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Abstract. RTI(Run-Time Infrastructure) provides services for HLA-based dis-
tributed simulation, and decides to a great extent the simulation scalability and 
efficiency. Distributed RTI has good scalability, but its time cost is always higher 
because of the architecture complexity. BH RTI is based on a distributed RTI 
architecture. Some techniques are used to overcome the problem of time cost. 
LoI-based data delivery algorithms are presented to speed up data delivery. 
PDU(protocol data unit)-function registry and RTI process model are designed to 
promote the efficiency of data packet processing. Experiment results illustrated 
that distributed BH RTI depressed the negative influence of architecture com-
plexity and achieved a relatively lower time cost. 

1   Introduction 

High Level Architecture (HLA) is the prevailing standard of distributed simulation. It 
consists of three parts, framework and rules, object model template (OMT) and inter-
face specification[1]. Run-Time Infrastructure (RTI) is prescribed to implement the 
interface specification. It provides services for HLA-based simulation, and decides to a 
large extent the simulation scalability and efficiency. The standard of HLA 1.3 has 
been widely used in military fields[1]. However, when HLA was approved as IEEE 
1516 standard in September 2001, a lot of changes were made[2,3,4]. 

Some RTIs have been developed such as DMSO RTI NG[5,6], pRTI[7], MÄK 
RTI[8], BH RTI[9], KD-RTI[10] and starlink[11] etc.. Because HLA doesn’t  
specify RTI implementation and interoperability, RTI design differs much.  
Different RTI cannot interoperate without the participation of each producers[12]. 
RTI architecture and performance are one of the main concerns in HLA/RTI ap-
plications. 

This paper presents a distributed RTI architecture implemented in BH RTI. It sup-
ports multiple HLA standards by shielding interface differences in Local RTI Com-
ponent(LRC). Then some techniques to overcome the problem of time cost in distrib-
uted RTI are presented. In the end experiment and result analysis are given. 
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2   Problem Initiation 

There are many changes in HLA interface specification transition. Messages from 
SISO CFI workgroup said that next evolution of HLA standard would possibly be made 
in 2006 or 2007. Some means have been put forward to interoperate HLA 1.3 and IEEE 
1516 federates. The Pitch AB inc. developed 1516 adapter [13]. It provides HLA 1.3 
APIs based on 1516 RTI implementation. Then HLA 1.3 federates can run on pRTI 
1516. The MÄK Technologies Inc. said that MÄK RTI 1.3 and MÄK RTI 1516 were 
built from the same code base. The two can retain compatibility between 1.3 and 1516 
federates[14]. We developed RTIBridge [16] based on bridge federate[15] to link 1.3 
and 1516 federates. RTIBridge can link federates between HLA 1.3-based BH RTI, 
DMSO RTI NG and IEEE 1516-based starlink. RTIBridge covers only part interfaces, 
and is only suitable for small scale simulations because of the bottleneck of bridge 
federate. 

Unpredicted revision may be made to HLA standard in future. There exist several 
versions of HLA standard. These problems bring much work for interoperation, other 
than transplant or modification. The trouble also exists in code preservation and tedious 
test procedure. In this background, the interoperation problem should be taken into 
consideration in further RTI development. 

3   Distributed RTI Architecture 

RTI implementation has no fixed architecture. Current RTI architectures mainly have 
three types: central, distributed and hierarchical, according to the relationship of CRC 
(Central RTI Component) and LRC. DMSO RTI is the first RTI, and had been pub-
lished for several years. It has a great influence on the field. A large portion of current 
RTIs are based on a traditional DMSO RTI like architecture as Figure 1. Considering 
the interoperation of heterogeneous systems, we made an effort in distributed RTI ar-
chitecture and developed BH RTI. 

RtiExec FedExec Federate(s) ...

Inter-Process Communications

RTI Provided Federate Provided

LRC
Federate(s)

LRC

 

Fig. 1. Traditional DMSO RTI like architecture 

The distributed RTI architecture owns several RTI nodes in peer to peer. Each RTI 
maintains only the required data to serve connected federates. BH RTI is divided into 
two processes, LRC and rtiexec (Figure 2). LRC provides a programming library fol-
lowing the standard. It is responsible for interface implementation based on the rtiexec. 
Process rtiexec is designed to provide common services of distributed simulation for 
LRC. The standard differences are shielded in RTI-LRC services. Then minor 
modification is required when the standard changes. New LRC can be developed based 
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on RTI-LRC service for a revised HLA standard or even another standard. With this 
distributed RTI architecture, much work on the standard transition can be cut off, and 
federates of different standard are easier to interoperate. 

 

Fig. 2. Software Architecture of Distributed RTI 

Although distributed architecture is good at scalability, time cost is a main negative 
problem for more layers and architecture complexity. Liu compared time cost of three 
RTI architectures[11] in which the time cost of distributed RTI is narrated as  

T(distributed)=T(sender_localLRC)+T(globalComputing)+T(localLRC_remoteLRC) 
+ T(remoteLRC_receiver) 

The time cost of distributed RTI is higher than the other two with the comparisons. 
To be more precise, the time cost of this distributed RTI architecture should be 

T(distributed)=T(sender_localLRC)+T(globalComputing)+T(localLRC_RTI)+T(send
er_rti)+T(RTI_RTI)+T(remote_RTI)+T(remoteRTI_LRC)+T(remoteLRC_receiver) 

The constitution of total time cost is rather complicated, including three network 
cost factors, T(localLRC_RTI), T(RTI_RTI), T(remoteRTI_LRC), together with four 
process cost factors. However, this is just analysis in theory. Each part of the cost may 
vary much in different implementations. The following parts present techniques ap-
plied in BH RTI to overcome the problem of time cost. 

4   LoI-Based Data Delivery Algorithms 

Data delivery in HLA requires attribute set matching for publish/subscribe. Sometimes 
region overlap is also required when DDM is used. Existing publish-subscribe 
mechanisms can only judge whether a message is relevant to a subscriber or not. 
Aiming to solve the relevance evaluation problem, a new relevance evaluation 
mechanism Layer of Interest (LoI) was proposed in our previous work [17][18]. LoI 
defines a relevance classifier based on the influence of spatial distance on receiving 
attributes and attribute values. Some related LoI variables are listed in Table 1. Based 
on LoI, new data delivery algorithms are presented in this section. 

In our recent research, we drew two important deductions about the LoI relationship 
among the three parts, LoIs of the publisher, the subscriber and messages. 
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Table 1. Symbols in the LoI Mechanism 

Symbol Definition 
)(i

mP  LoI of publisher over object class i with m-size attribute set 
),( oi

mp  LoI of local object instance o of object class i with m-size attribute set 
),( oi

jη  LoI of attribute update/reflect with j-size attribute set of object instance o of object 
class i 

)(i
kS  LoI of subscriber over object class i with k-size attribute set 

),( oi
ls  LoI of remote object instance o of object class i with l-size attribute set 

Deduction 1. A publisher can only send attribute updates of LoI )o,i(
jη ≤ )o,i(

mp . 

Deduction 2. A subscriber can only receive attribute reflects of LoI )o,i(
jη ≤ )o,i(

ls . 

In the new publish-subscribe environment, the publisher works with )i(
mP  of object 

class i and )o,i(
mp  of local object instance o. And a subscriber works with )i(

kS  of object 

class i and ),( oi
ls  of remote object instance o. The four LoIs denote the dynamic detail 

relevance in publish-subscribe sides. Messages will be tagged with LoI )o,i(
jη . )o,i(

jη  

represents the fundamental relevance of messages. Then new data delivery algorithms 
below can be obtained, according to Deduction 1 and 2. 

Algorithm 1. (Algorithm for sending data) LoI_UAV 

FOR each attribute update of local object instance o  

  int l = )o,i(
jη , compute according to the Definition. 

  IF (l ≤ )o,i(
mp )  

    //attach l to the update packet; 

    update.loi = l;  

  multicast the update packet to the subscriber group; 

END FOR 

Algorithm 2. (Algorithm for receiving data) LoI_RAV 

FOR each attribute reflect of remote object instance o 

  int l = reflect.loi; //get )o,i(
jη  

  IF (l ≤ )o,i(
ls )  

    //the reflect packet is wanted by the subscriber 

    accept the reflect packet; 

  callback the corresponding user function; 

END FOR 
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Complex and costly attribute set matching is simplified, and the data sending and re-
ceiving become more efficient. Receivers can also perform precise attribute set 
matching as Algorithm 3. 

Algorithm 3. (enhanced receiving data) PreciseLoI_RAV 

FOR each attribute reflect {HVPj{<attri, valuei>}, loi} of 
remote object instance o  

  int l = reflect.loi; 

  IF (l ≤ )o,i(
ls )  

  WHILE(int h = 1; h <= j; h++){ 

    IF attrh ∉ subscription attribute set {ci, <attri>}  

     remove <attrh, valueh> from HVPj{<attri, valuei>}; } 

  IF (sizeof HVPj{<attri, valuei>} = = 0)  break; 

  accept the reflect’s remaining data HVPj{<attri, valuei>}; 

  callback the corresponding user function; 

END FOR 

LoI-based data delivery algorithms were applied into BH RTI. Figure 3(a) is the 
sending process. Figure 3(b) is the receiving process. Four processes are included, 
HLA application (federate), LRC, RTI and other RTIs. Here RTI means rtiexec of BH 
RTI. BH RTI provides services for federates by LRCs, each LRC for one federate. 

),(),( oi
m

oi
j p≤η

i
m

)o,i(
j P≤η

(a) Sending Process

)o,i(
l

)o,i(
j s≤η

(b) Receiving Process  

Fig. 3. LoI-based Data Delivery Process in BH RTI 
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5   PDU-Function Registry 

BH RTI involves two types of inter-process communications (IPC), RTI-LRC service 
and RTI-RTI interoperation. RTI-LRC service communication is using TCP. RTI-RTI 
interoperation is based on multicast UDP, using multicast to filter irrelative messages. 
We define a set of protocol data units (PDUs) for each communication, inter-PDU for 
RTI-LRC service and outer-PDU for RTI-RTI interoperation. 

PDU is made up of PDUheader and PDUdata, illustrated in Figure 4. The PDU-
header comprises PDU version, type, length, time stamp etc.. The PDUdata uses union 
data structure, which stores data of each PDU. The length in PDUheader is calculated 
by adding up the actually used size of PDUdata to the size of PDUheader. That is, it 
indicates the actual space requirement of a PDU (Figure 4). In this way only the useful 
data of PDU is communicated to save the bandwidth and transportation time. When a 
PDU is arrived, RTI will extract the PDU type from the header and pick up data from 
PDUdata according to the PDU type. 

 

Fig. 4. PDU Structure 

Distributed architecture has more layers and complicated structure. The PDU design 
can only simplify the coupling of IPC. Some methods should be taken to simplify the 
modules’ coupling and invoking. BH RTI uses multiple threading to enhance the effi-
ciency of services, but too many critical sections may induce efficiency decrease or 
dead lock. Aiming to speed up data packet processing, a mechanism of PDU-Function 
registry for data process is designed on the thought of callback. 

PDU has fixed format to parse, so the declaration of process functions can be fixed. 
First, we bind a PDU type to the memory address of corresponding functions. Second, 
when the process thread picks up a PDU of this type, it looks up in the registry for 
function addresses. Then the process functions can be invoked directly(Figure 6). There 
may be access to other services or data in the body of function. So a pointer to the 
services or data is attached to the registry while binding. Then addresses requiring 
critical sections in the functions can be easier to check. 

i

...

...
...

...

...

1

void*

void*

void*

^

PDUtype

FuncList

Function f1{
 ;

}
Function f2{

 ;
}
Function f3{

 ;
}

Memory

*p_serv

^

*p_serv
*p_serv

 

Fig. 5. PDU-Function Registry 
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The pseudo code of processing an interPDU is as the following. The relationship 
between adjacent layers of distributed architecture is simplified with this method. 

interPDU pdu = receiveNextPDU(); 

int type = pdu.header.type; 

KernelService* p_service = getServicePTR(); 

IF( funcList(type)==NULL || funcList(type).totalcount==0) 

  RETURN; 

func* p_func = funcList(type).first(); 

LOOP{ 

(*p_func)(&pdu, p_service); 

p_func = funcList(type).next(p_func); 

} UNTIL(p_func == NULL); 

7   RTI Process Model 

The time to callback user code is an important issue. HLA standard doesn’t specify 
exactly how RTI process model should work. Three types of RTI process model are 
used in current RTIs: single-threaded, asynchronous and multi-threaded[19].  

BH RTI implements single-threaded and multi-threaded process model. User can 
select either by configuration. BH RTI processes PDU queue of LRC according to the 
configurations in Figure 6. (a) When the single-threaded model is used, LRC puts re-
ceived PDUs into queue and the federate executes the callbacks to the queue in tick(). 
(b) In the multi-threaded model, tick() is unnecessary and the process PDU thread will 
execute the callbacks after an arrived PDU is valid to be processed. 

(a) single threaded (b) multi-threaded  

Fig. 6. Implementation of BH RTI Process Model 

There are advantages and disadvantages for each process model. Single-threaded 
model has no thread switching, but the frequency and occasion of invoking tick() are 
often puzzles. It’s easy to use an asynchronous model because developers needn’t think 
about occasion for tick(). But the specific time is required to be waited no matter 
whether there is a callback. It’s efficient to use multi-threaded model, but developers 
are required to treat with the threading safety. 
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8   Experiment Evaluation 

Two experiment results are presented in this section, after introduction to the experi-
ment of pure TCP/UDP time cost. First, we investigate the time cost constitution of BH 
RTI to analysis the factors. Second, the delay comparison of some commonly used 
RTIs is performed. The experiments are conducted in network using Huawei Switch 
Quidway S3050. The detailed setup is shown in Table 2. 

Table 2. Host Setup for Experiment 

Host Id CPU RAM OS NetworkCard 
A1 P4 2.8G 512M winXP 10/100M 
A2 P4 3.0G 512M winXP 10/100M 
A3 P4 2.4G 768M winXP 10/100M 

The setup for experiments is shown in Figure 7 for traditional DMSO RTI like RTI 
experiments and Figure 8 for distributed RTI experiments. 

     

Fig. 7. Setup for Central RTI Experiment    Fig. 8. Setup for Distributed RTI Experiment 

Before the two experiments, the variation of data delivery in pure TCP/UDP links is 
measured for reference. We have measured the time cost of all the links including the 
TCP of A1 to A3, TCP of A3 to A2, A1’s multicast, localhost TCP of A1, localhost 
TCP of A2 used in Figure 12 and 13. Figure 9 is the results of time cost in pure 
TCP/UDP links with different payload. 
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Fig. 9. Pure TCP/UDP time cost 
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To better study the time cost constitution, we divide the time cost of BH RTI into 4 
parts as Figure 10. T(BH RTI) = t1 + t2 + t3 + t4. We test the 4 factors carefully by 
setting check points in code. Figure 11 presents the time cost constitution of BH RTI 
2.2 using the setup in Figure10. We can see that time cost of A1’s localhost TCP sub-
tracted from t1 is below 0.05ms. And t2 or t3’s subtracting corresponding delivery time 
cost is below 0.1ms. Factor t4 is nearly 0.03ms. This comparison denotes that each 
factor in BH RTI’s time cost is rather small. 
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Fig. 10. Time cost experiment of BH RTI    Fig. 11. Time Cost Constitution of BH RTI 2.2 

The RTI delay experiment results is as Figure 12, in which BH RTI 2.2(Central 
mode), DMSO RTI 1.3NGv6, pRTI 1516v2.3 is using the setup of Figure 7 and BH 
RTI 2.2 is using the setup of Figure 8. The central mode of BH RTI refers to that several 
federates connect to a unique BH RTI for RTI services. From the experiments results, 
we can see that BH RTI 2.2 has comparatively smaller time cost. The distributed mode 
of BH RTI 2.2 is premier in the time cost in the experiments. The central model of BH 
RTI 2.2 is relatively smaller in small payload, and there’s an increase when the payload 
adds because of the increase of time cost in heavy payload. 
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Fig. 12. Delay Comparison of RTIs 
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The results of both experiments give us an idea that different factor of time cost may 
have different weight. The time cost of different architecture cannot be compared by 
simple adding up. The weight of factors should be taken into consideration. And the 
architecture is not the only dominating factor in time cost. The concrete design and 
techniques also contribute much to the time cost. 

9   Conclusion 

Distributed RTI architecture has good scalability and comparatively higher time cost in 
theory. A distributed RTI architecture used in BH RTI is presented in this paper. Some 
key techniques to overcome the problem of time cost are introduced, including data 
delivery, data packet process and RTI process model. Experiment results illustrated that 
the distributed BH RTI overcame the negative influence of architecture complexity and 
had a relatively lower time cost. Techniques narrated in this paper have been evaluated 
in practical applications, some of which may be useful to the development of other 
distributed systems. 
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