate the color, motion and pose terms to the input image (Fig. 5(a)), and

Fig. 5(e) is the ¯nal re¯ned segmentation result.

7. Experimental Results

To illustrate the performance of the proposed method, we apply it with the Ethz

dataset,2 the Weizmann dataset,13 and some sequences we captured with a hand-

hold camera. The Ethz dataset2 consists of ¯ve pedestrian sequences, and the

Weizmann dataset13 is composed of 15 pedestrian sequences. Both of the two

datasets have ground truth masks, which allows us to make quantitative comparison.

The sequences we captured with a hand-hold camera are used to verify our frame-

work's robustness to moving camera. In those sequences, all human windows are

resized to 320 pixels in width. We use the Ethz dataset2 with 200 shape templates in

the initialization stage, and set the parameters as: K1 ¼ K2 ¼ 4 and Kn ¼ 10,

resulting in a 4-level tree. The other parameters are set as: guided ¯ltering's para-

meters r ¼ 2 and � ¼ 0:1, the weighting values f�c; �m; �p; �sg ¼ f0:3; 0:3; 0:2; 0:2g,
fwc;wm;wsg ¼ f0:3; 0:3; 0:4g.

For quantitative evaluation, we measure the segmentation accuracy in form of

F -measure.a F -measure ¼ 2 � pre � rec=ðpreþ recÞ, where pre is de¯ned as the ratio

of true positive pixels (i.e. pixels labeled as foreground actually belong to foreground)

to all labeled foreground pixels, and rec is de¯ned as the ratio of true positive pixels to

ground truth pixels. The pose accuracy is estimated by the Mean Square Distance

(MSD) between the lower body joints and the corresponding hand-marked joints.

7.1. Performance comparison with the early work

This work builds on our early work.21 The main limitation of the early work21 is the

computational complexity. Here we make two improvements to reduce computation

time: (1) using hierarchical shape matching to replace brute-force matching in the

initial stage; (2) using guided ¯ltering instead of mincut4 for optimizing pedestrian

segmentation. In order to verify these improvements, we compare this work with the

early work21 in terms of the two parts.

ahttp://www.dcs.gla.ac.uk/Keith/Preface.html.
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7.1.1. Hierarchical shape matching

Given 200 templates, brute-force matching would require 200 correlations. The time

needed for silhouette extraction by matching a 320 * 240 image with a template, on a

2.2GHz CPU, 3GB RAM machine, is about 0.18 seconds per frame. Thus, 36.0 s is

expected to ¯nd the best matched template with brute-force matching. Instead,

hierarchical shape matching manages to prune out most of signi¯cantly unmatched

templates, typically about 15 templates are matched and the matching time is re-

duced to 2.7 s.

7.1.2. Guided ¯ltering-based optimization

As illustrated in our early work,21 mincut4 achieves high quality results on pedestrian

segmentation, while preserves a well-known drawback, i.e. lower e±ciency. The main

reason is that it employs time-consuming a-expansion and a-b swapping. In contrast,

guided ¯ltering16 works as local smoothing with high e±ciency. The time complexity

is OðNÞ, N is the pixel number. To verify if guided ¯ltering-based optimization can

produce similar accuracy as mincut, we evaluate our approach on the Ethz and

Weizmann datasets. The comparison results are demonstrated in Table 1. As can be

seen, the guided ¯ltering-based optimization scheme leads to accuracy comparable to

those of mincut. Besides, we measured speed-ups of three times.

7.2. Framework evaluation

7.2.1. In°uence of silhouette and skeleton

The main characteristic of the framework is the combination of pose tracking and

pedestrian segmentation, in which silhouette produced by pedestrian segmentation

serves as a useful cue for pose tracking, and skeleton produced by pose tracking is

used to constrain human extraction. To verify if silhouette and skeleton have in-

°uence on pose tracking and pedestrian segmentation, respectively, we compared the

performance of pose tracking with/without silhouette, and the performance of pe-

destrian segmentation with/without skeleton. As shown in Tables 2 and 3, pedes-

trian segmentation gets improvement (about 5%) with skeleton, and pose tracking

can infer more correct limb con¯gurations with silhouette.

Table 1. Comparison of the segmentation performances for mincut
and guided ¯ltering.

Segmentation Accuracy Running Time

Method Ethz Weizmann Ethz Weizmann

Mincut4 89.6% 88.1% 9.7 s 10.2 s

Guided ¯ltering16 90.0% 88.7% 3.0 s 3.1 s

A Uni¯ed Framework for Joint Video Pedestrian Segmentation and Pose Tracking
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7.2.2. Comparison with several related works

To further analyze the framework performance, we compared our method with

several related methods, including NBest,9 template matching12 and GrabCut.28

NBest9 is used as a baseline for comparison on pose tracking, while GrabCut28 and

template matching12 are used for comparison on pedestrian segmentation.

NBest9 is a N-Best-based pose estimation method, which ¯rst generates multiple

candidate body con¯gurations, and then uses nonmaximal suppression cues to prune

out near-identical con¯gurations. Table 4 summarizes the quantitative evaluation of

our method and NBest.9 The qualitative comparison over one sequence is demon-

strated in Fig. 6. The results show that our approach outperforms NBest,9 especially

when there are inter-occlusions between the two legs.

Template matching12 performs silhouette extraction by matching the input image

with a set of templates. It is an automatic foreground segmentation method, yet the

segmentation results are sensitive to local variations since it does not consider local

appearance. As shown in Fig. 7(b), the head and hip regions are typically inaccu-

rately segmented by template matching. GrabCut28 is an interactive MRF-based

object cutout method, which commonly requires users to initially provide a bounding

box and then draw ¯gure and ground scribbles. Figure 7(c) demonstrates some ¯gure

and ground scribbles we drew on the frames, and Fig. 7(d) shows the corresponding

results obtained by GrabCut.28 Obviously, GrabCut28 requires cumbersome inter-

actions, and its results are sensitive to the interactions. Comparably, our framework

can automatically extract human silhouettes (see Fig. 7(f)) based on the inferred

Table 4. Comparison of the mean pose

errors (measured by MSD) for NBest and

our method.

Method Ethz Weizmann

NBest9 21.2 pixels 18.5 pixels

Our method 5.1 pixels 6.4 pixels

Table 2. The segmentation accuracies (measured
by F-Measure) obtained with and without skeleton.

Dataset With Skeleton Without Skeleton

Ethz 90.0% 85.7%
Weizmann 88.7% 83.2%

Table 3. The mean pose errors (measured by MSD)
obtained with and without silhouette.

Dataset With Silhouette Without Silhouette

Ethz 5.1 pixels 9.5 pixels
Weizmann 6.4 pixels 11.7 pixels
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(a)

(b)

Fig. 6. Pose tracking results for NBest and our method. (a) NBest; (b) our method.

(a)

(b)

(c)

Fig. 7. Qualitative comparison for template matching, GrabCut and our method. (a) The input frames;

(b) the silhouettes (in yellow) obtained by template matching are overlaid on the frames; (c) the fore-
ground (in yellow) and background (in blue) scribbles drew on the frames, which are interactive inputs to

GrabCut; (d) the results obtained by GrabCut based on the scribbles in (c); (e) the poses inferred by our

framework; (f ) the extracted pedestrians by our framework based on the poses in (e).
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poses (see Fig. 7(e)). Table 5 summarizes the quantitative comparison of our method

with GrabCut28 and template matching.12 To automatically evaluate GrabCut,28 we

provided no scribbles and used pedestrian windows as the bounding boxes. As can be

seen, our method achieves best performance for the Ethz and Weizmann datasets.

7.3. Robustness analysis

We demonstrate the segmentation results for six sequences in Fig. 8, in which the

¯rst three sequences come from the Ethz dataset, and the others are from the

Weizmann dataset. The ¯rst image of each row indicates the background environ-

ment where the pedestrian locates in. For saving space, we omit the remaining

Table 5. Comparison of the segmentation per-

formances (measured by F-Measure) for template

matching, GrabCut and our method.

Method Ethz Weizmann

Template matching12 82.2% 76.5%

GrabCut28 75.4% 85.5%
Our method 90.0% 88.7%

(d)

(e)

(f )

Fig. 7. (Continued)
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frames. Following up is the segmentation results for the input sequence. As can be

seen, although the human poses in the walking cycles are continuous varying under

cluttered backgrounds, the coherent optimization of our framework ensures accurate

segmentation across time. We attribute this to the utilization of pose information

and pixel correspondence (i.e. motion ¯eld) along the sequences.

Compared with the background substraction technique,7 one advantage of this

framework is its robustness to moving camera. Theoretically, this is because the

stages of hierarchical shape matching and pedestrian segmentation can extract sil-

houettes without constraint of static scene. Hierarchical shape matching performs

body extraction in the ¯rst frame of each sequence by matching the edge map with a

set of templates. It is used for still images and applied here to initialize the body

information of the input sequences, no matter the sequences are captured by a static

or moving camera. The stage of pedestrian segmentation obtains body silhouettes by

optimizing foreground regions with multiple cues. Generally speaking, all the cues can

be successfully inferred when the method handles moving cameras, and thus this

stage can be applied to moving cameras directly. We conducted experiments over

several sequences captured with a hand-hold camera. Figure 9 demonstrates the

results on two sequences. From the demonstration, we can see that even the sequences

contain arbitrary camera motion, our method still acquired clear human silhouettes.

Yet if the frequency of the camera is too low, the optical °ow will be unavailable, and

the method will fail to estimate motion cues for silhouette extraction.

7.4. Failure cases

Our method works under the assumption that the pedestrian in the ¯rst frame of

each sequence can be successfully extracted via hierarchical shape matching. Yet

(a) (b)

(c) (d)

(e) (f )

Fig. 8. Segmentation results for pedestrian sequences from the Ethz and Weizmann datasets.
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such an assumption may not hold in some cases. Figure 10 illustrates some fail cases

of our method over the images from the Fudan-Penn dataset. As illustrated, those

pedestrians were not successfully extracted under the cases of similar clothes color to

the backgrounds, severe occlusion or cluttered backgrounds.

(a) (b)

Fig. 9. Segmentation results for two pedestrian sequences captured by a hand-hold camera.

Fig. 10. Failure cases for segmenting pedestrians via hierarchical shape matching, in which the pedestrian

silhouettes (in yellow) are overlaid on the images.

Fig. 11. Failure cases for segmenting pedestrians under occlusion.
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Pedestrians tend to be occluded by each other in real scenes. In order to test if our

method can be applied to multi-human segmentation, we considered two sequences

with multiple pedestrians, in which temporal and spatial occlusions exist between the

pedestrians. Figure 11 shows an example of segmenting pedestrians with severe oc-

clusion, and Fig. 12 demonstrates an example for segmenting pedestrians with

similar color. As illustrated, the pedestrians are wrongly segmented under severe

occlusion in Fig. 11, and that the leg and head regions are often mislabeled in Fig. 12.

This is expected since our method segments each pedestrian individually and takes

no consideration of their occlusion.

8. Conclusion and Discussion

In this paper, we have proposed a method for joint pedestrian segmentation and pose

tracking along monocular videos, in which pose tracking and pedestrian segmenta-

tion interact closely to create positive feedbacks to improve performance. This

method extends the original EM style framework.21 As described earlier, the major

limitation of the original framework21 is the computation time. For solving this

problem two improvements are presented in this paper. First, using hierarchical

shape matching to replace brute-force shape matching in the initial stage, our

method can extract pedestrians by matching with only a few templates. Second, the

guided ¯ltering-based optimization scheme is employed to replace the ine±cient

mincut in the stage of pedestrian segmentation, which achieves comparable results

and obtains speed-ups of several orders of magnitude. As to the future application,

we hope this kind of method can be used to drive the 3D human animations to

augment virtual reality systems.36

The main limitation of the method lies in its sensitiveness to occlusion, thus one

possible direction is to extend the framework to deal with occlusion so that the

further method can handle multiple pedestrians' segmentation in crowded scenes. To

Fig. 12. Failure cases for segmenting pedestrians with similar color.
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develop a real-time system, the stages of pose tracking and pedestrian segmentation

should be re-designed for implementation in parallel graphics hardware.
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