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1. Introduction
This documentation provides the mathematical deriva-

tion of Eq. (4) and Eq. (5) in Algorithm 2 of the main
manuscript.

2. Derivation of Eq. (4) in Algorithm 2
Form vec(W̃ ) = ((w̃1)T , ..., (w̃2P )T )T , vec(C) =

((c1)T , ..., (c2P )T )T , and

Ψ =

 Π1ΩdX
. . .

Π2PΩdX


the error function in Eq. (3) can then be rewritten as:

f(X,C) =
1

2
∥Ψvec(C)− vec(W̃ )∥22 (s.1)

With the known X , computing C that minimizes Eq.
(s.1) is equivalent to computing the optimal solution of a
linear programming problem in the least squares sense. To
solve it, we calculate the first-order derivative of the error
function in Eq. (s.1) as:

df(vec(C))

dvec(C)
= ΨTΨvec(C)−ΨT vec(W̃ ) (s.2)

Let df(vec(C))/dvec(C) = 0, the global minimum of
Eq. (s.2), i.e. the least squares solution of C, is obtained
as:

vec(C) = (ΨTΨ)−1ΨT vec(W̃ )

3. Derivation of Eq. (5) in Algorithm 2
Denote rp = w̃p − ΠpΩdXcp as the residual between

the measured and estimated trajectory of point p, the error
function in Eq. (3) can be rewritten as:

f(X,C) =
1

2

2P∑
p=1

(rp)T rp (s.3)

Given the known trajectory coefficient matrix C, the
first-order and second-order differentials of the error func-
tion in Eq. (s.3) are:

df =
1

2

2P∑
p=1

((drp)T rp + (rp)T drp) =
2P∑
p=1

(drp)T rp

d2f ≈
2P∑
p=1

(drp)T drp

(s.4)
where the second-order term d2rp is neglected in d2f .

Subsequently, the first-order differential of the residual
rp is derived as:

drp = −ΠpΩddXcp (s.5)

By using the equality vec(BXA) = (AT ⊗ B)vec(X)
[1], we then vectorize both sides of Eq. (s.5) into:

drp = −((cp)T ⊗ (ΠpΩd))vec(dX) = −Jpvec(dX)
(s.6)

where Jp = (cp)T ⊗ (ΠpΩd).
According to the chain rule of differential calculus [1],

we substitute Eq. (s.6) to Eq. (s.4), and obtain:

df = vec(dX)T (−
2P∑
p=1

(Jp)T rp)

d2f ≈ vec(dX)T (

2P∑
p=1

(Jp)T rp)vec(dX)

(s.7)

So, Eq. (5) is derived:

g = −
2P∑
p=1

(Jp)T rp,H =
2P∑
p=1

(Jp)TJp
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