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Abstract. We introduce a novel approach for feature preserving mesh
simplification based on vertex Laplacians, specifically, the uniformly
weighted Laplacian. Our approach is unique in three aspects: 1) a Lapla-
cian based shape descriptor to quantize the local geometric feature sensi-
tivity; 2) a Laplacian weighted cost function that is capable of providing
different retaining rates of the geometric features; and 3) an optimal clus-
tering technique which combines K-means and the Laplacian based shape
descriptor to implement vertex classification. During simplification, the
Laplacian based shape descriptors are firstly computed, and then a cho-
sen error function to be optimized is penalized by our Laplacian weighted
cost function, leading it to feature preserving. By applying the clustering
technique, different simplification operators may be applied to different
vertex groups for different purposes. Different error functions have been
implemented to demonstrate the effectiveness, applicability and flexibil-
ity of the approach. Experiments conducted on various models including
those of natural objects and CAD ones, show superior results.

Keywords: Mesh simplification, Laplace operator, Feature preserva-
tion, Feature detection.

1 Introduction and Related Work

Simplification of geometric models has become a hot topic today due to the rapid
development of 3D scanning and acquisition technology. The acquired complex
polygonal meshes face challenges in rendering, processing, and so on. Hence, after
acquisition of geometric data, a simplification step is necessary, and its output
should be a faithful approximation of the input. Generally, human vision is more
sensitive to fine detail features and distinct sharp parts. Those detail features
are usually visually meaningful fine scale components of a natural object, and
typically require fine meshes to represent them well. This paper focuses on how
to preserve these detail features during mesh simplification.

In the past decades, a fair amount of research on simplification techniques
has been developed. In most existing simplification algorithms, edge collapse
[1], which simplifies models by iteratively contracting edges has been adopted
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to provide it with precise results and high performance. Among numerous edge
collapse algorithms, quadric error metric (QEM) [2], which estimates the error
introduced by a pair collapse as the distance from a vertex to a quadratic surface,
is the one with high performance but usually with the most precise results.

In order to preserve detail features of models during simplification, varieties
of feature preserving mesh simplification algorithms have been proposed. One
approach is to introduce new error arguments by geometric feature extraction.
According to this viewpoint, algorithms based on QEM were introduced to avoid
smearing out of real important features, such as [3,4,5]. The main difference
between these algorithms lies in how they expands the quadric error matric
with feature detection. Wang et al. [6] proposed a simplification algorithm based
on feature extraction with the average curvature estimation to triangle mesh.
Some direct methods such as [7] are proposed to control the relative importance
of different surface regions by a user-guided approach. Rather than optimizing
a piecewise-linear approximant of an original surface, [8] proposed an efficient
variational approach which simplify models by mutual and repeated error-driven
optimizations of a partition and a set of local proxies.

Most of the methods mentioned above do not provide users with different re-
taining rates of the geometric meaningful features. Vertex curvatures are widely
used in these methods for feature detection, but computation of curvatures is
obviously not cheap. The main contribution of this paper is to detect geometric
features with a Laplacian based shape descriptor and to preserve the geometry
feature with a Laplacian weighted cost function. Moreover, our approach is ca-
pable of providing different retaining rates of the geometric features. To the best
of our knowledge, few works have been done before on feature preserving mesh
simplification using the uniform Laplacian operator.

2 Uniform Laplacian Operator

Before describing the uniform Laplacian operator, we introduce notations. The
surface mesh is represented as a graph S = (V,E), with vertices V and edges
E, where V=[vT

1 ,v
T
2 , ...,v

T
n ]

T , vi = [vix, viy, viz ]
T ∈ R

3. If two distinct vertices
vi and vj are linked by an edge eij = vj − vi then we denote j ∈ N (i). The
normal of vertex vi is denoted as ni. Furthermore, δi is the Laplacian of vi, the
result of applying the discrete Laplace operator to vi, i.e.

δi =
∑

j∈N (i)

wij(vj − vi) =

[
∑

j∈N (i)

wijvj

]
− vi, (1)

where
∑

j∈N (i) wij = 1, and the choice of weights

wij =
ξij∑

k∈N (i) ξik
(2)

defines the nature of δi. One popular choice is ξij = 1, which defines the uniform
weights, i.e. the umbrella operator.
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The umbrella operator of vi points to the centroid of its neighboring vertices.
When the umbrella operator is applied to the mesh, it smears out the real impor-
tant features of the mesh, which named shrinking. Different from many works
that try to avoid the shrinking problem, we utilize it and introduce an normal-
dependent umbrella operator to quantize geometric sensitivity. The operator will
be described and discussed in the next section.

However, the umbrella operator suffers from the problem of large inaccura-
cies for irregular meshes, which prevents us from using it for feature detection
directly. It is a linear from implying the assumption that the mesh has edges of
length 1 and all the angles between two adjacent edges around a vertex should
be equal. This is obviously not true in actual meshes, which leads to inadequacy
of the umbrella operator. Fig. 1(b) shows such a behavior, when the umbrella
operator is applied, border lines are strangely distorted into curves. To deal with
the problem caused by different length of edges, [9] presented a scale-dependent
umbrella operator. Besides, [10] presented the mean curvature normal which
compensates both for unequal edge lengths and for unequal face angles. How-
ever, they suffers from a difficulty in dealing with arbitrary surfaces, such as
quad meshes. For more details refer to [11].

3 Normal-Dependent Umbrella Operator

To improve inaccuracies of the umbrella operator, we introduce the normal-
dependent umbrella operator using the following formula:

δ̃i =

[
∑

j∈N (i)

1

|N (i)| (vj − vi)ni

]
· ni, (3)

where |N (i)| is the number of neighbors of vertex vi.
Note that when all edges are of size 1, and all the angles between two adjacent

edges around a vertex are equal, δ̃i reduces to the umbrella operator. Fig. 1(e)
shows an example of it for a triangle mesh vertex and its neighbors.

Fig. 1 demonstrates the normal-dependent umbrella operator performs more
stable for an actual mesh than the original and scale-dependent ones, partic-
ularly for sharp features such as lines and corners, meaning that it quantizes
the local geometric feature sensitivity precious more precisely. Moreover, the
normal-dependent umbrella operator is actually the projection of the umbrella
operator along the normal ni, which does not limit the umbrella operator to
triangulated surface, and it is also computationally fast. Our Laplacian based
shape descriptor which will be introduced later is based on it.

4 Mesh Simplification

In this section, the overall pipeline of the approach is first described. Laplacian
based shape descriptor is then discussed in detail, followed by the Laplacian
weighted cost function. Finally an optimal clustering technique to implement
vertex classification is discussed.
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(a) (b) (c) (d) (e)

Fig. 1. (a) Original Fandisk model; (b), (c), (d) are smoothed results by applying
umbrella operator, scale-dependent, and normal-dependent umbrella operator; (e) uni-
form (red) and normal-dependent (green) umbrella operator vectors for a vertex vi and
its 1-ring neighbours, as well as the vertex normal ni. While the other two operators
distort lines and corners, the normal-dependent one does not.

4.1 Algorithm Description

Our simplification approach is based on two steps (see Fig. 2):
A Laplacian based feature detection and vertex classification: geometry fea-

tures are first detected by calculating the Laplacian based shape descriptor,
and then an optimal clustering algorithm can be applied to divide vertices into
clusters, particularly for the CAD models.

A Laplacian-weighted simplification: a chosen error function to be optimized
is penalized by the Laplacian weighted cost function while leading to a feature
preserving simplification.

Fig. 2. Two steps of the approach. (a) Laplacian based feature detection and vertex
classification; (b) Laplacian-weighted simplification.

4.2 Laplacian Based Shape Descriptor

We use the normal-dependent umbrella operator to detect geometric features.
For each vertex vi, the length of its normal-dependent umbrella operator vector

|δ̃i| = 1

|N (i)|

[
∑

j∈N (i)

(vj − vi)

]
· ni (4)
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is the projection of δi along the vertex normal ni. Clearly, |δ̃i| is larger at crease
vertices than at flat ones. When vi and its neighbors are in the same plane,
|δ̃i| goes to zero. In addition, as discussed before, visually meaningful fine scale
components or details typically require very fine short edges to represent them
well, we thus score the geometric importance at vertex vi as

li =
|δ̃i|
ci

, where ci =
1

|N (i)|
∑

j∈N (i)

|eij |. (5)

In the remainder of this paper, we will denote this Laplacian based shape descrip-
tor as the Laplacian descriptor. By computing li for each vertex vi, a quantitative
1D data array L ∈ R

1×n is then generated as L = [l1, l2, ..., ln]. Consequently,
vertices with small li are those non-feature vertices of meshes, and vertices with
large li are those meaningful feature details.

Fig. 3 shows the Laplacian descriptor and its comparison with popular curva-
tures. As we can see in Fig. 3(b) and Fig. 3(d), Laplacian descriptors of mean-
ingful geometric feature vertices are larger than those of the non-feature vertices
in flat regions. Fig. 3(e) and Fig. 3(f) shows comparison of Laplacian descriptors
and curvatures. In Fig. 3(e) and Fig. 3(f), to enable a better visual compar-
ison, vertices are firstly sorted in ascending order by their values of features
descriptors, and then are plotted along the horizontal axis. In general, vertices
in same region (e.g., flat surface, border line) should have similar values of shape
descriptors. Take the Fandisk model in Fig. 3(a) as an example, vertices of it
can be roughly clustered into several small groups, such as flat surface vertices,
curved surface vertices, border vertices, and so on. Therefore, feature descriptors
should also have such characteristic of clustering. As can be seen in Fig. 3(e),
both the Laplacian descriptor and the mean curvature has obvious grouping
results (staircase curve), meaning that they are more precise than the other two.

Fig. 4(a) is a partial enlarged view of Laplacian descriptors in Fig. 3(e), and
is roughly divided into several segments. Fig. 4(b) is the 3D plot of vertices
corresponding to Fig. 4(a). Each segment demonstrates a small group of vertices
with the similar Laplacian descriptors, demonstrating that it is more accurate
than the smooth curvature estimation in [6] and Gaussian curvature.

4.3 Laplacian Weighted Cost Function

Since the Laplacian descriptor li gives the geometric importance for vertex vi,
we use it to guide an existing simplification method for a feature preserved
simplification. Given a chosen cost function g(), such as QEM or shortest edge
length, we apply the Laplacian weighted cost function that we design below.

f(vi) = g(vi)e
λli (6)

where λ is a scale factor and all li are linearly rescaled into range [0,1]. By
changing the value of λ, we can get different retaining rate of the geometric
features.
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Fig. 3. Feature descriptor. (a), (c) input models; (b), (d) 3D plot of Laplacian descrip-
tors; (e), (f) comparison of Laplacian descriptors and curvatures.
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Fig. 4. (a) a partial enlarged color view of Laplacian descriptors in Fig. 3(f); (b) 3D
plot of vertices corresponding to (a)

For ease of explanation, we take the shortest edge first algorithm as an exam-
ple. It first computes cost for each vertex vi as

g(vi) = min(|eij |), where j ∈ N (i), (7)

then the order of collapses is built on the basis of g(vi). This straightforward
algorithm can not preserve geometric features during simplification. Neverthe-
less, we can now improve it to a feature preserving simplification algorithm by
simply applying Equation 6 on g(vi), see Fig. 5. Most of the edge contraction
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algorithms, which can not lead to a feature preserving simplification, can also
be improved in the similar way. In the remainder of this paper, we refer to those
improved algorithms as Laplacian guided ones.

(a) (b) (c)

Fig. 5. Compare the guided shortest edge first altorithm with the original (λ = 10).
(a) original girl model (30k tri.); (b) result of the original shortest edge first algorithm
(11k tri.); (c) result of Laplacian-guided shortest edge first (11k tri.).

4.4 Vertex Classification

In many cases, one simple simplification algorithm cannot generate a satisfactory
reconstruction. Fig. 6 demonstrates such an example. This suggests that different
methods may best be applied for different purposes. Vertex classification is thus
a good way to go further. For example, if we classify vertices into two non-
feature and feature groups, we may apply different simplification operators with
different parameter selections to pursue a better reconstruction.

(a) (b) (c) (d)

Fig. 6. Boundaries are distorted when the shortest edge first algorithm is applied to
models. (a) original Mech A (30k tri.); (b) simplified Mech A (5k tri.); (c) original
Mech B (30k tri.); (d) simplified Mech B (5k tri.).

Vertices of the mesh are classified by their Laplacian descriptors. The clus-
tering is done via the K-means algorithm [12], allowing to divide vertices into
k groups. Given the Laplacian descriptor array L, we first seek a partition
L1, L2, ..., Lk to minimize the objective function

k∑

j=1

∑

li∈Lj

|li − μj |, (8)
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where Lj is a set of vertices in the j-th cluster and μj = mean(
∑

li∈Lj
li) is the

center point over the j-th cluster. In current context, vertices are divided into
two clusters, feature and non-feature (see Fig. 7). Vertex classification is usually
useful for a CAD model but not for a natural object such as Bunny in Fig. 3(c).
However, this statistical information maybe still be useful in other contexts.
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Fig. 7. (a) two clusters by K-means on Laplacian descriptors of model in Fig. 3(a); (b)
3D plot of feature vertices based on clusters in (a).

Fig. 7 demonstrates that our method yields rather pleasing results in terms of
vertex clustering. But due to the diversities and complexity of different models,
we may not get exact vertex classification even when the more advanced cluster-
ing techniques are employed. Some feature vertices might be wrongly grouped
into non-feature cluster. Therefore, a post-clustering procedure is needed. Notice
that boundary vertices for a CAD model should have at least two neighboring
feature vertices. By making good use of this property, we apply the clustering
and refinement procedure as below (see Fig. 8 for the result).

1) Compute the Laplacian descriptor array L.
2) Clustering: Apply the K-means clustering on L.
3) Refinement: If there exist vertices in the feature cluster which have less than

two feature neighbors, send the vertex in the non-feature group whose Lapla-
cian descriptor is the biggest into the feature cluster.

4) Repeat step 3 until each vertex in the feature cluster has more than two
feature neighbors, or the approach reach a certain threshold.

There has been a considerable research work on boundary detection relevant to
the problem of CAD mesh segmentation, but the main goal of the refinement
approach here is to show the advantage of using the Laplacian descriptor array
L̃, and we do not pretend in this paper to contribute in the field of CAD mesh
segmentation. To conduct a perfect boundary making of a complex model such as
Fandisk model in Fig. 3(a), more advanced classification refinement techniques
are certainly needed, for instance, contour tracking in [13].
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Fig. 8. Clustering refinement of example in Fig. 7. (a) recapturing potential feature
vertices back into the feature cluster with the classification refinement procedure; (b)
3D plot of feature vertices where blue dots mark the recaptured vertices.

Since vertices are divided into to two clusters, we can now improve the bound-
ary distorting problem in Fig. 6(b) and Fig. 6(d). For each boundary vertex, we
compute its cost g(vi) by finding the shortest edge only between its feature
neighbors instead of Equ. 7. The improved results are shown in Fig. 9.

(a) (b)

Fig. 9. Improve the shortest edge first algorithm by using different cost functions based
on vertex classification. (a) improved result of Fig. 6(b); (b) improved result of Fig. 6(d).

5 Case Study

All tested algorithms here are integrated into the same testing framework written
by Somers. Fig. 1 demonstrates that the normal-dependent umbrella operator
performs precisely on practical irregular meshes. Figs. 3 and 4 demonstrate that
the Laplacian shape descriptor produces rather pleasing results. Fig. 10 demon-
strates the successful extension of it to non-manifold and quad meshes. Table 1
summarizes the running time of computing the Laplacian shape descriptor array
L, comparing with curvature-based methods on a PC with Intel Duo 3.30GHz
processor and 4GB memory. Due to the fast normal-dependent umbrella oper-
ator, our algorithm is much more faster than the mean curvature. The mean
curvature estimation method proposed in [6] costs the similar time with ours.
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(a) (b) (c) (d)

Fig. 10. (a) non-manifold cinghiale; (b) 3D plot of Laplacian descriptors of (a); (c)
quad mesh; (d) 3D plot of Laplacian descriptors of (c)

Table 1. Time Comparison of feature detection (in s)

Model Vertices Faces Laplacian Mean Curvature
operator Curvature Estimation

Cow 2903 5804 0.004 0.009 0.006
Fandisk 6551 13098 0.009 0.021 0.012
Mech A 14999 29994 0.027 0.081 0.038
Mech B 15000 29996 0.026 0.08 0.03

Girl 15516 31028 0.028 0.122 0.043
Bunny 34834 69451 0.065 0.469 0.118

(a) QEM (b) guided QEM (c) Melax’s method

(d) guided Melax’s (e) shortest edge first (f) guided result of (e)

Fig. 11. Experiments on different error functions. (a),(b) Cow (5804 tri. to 2052 tri.);
(c),(d) Bunny (69451 tri. to 4081 tri.); (e),(f) Mech (15k tri. to 4k tri.).

Figs. 5 and 11 show some example implementations of our Laplacian-based
approach and demonstrate that it can improve different error functions to feature
preserving. All test models has distinct feature regions including creases, corners
and boundaries, those results demonstrate how important geometric structures
are preserved in the output. Fig. 12 demonstrates that our method is capable
of providing different retaining rates of the geometric features by only changing
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(a) (b) (c)

Fig. 12. Simplified Cow models from guided QEM algorithm with different retaining
rate of features (all 3k tri. to 2k tri.). (a) λ = 1; (b) λ = 10; (c) λ = 50.

(a) (b) (c)

Fig. 13. Contrast with Curvature Estimation [6] and Curvature-weighted QEM [4]
(35k tri. to 6924 tri.). (a) curvature estimation; (b) Laplacian guided QEM (λ = 10);
(c) curvature-weighted QEM.

the value of scale factor λ, which is very useful in practical application. Fig. 13
shows the comparison results for the Bunny model. Both Laplacian guided and
curvature-weighted algorithm preserve better feature details than the curvature
estimation algorithm, because of their accuracy in shape description.

6 Conclusion

We have presented a new feature preserved simplification approach. Geometry
features are first detected using a Laplacian based shape descriptor. An optional
clustering technique which combines K-means and vertex Laplacians is devel-
oped to implement vertex classification, different simplification and refinement
operators can then be applied on different vertex groups for different purposes.
Moreover, we introduce a Laplacian weighted cost function which is capable of
providing different retaining rates of the geometric features. In addition, our ap-
proach may be applied on different error functions, leading them to feature pre-
serving. The Laplacian based shape descriptor could be easily extended to handle
arbitrary mesh topology. Due to advantages of it, our method is computationally
efficient and can be easily implemented. Experimental results demonstrate that
our algorithm has strong applicability and yields superior results.
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