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ABSTRACT
In this paper, a new trajectory clustering algorithm for mo-
tion segmentation is proposed. Our key contribution is to
use temporal smoothness constraint to facilitate segmentation
of incomplete trajectories, which leads to high robustness to
missing data. We further show that most motions in fore-
ground of a scene can be approximately represented by a set
of translational motion models. Based on this assumption, a
new clustering strategy is proposed to separate foreground ob-
jects from background. Finally, a series of experiments show
that our approach is more effective and outperforms several
state-of-the-art methods.

Index Terms— Motion Segmentation, Trajectory Clus-
tering, Temporal Smoothness

1. INTRODUCTION

Segmenting a video into multiple temporally consistent clus-
ters according to their motions is referred to as motion seg-
mentation. The importance and the variety of the possible
applications make the problem be an active topic in computer
vision. In this paper, we focus on sparse methods in motion
segmentation, i.e. trajectory clustering algorithms. Please see
Figure 1 as an illustration of trajectory clustering algorithm.

In this field, the most important class of algorithms is
multi-body factorization methods [1, 2, 3, 4, 5], and their un-
derlying idea is using motion subspaces constraints, where the
trajectories of the same motion can span a low-dimensional
linear subspace and different motions may distribute in dif-
ferent subspaces. Based on this fact, segmenting a video con-
taining various types of motion (e.g. independent, articulated,
rigid, non-rigid or any combination of them) can be cast as
a subspace separation problem, and thus can be solved in a
unified way. However, this kind of algorithm has an inher-
ent drawback, which requires an assumption that each mo-
tion should have a sufficiently large set of complete trajecto-
ries. If input data is highly fragmented, which are common
phenomena in real world tracking, the performance of multi-
body factorization methods will deteriorate drastically. In re-
cent years, a few clustering methods [6, 7, 8, 9] which do not
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Fig. 1. Trajectory clustering algorithm applied on the video
‘carsTurning’ of the Hopkins 155+16 dataset. (a) Input trajec-
tories, (b) ground-truth segmentation, different colors indicate
different motions in the video, (c) clustering result of [4], (d)
clustering result of our algorithm.

require any completion of trajectories are proposed for mo-
tion segmentation. These methods measure similarities be-
tween trajectories based on a motion model, and then employ
a common clustering technique, such as spectral clustering,
to segment trajectories. Compared to multi-body factoriza-
tion methods, these motion model-based methods have sig-
nificant advantage in handling incomplete trajectories, but re-
quire more accurate motion models. It will often lead to poor
performance when they were applied to segment a video con-
taining motions that deviate from underlying motion model.

We propose a new trajectory clustering algorithm for mo-
tion segmentation that combines advantages of the two kinds
of algorithms described above. Our method is highly robust
to missing data, and possesses ability to segment video se-
quences that include various types of motion. The first step
of our method is to decompose the input trajectories into a set
of Discrete Cosine Transform (DCT) bases and correspond-
ing coefficients with a non-linear optimization scheme. By
this way, we can exploit temporal smoothness of trajecto-
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ries to compactly approximate the bases of trajectories with
predefined vectors. This results in a significant reduction in
unknowns, and increases robustness in handling incomplete
trajectories. Another benefit of using DCT basis is that it
makes the coefficients of trajectories to be an effective way
to measure trajectory similarities. Therefore, we next per-
form cluster analysis on the coefficients of trajectories. We
further observe that trajectories belonging to the same fore-
ground object in a scene can be approximately described by
a translational motion model due to spatial proximity. Then
based on this assumption, a new clustering strategy is pre-
sented, where we first separate foreground trajectories from
background and then divide the foreground trajectories into
different partitions using a translational model-based cluster-
ing method. Finally, we evaluate our approach on the Hopkins
155+16 dataset [10], and obtain more accurate segmentation
results than existing motion segmentation algorithms.

2. PROPOSED ALGORITHM

In this paper, we suppose the trajectories of feature points
have been obtained from some existing trackers such as KLT
tracker [11] on the video.

2.1. Matrix Factorization of Trajectory Data

Given trajectories of P tracked feature points in a video with
F frames, we use T (p) = (xp

1, ..., x
p
F , y

p
1 , ..., y

p
F )

T to de-
note the pth trajectory, where xp

f and ypf are the X and Y

coordinates of the pth point at frame f . Our goal is to parti-
tion the P trajectories into different groups according to their
corresponding motions. We first form a measurement matrix
W ∈ RF×2P by arranging the X and Y coordinates of all
trajectories vertically:

W =

 x1
1 y11 · · · xP

1 yP1
...

...
. . .

...
...

x1
F y1F · · · xP

F yPF

 (1)

Assuming rank(W ) = r, W can then be decomposed as:
W = BC, where the columns of B ∈ RF×r are the bases of
the column space of W , and the 2pth−1 and 2pth columns of
C ∈ Rr×2P are the corresponding coefficients of the X and
Y coordinates of T (p). As discussed below, when appropriate
bases are chosen, the coefficients of T (p) can provide a good
measure of trajectory similarity. Thus, we intend to perform
cluster analysis on the trajectory coefficients, and then to label
the trajectories accordingly.

Generally speaking, due to occlusions and tracker limita-
tions, there usually have some incomplete trajectories in the
input to our algorithm. It may result in a particular challenge
in the pre-step of clustering trajectory coefficients: factorizing
W with missing data. To solve this problem, we propose to
use temporal smoothness constraint of trajectories to exploit

Algorithm 1 Alternated Least-Squares algorithm to factorize W

1: Input X = [Ir, 0]
T .

2: Repeat
3: Compute C with Eq. (4).
4: Compute B with Eq. (5), then X = (Ωd)

TB.
5: Orthogonalize the columns of X .
6: Until convergence.

inherent property of the natural deforming objects, which has
been successively used in algorithms that reconstruct scene
from tracked feature points [12, 13]. In our setup, the tempo-
ral smoothness of T (p), p = 1, ..., P suggests that the values
in each column of W vary smoothly over time, thus can be
considered as samples of a smooth signal. This means that
there exist a number of predefined bases which can approx-
imate the columns of W compactly, and therefore results in
a significant reduction in unknowns and corresponding accu-
racy of estimation of trajectory coefficients. Here, consider-
ing the effectiveness of the DCT basis in representing mo-
tion trajectories [12, 13], we use a linear combination of d
(r < d ≪ F ) DCT vectors to approximate the column bases
of W . Then W can be factorized as:

W = BC = ΩdXC =
(
θ1 · · · θd

)
XC (2)

where θj denotes the jth DCT basis, and its ith component is
denoted by θji as:

θji =
σj√
F

cos(
π(2i− 1)(j − 1)

2F
), σ1 = 1, σj =

√
2, j ≥ 2

(3)
Let wp and wf denote the pth column and f th row of W ,

and cp and bf denote the pth column and f th row of C and
B. In the case of missing data, let w̃p and w̃f denote the
observed entries in wp and wf . We then use an Alternated
Least-Squares (ALS) algorithm described in Algorithm 1 to
factorizes W .

The Eq. (4) and (5) in Algorithm 1 are of the form:

vec(C) = (ΨTΨ)−1ΨT vec(W̃ ) (4)

where Ψ is a block diagonal matrix which is formed by
ΠpΩdX, p = 1, ..., 2P , Πp is defined as a row-amputated
identity matrix such that ΠpΩdX has the rows in ΩdX
that correspond to the rows of entries in w̃p, vec(W̃ ) =
((w̃1)T , ..., (w̃2P )T )T , vec(C) = ((c1)T , ..., (c2P )T )T .

vec(BT ) = (ΦTΦ)−1ΦT vec(W̃T ) (5)

where Φ is a block diagonal matrix which is formed by
(Πf )

TCT , f = 1, ..., F , Πf is defined as a column-amputated
identity matrix such that CΠf has the columns in C that
correspond to the columns of entries in w̃f , vec(W̃T ) =
(w̃1, ..., w̃F )

T , vec(BT ) = (b1, ..., bF )
T .

After X and C are computed, we denote XC by S =
((s1)

T , ..., (sd)
T )T and, from Eq. (2), obtain:

((s1)
T , ..., (sd)

T )T = ((θ1)T , ..., (θd)T )TW (6)
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Then, the first row of S equals to

s1 = (θ1)TW =
√
F (w1, w2, ..., w2P−1, w2P ) (7)

where (w2P−1, w2P ) = (
∑F

f=1 x
p
f ,
∑F

f=1 y
p
f )/F is the cen-

troid of T (p). Thus, s1 can represent the average spatial loca-
tion of T (p), p = 1, ..., P . Subsequently, combining Eq. (7)
with (2), we have:

d∑
j=2

θjsj = W − θ1s1 = (w1 − ew1, ..., w2P − ew2P ) (8)

where e = (1, ..., 1)T ∈ RF . Note that, the 2P th − 1 and
2P th columns of

∑d
j=2 θ

jsj can capture the variation in

T (p) relative to its centroid. Thus,
∑d

j=2 θ
jsj , and hence

(sT2 , ..., s
T
d )

T , can represent the P trajectories’ local variation
around the average spatial location.

Next, utilizing SVD, we decompose S into U ∈ Rd×r,
D ∈ Rr×r and V T ∈ Rr×2P , and specify the matrix B and C
as ΩdUD and V T respectively. Note that, the coefficients ma-
trix C is now given by (D−1UT )S. It follows that the coeffi-
cients of T (p), i.e. (c2p−1, c2p), are just the weighted sum of
its average spatial location and its local variation around that
location. As a consequence, C(p) = ((c2p−1)T , (c2p)T )T

can be seen as the integration of spatial location and motion
pattern of T (p), and thus can be used to distinguish trajecto-
ries belonging to different motions. So, in the next subsection,
we are going to perform clustering on C(p), p = 1, ..., P , and
then to label the trajectories accordingly.

2.2. Divisive Clustering of Trajectory Coefficients

Given vectors that can measure trajectory similarities, a com-
mon way to cluster them is to compute pairwise distances
between all vectors firstly, and then to analyze the pairwise
distances with spectral clustering or agglomerative clustering.
In fact, this pairwise analysis can only compare the similar-
ity of trajectories on the basis of translational motion mod-
els, and Brox et al. [7] indicated that, relying on the fact that
translational models are a good approximation for spatially
close points, the pairwise analysis can also be used to seg-
ment videos that contain non-translational motions. However,
we find that feature points of background of a scene are usu-
ally distributed over a wide area, thus their non-translational
motions cannot be approximately represented by a transla-
tional model. As a result, poor performance of the pairwise
analysis based clustering algorithms will often be triggered
when they were applied to video captured from a freely mov-
ing camera. To circumvent this problem, we have developed
the following divisive clustering algorithm, which first sepa-
rates foreground from background based on motion subspaces
constrains then segments foreground using pairwise analysis,
to segment C(p), p = 1, ..., P :
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Fig. 2. The segmentation results of our method on the video
‘1R2RCR’ of the Hopkins 155 dataset. (a) ground-truth seg-
mentation, object with red dots and with green stars denote
two clusters in foreground while with yellow pluses denotes
the background cluster, (b) result of step 2 of our clustering
algorithm, (c) result of step 3 of our clustering algorithm, (d)
final result of our clustering algorithm. For better visualiza-
tion, we only render the feature points in one frame.

1. Compute affinity matrix A for C(p), p = 1, ..., P :

A(i, j) = exp(−∥C(i)− C(j)∥2) (9)

2. Apply spectral clustering to A to segment all trajecto-
ries into 2 clusters, and choose the one with lower di-
mension as background1.

3. Iterate the following two steps until convergence:

(a) Compute the bases of background subspace
by performing SVD on the matrix formed by
C(p), p ∈ background : N = (µ1, µ2, µ3, µ4).

(b) Compute projection error of trajectories to back-
ground subspace: ϵ(p) = ∥(I2r−N(N)+)C(p)∥2,
then apply K-means to ϵ(p) to repartition all tra-
jectories into foreground and background2.

4. Compute affinity matrix for C(p), p ∈ foreground
with Eq. (9), and apply recursive 2-way Ncut [14] to
the affinity matrix to generate clusters in foreground3.

Figure 2 illustrates a series of segmentation results of our
method on the video sequence ‘1R2RCR’ from the Hopkins
155 dataset.

1The dimensions of the clusters are computed by SVD.
2N+ denoting the Moore-Penrose pseudo-inverse of the matrix N .
3The number of clusters in foreground is assumed to be known a priori.
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Method GPCA ALCsp SSC-N Our Method
Mean 10.34% 3.56% 1.24% 0.86%

Median 2.54% 0.50% 0.00% 0.00%

Table 1. Classification errors for the Hopkins 155 dataset.
ALCsp and SSC-N represent ALC with sparsity-preserving
projection and SSC with Normal random projection.

Method GPCA ALCsp SSC-N Our Method
12 sequences with missing data, missing: 4%-35%
Mean 14.94% 1.28% 0.13% 0.16%

Median 9.32% 1.07% 0.00% 0.08%
4 sequences with missing data, missing: 15%-60%
Mean 46.53% 14.04% 18.13% 3.16%

Median 42.01% 12.62% 19.84% 2.49%

Table 2. Classification errors for 16 additional Hopkins video
sequences.

3. EXPERIMENTS

In this section, we evaluate our method on both the Hopkins
155 dataset [10] and 16 video sequences that are complement
of the standard Hopkins dataset4 by comparing with state-of-
the-art motion segmentation algorithms. In all experiments,
we set d = max(min(0.1 × F, 15), 5), and choose r from 2
to 10 to provide the best results.

3.1. Quantitative Evaluation

We first evaluate our method on the Hopkins 155 dataset by
comparing with GPCA [3], ALC [4] and SSC [5]. The dataset
contains examples of independent, articulated, rigid, and non-
rigid motions, and its video sequences don’t contain any miss-
ing entries. The classification errors (ration of misclassified
trajectories to total trajectories) of the four algorithms are
shown in Table 1. We then compare our method with GPCA,
ALC and SSC on 16 additional Hopkins video sequences that
contain missing data, and report the classification errors in
Table 2.

As Table 1 and 2 show, our method achieves the best per-
formance among the four algorithms, and when percents of
missing entries in video sequences are increasing, the superi-
ority of our method becomes more significant.

3.2. Qualitative Evaluation

The above experiments show the advantage of our method:
highly robust to missing data and works well on various types
of motion. To further demonstrate this point, we make a fea-
ture point sequence by running the tracker in [15] on the video
‘1R2RCR’ of the Hopkins 155 dataset. This video sequence
contains not only a non-translational background motion, but
also significant missing data. We then perform our method,

4Available from http://www.vision.jhu.edu/data/hopkins155/
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Fig. 3. The clustering results of our method, Brox&Malik
and ALC-miss on the video ‘1R2RCR’ of the Hopkins 155
dataset. (a) frame 16 of ‘1R2RCR’, object overlaid by letter
‘A’ and ‘B’ denote two clusters in foreground while by letter
‘C’ denotes the background cluster, (b) result of our method,
(c) result of Brox&Malik, (d) result of ALC-miss. For better
visualization, we only render the feature points in one frame.

Brox&Malik [7] and ALC on it, and results are illustrated
in Figure 3. It can be seen that only our method gives cor-
rect segmentation result. The failure of ALC is primarily at-
tributed to its limited ability to handle incomplete trajectories,
and of Brox&Malik is from the inability of its underlying mo-
tion model to describe the background motion.

4. CONCLUSION

This paper proposes a new trajectory clustering algorithm for
motion segmentation. Compared to existing methods, the in-
novations of our work include two parts. First, we use tem-
poral smoothness of trajectories to handle incomplete trajec-
tories segmentation. Second, we employ a novel clustering
strategy that first separates foreground from background and
then partition foreground into different clusters. Experiments
show the advantage of our method in terms of robustness to
missing data and effective range. Especially, when applied to
a video sequence containing both significant occlusions and
complex motions, other state-of-the-art motion segmentation
algorithms may fail while our method gives expected results.
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