Robust Trajectory Clustering for Motion Segmentation (ICCV 2013 paper supplementary documentation)

Feng Shi ${ }^{1}$, Zhong Zhou ${ }^{1}$, Jiangjian Xiao ${ }^{2}$, Wei Wu ${ }^{1}$
${ }^{1}$ State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, China
\{shifeng, zz, wuwei\}@vrlab.buaa.edu.cn
${ }^{2}$ Ningbo Industrial Technology Research Institute, CAS, China
xiaojj@nimte.ac.cn

1. Introduction

This documentation provides the mathematical derivation of Eq. (4) and Eq. (5) in Algorithm 2 of the main manuscript.

2. Derivation of Eq. (4) in Algorithm 2

Form $\operatorname{vec}(\tilde{W})=\left(\left(\tilde{w}^{1}\right)^{T}, \ldots,\left(\tilde{w}^{2 P}\right)^{T}\right)^{T}, \operatorname{vec}(C)=$ $\left(\left(c^{1}\right)^{T}, \ldots,\left(c^{2 P}\right)^{T}\right)^{T}$, and

$$
\Psi=\left(\begin{array}{ccc}
\Pi^{1} \Omega_{d} X & & \\
& \ddots & \\
& & \Pi^{2 P} \Omega_{d} X
\end{array}\right)
$$

the error function in Eq. (3) can then be rewritten as:

$$
\begin{equation*}
f(X, C)=\frac{1}{2}\|\Psi v e c(C)-\operatorname{vec}(\tilde{W})\|_{2}^{2} \tag{s.1}
\end{equation*}
$$

With the known X, computing C that minimizes Eq. (s.1) is equivalent to computing the optimal solution of a linear programming problem in the least squares sense. To solve it, we calculate the first-order derivative of the error function in Eq. (s.1) as:

$$
\begin{equation*}
\frac{d f(\operatorname{vec}(C))}{d \operatorname{vec}(C)}=\Psi^{T} \Psi \operatorname{vec}(C)-\Psi^{T} \operatorname{vec}(\tilde{W}) \tag{s.2}
\end{equation*}
$$

Let $d f(\operatorname{vec}(C)) / d v e c(C)=0$, the global minimum of Eq. (s.2), i.e. the least squares solution of C, is obtained as:

$$
\operatorname{vec}(C)=\left(\Psi^{T} \Psi\right)^{-1} \Psi^{T} \operatorname{vec}(\tilde{W})
$$

3. Derivation of Eq. (5) in Algorithm 2

Denote $r^{p}=\tilde{w}^{p}-\Pi^{p} \Omega_{d} X c^{p}$ as the residual between the measured and estimated trajectory of point p, the error function in Eq. (3) can be rewritten as:

$$
\begin{equation*}
f(X, C)=\frac{1}{2} \sum_{p=1}^{2 P}\left(r^{p}\right)^{T} r^{p} \tag{s.3}
\end{equation*}
$$

Given the known trajectory coefficient matrix C, the first-order and second-order differentials of the error function in Eq. (s.3) are:

$$
\begin{align*}
d f & =\frac{1}{2} \sum_{p=1}^{2 P}\left(\left(d r^{p}\right)^{T} r^{p}+\left(r^{p}\right)^{T} d r^{p}\right)=\sum_{p=1}^{2 P}\left(d r^{p}\right)^{T} r^{p} \\
d^{2} f & \approx \sum_{p=1}^{2 P}\left(d r^{p}\right)^{T} d r^{p} \tag{s.4}
\end{align*}
$$

where the second-order term $d^{2} r^{p}$ is neglected in $d^{2} f$.
Subsequently, the first-order differential of the residual r^{p} is derived as:

$$
\begin{equation*}
d r^{p}=-\Pi^{p} \Omega_{d} d X c^{p} \tag{s.5}
\end{equation*}
$$

By using the equality $\operatorname{vec}(B X A)=\left(A^{T} \otimes B\right) \operatorname{vec}(X)$ [1], we then vectorize both sides of Eq. (s.5) into:

$$
\begin{equation*}
d r^{p}=-\left(\left(c^{p}\right)^{T} \otimes\left(\Pi^{p} \Omega_{d}\right)\right) \operatorname{vec}(d X)=-J^{p} \operatorname{vec}(d X) \tag{s.6}
\end{equation*}
$$

where $J^{p}=\left(c^{p}\right)^{T} \otimes\left(\Pi^{p} \Omega_{d}\right)$.
According to the chain rule of differential calculus [1], we substitute Eq. (s.6) to Eq. (s.4), and obtain:

$$
\begin{align*}
d f & =\operatorname{vec}(d X)^{T}\left(-\sum_{p=1}^{2 P}\left(J^{p}\right)^{T} r^{p}\right) \\
d^{2} f & \approx \operatorname{vec}(d X)^{T}\left(\sum_{p=1}^{2 P}\left(J^{p}\right)^{T} r^{p}\right) \operatorname{vec}(d X) \tag{s.7}
\end{align*}
$$

So, Eq. (5) is derived:

$$
g=-\sum_{p=1}^{2 P}\left(J^{p}\right)^{T} r^{p}, H=\sum_{p=1}^{2 P}\left(J^{p}\right)^{T} J^{p}
$$

References

[1] J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econometrics, 2nd edition. Wiley, 1999.

