
Z. Pan et al. (Eds.): ICAT 2006, LNCS 4282, pp. 969 – 979, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Reducing Time Cost of Distributed Run-Time
Infrastructure*

Zhong Zhou and Qinping Zhao

School of Computer Science and Engineering, BeiHang University,
Beijing 100083, P.R. China
zz@vrlab.buaa.edu.cn

Abstract. RTI(Run-Time Infrastructure) provides services for HLA-based dis-
tributed simulation, and decides to a great extent the simulation scalability and
efficiency. Distributed RTI has good scalability, but its time cost is always higher
because of the architecture complexity. BH RTI is based on a distributed RTI
architecture. Some techniques are used to overcome the problem of time cost.
LoI-based data delivery algorithms are presented to speed up data delivery.
PDU(protocol data unit)-function registry and RTI process model are designed to
promote the efficiency of data packet processing. Experiment results illustrated
that distributed BH RTI depressed the negative influence of architecture com-
plexity and achieved a relatively lower time cost.

1 Introduction

High Level Architecture (HLA) is the prevailing standard of distributed simulation. It
consists of three parts, framework and rules, object model template (OMT) and inter-
face specification[1]. Run-Time Infrastructure (RTI) is prescribed to implement the
interface specification. It provides services for HLA-based simulation, and decides to a
large extent the simulation scalability and efficiency. The standard of HLA 1.3 has
been widely used in military fields[1]. However, when HLA was approved as IEEE
1516 standard in September 2001, a lot of changes were made[2,3,4].

Some RTIs have been developed such as DMSO RTI NG[5,6], pRTI[7], MÄK
RTI[8], BH RTI[9], KD-RTI[10] and starlink[11] etc.. Because HLA doesn’t
specify RTI implementation and interoperability, RTI design differs much.
Different RTI cannot interoperate without the participation of each producers[12].
RTI architecture and performance are one of the main concerns in HLA/RTI ap-
plications.

This paper presents a distributed RTI architecture implemented in BH RTI. It sup-
ports multiple HLA standards by shielding interface differences in Local RTI Com-
ponent(LRC). Then some techniques to overcome the problem of time cost in distrib-
uted RTI are presented. In the end experiment and result analysis are given.

* This paper is supported by the National Grand Fundamental Research 973 Program of China

under Grant No. 2002CB312105.

970 Z. Zhou and Q. Zhao

2 Problem Initiation

There are many changes in HLA interface specification transition. Messages from
SISO CFI workgroup said that next evolution of HLA standard would possibly be made
in 2006 or 2007. Some means have been put forward to interoperate HLA 1.3 and IEEE
1516 federates. The Pitch AB inc. developed 1516 adapter [13]. It provides HLA 1.3
APIs based on 1516 RTI implementation. Then HLA 1.3 federates can run on pRTI
1516. The MÄK Technologies Inc. said that MÄK RTI 1.3 and MÄK RTI 1516 were
built from the same code base. The two can retain compatibility between 1.3 and 1516
federates[14]. We developed RTIBridge [16] based on bridge federate[15] to link 1.3
and 1516 federates. RTIBridge can link federates between HLA 1.3-based BH RTI,
DMSO RTI NG and IEEE 1516-based starlink. RTIBridge covers only part interfaces,
and is only suitable for small scale simulations because of the bottleneck of bridge
federate.

Unpredicted revision may be made to HLA standard in future. There exist several
versions of HLA standard. These problems bring much work for interoperation, other
than transplant or modification. The trouble also exists in code preservation and tedious
test procedure. In this background, the interoperation problem should be taken into
consideration in further RTI development.

3 Distributed RTI Architecture

RTI implementation has no fixed architecture. Current RTI architectures mainly have
three types: central, distributed and hierarchical, according to the relationship of CRC
(Central RTI Component) and LRC. DMSO RTI is the first RTI, and had been pub-
lished for several years. It has a great influence on the field. A large portion of current
RTIs are based on a traditional DMSO RTI like architecture as Figure 1. Considering
the interoperation of heterogeneous systems, we made an effort in distributed RTI ar-
chitecture and developed BH RTI.

RtiExec FedExec Federate(s) ...

Inter-Process Communications

RTI Provided Federate Provided

LRC
Federate(s)

LRC

Fig. 1. Traditional DMSO RTI like architecture

The distributed RTI architecture owns several RTI nodes in peer to peer. Each RTI
maintains only the required data to serve connected federates. BH RTI is divided into
two processes, LRC and rtiexec (Figure 2). LRC provides a programming library fol-
lowing the standard. It is responsible for interface implementation based on the rtiexec.
Process rtiexec is designed to provide common services of distributed simulation for
LRC. The standard differences are shielded in RTI-LRC services. Then minor
modification is required when the standard changes. New LRC can be developed based

 Reducing Time Cost of Distributed Run-Time Infrastructure 971

on RTI-LRC service for a revised HLA standard or even another standard. With this
distributed RTI architecture, much work on the standard transition can be cut off, and
federates of different standard are easier to interoperate.

Fig. 2. Software Architecture of Distributed RTI

Although distributed architecture is good at scalability, time cost is a main negative
problem for more layers and architecture complexity. Liu compared time cost of three
RTI architectures[11] in which the time cost of distributed RTI is narrated as

T(distributed)=T(sender_localLRC)+T(globalComputing)+T(localLRC_remoteLRC)
+ T(remoteLRC_receiver)

The time cost of distributed RTI is higher than the other two with the comparisons.
To be more precise, the time cost of this distributed RTI architecture should be

T(distributed)=T(sender_localLRC)+T(globalComputing)+T(localLRC_RTI)+T(send
er_rti)+T(RTI_RTI)+T(remote_RTI)+T(remoteRTI_LRC)+T(remoteLRC_receiver)

The constitution of total time cost is rather complicated, including three network
cost factors, T(localLRC_RTI), T(RTI_RTI), T(remoteRTI_LRC), together with four
process cost factors. However, this is just analysis in theory. Each part of the cost may
vary much in different implementations. The following parts present techniques ap-
plied in BH RTI to overcome the problem of time cost.

4 LoI-Based Data Delivery Algorithms

Data delivery in HLA requires attribute set matching for publish/subscribe. Sometimes
region overlap is also required when DDM is used. Existing publish-subscribe
mechanisms can only judge whether a message is relevant to a subscriber or not.
Aiming to solve the relevance evaluation problem, a new relevance evaluation
mechanism Layer of Interest (LoI) was proposed in our previous work [17][18]. LoI
defines a relevance classifier based on the influence of spatial distance on receiving
attributes and attribute values. Some related LoI variables are listed in Table 1. Based
on LoI, new data delivery algorithms are presented in this section.

In our recent research, we drew two important deductions about the LoI relationship
among the three parts, LoIs of the publisher, the subscriber and messages.

972 Z. Zhou and Q. Zhao

Table 1. Symbols in the LoI Mechanism

Symbol Definition
)(i

mP LoI of publisher over object class i with m-size attribute set
),(oi

mp LoI of local object instance o of object class i with m-size attribute set
),(oi

jη LoI of attribute update/reflect with j-size attribute set of object instance o of object
class i

)(i
kS LoI of subscriber over object class i with k-size attribute set

),(oi
ls LoI of remote object instance o of object class i with l-size attribute set

Deduction 1. A publisher can only send attribute updates of LoI)o,i(
jη ≤)o,i(

mp .

Deduction 2. A subscriber can only receive attribute reflects of LoI)o,i(
jη ≤)o,i(

ls .

In the new publish-subscribe environment, the publisher works with)i(
mP of object

class i and)o,i(
mp of local object instance o. And a subscriber works with)i(

kS of object

class i and),(oi
ls of remote object instance o. The four LoIs denote the dynamic detail

relevance in publish-subscribe sides. Messages will be tagged with LoI)o,i(
jη .)o,i(

jη

represents the fundamental relevance of messages. Then new data delivery algorithms
below can be obtained, according to Deduction 1 and 2.

Algorithm 1. (Algorithm for sending data) LoI_UAV

FOR each attribute update of local object instance o

 int l =)o,i(
jη , compute according to the Definition.

 IF (l ≤)o,i(
mp)

 //attach l to the update packet;

 update.loi = l;

 multicast the update packet to the subscriber group;

END FOR

Algorithm 2. (Algorithm for receiving data) LoI_RAV

FOR each attribute reflect of remote object instance o

 int l = reflect.loi; //get)o,i(
jη

 IF (l ≤)o,i(
ls)

 //the reflect packet is wanted by the subscriber

 accept the reflect packet;

 callback the corresponding user function;

END FOR

 Reducing Time Cost of Distributed Run-Time Infrastructure 973

Complex and costly attribute set matching is simplified, and the data sending and re-
ceiving become more efficient. Receivers can also perform precise attribute set
matching as Algorithm 3.

Algorithm 3. (enhanced receiving data) PreciseLoI_RAV

FOR each attribute reflect {HVPj{<attri, valuei>}, loi} of
remote object instance o

 int l = reflect.loi;

 IF (l ≤)o,i(
ls)

 WHILE(int h = 1; h <= j; h++){

 IF attrh ∉ subscription attribute set {ci, <attri>}

 remove <attrh, valueh> from HVPj{<attri, valuei>}; }

 IF (sizeof HVPj{<attri, valuei>} = = 0) break;

 accept the reflect’s remaining data HVPj{<attri, valuei>};

 callback the corresponding user function;

END FOR

LoI-based data delivery algorithms were applied into BH RTI. Figure 3(a) is the
sending process. Figure 3(b) is the receiving process. Four processes are included,
HLA application (federate), LRC, RTI and other RTIs. Here RTI means rtiexec of BH
RTI. BH RTI provides services for federates by LRCs, each LRC for one federate.

),(),(oi
m

oi
j p≤η

i
m

)o,i(
j P≤η

(a) Sending Process

)o,i(
l

)o,i(
j s≤η

(b) Receiving Process

Fig. 3. LoI-based Data Delivery Process in BH RTI

974 Z. Zhou and Q. Zhao

5 PDU-Function Registry

BH RTI involves two types of inter-process communications (IPC), RTI-LRC service
and RTI-RTI interoperation. RTI-LRC service communication is using TCP. RTI-RTI
interoperation is based on multicast UDP, using multicast to filter irrelative messages.
We define a set of protocol data units (PDUs) for each communication, inter-PDU for
RTI-LRC service and outer-PDU for RTI-RTI interoperation.

PDU is made up of PDUheader and PDUdata, illustrated in Figure 4. The PDU-
header comprises PDU version, type, length, time stamp etc.. The PDUdata uses union
data structure, which stores data of each PDU. The length in PDUheader is calculated
by adding up the actually used size of PDUdata to the size of PDUheader. That is, it
indicates the actual space requirement of a PDU (Figure 4). In this way only the useful
data of PDU is communicated to save the bandwidth and transportation time. When a
PDU is arrived, RTI will extract the PDU type from the header and pick up data from
PDUdata according to the PDU type.

Fig. 4. PDU Structure

Distributed architecture has more layers and complicated structure. The PDU design
can only simplify the coupling of IPC. Some methods should be taken to simplify the
modules’ coupling and invoking. BH RTI uses multiple threading to enhance the effi-
ciency of services, but too many critical sections may induce efficiency decrease or
dead lock. Aiming to speed up data packet processing, a mechanism of PDU-Function
registry for data process is designed on the thought of callback.

PDU has fixed format to parse, so the declaration of process functions can be fixed.
First, we bind a PDU type to the memory address of corresponding functions. Second,
when the process thread picks up a PDU of this type, it looks up in the registry for
function addresses. Then the process functions can be invoked directly(Figure 6). There
may be access to other services or data in the body of function. So a pointer to the
services or data is attached to the registry while binding. Then addresses requiring
critical sections in the functions can be easier to check.

i

...

...
...

...

...

1

void*

void*

void*

^

PDUtype

FuncList

Function f1{
 ;

}
Function f2{

 ;
}
Function f3{

 ;
}

Memory

*p_serv

^

*p_serv
*p_serv

Fig. 5. PDU-Function Registry

 Reducing Time Cost of Distributed Run-Time Infrastructure 975

The pseudo code of processing an interPDU is as the following. The relationship
between adjacent layers of distributed architecture is simplified with this method.

interPDU pdu = receiveNextPDU();

int type = pdu.header.type;

KernelService* p_service = getServicePTR();

IF(funcList(type)==NULL || funcList(type).totalcount==0)

 RETURN;

func* p_func = funcList(type).first();

LOOP{

(*p_func)(&pdu, p_service);

p_func = funcList(type).next(p_func);

} UNTIL(p_func == NULL);

7 RTI Process Model

The time to callback user code is an important issue. HLA standard doesn’t specify
exactly how RTI process model should work. Three types of RTI process model are
used in current RTIs: single-threaded, asynchronous and multi-threaded[19].

BH RTI implements single-threaded and multi-threaded process model. User can
select either by configuration. BH RTI processes PDU queue of LRC according to the
configurations in Figure 6. (a) When the single-threaded model is used, LRC puts re-
ceived PDUs into queue and the federate executes the callbacks to the queue in tick().
(b) In the multi-threaded model, tick() is unnecessary and the process PDU thread will
execute the callbacks after an arrived PDU is valid to be processed.

(a) single threaded (b) multi-threaded

Fig. 6. Implementation of BH RTI Process Model

There are advantages and disadvantages for each process model. Single-threaded
model has no thread switching, but the frequency and occasion of invoking tick() are
often puzzles. It’s easy to use an asynchronous model because developers needn’t think
about occasion for tick(). But the specific time is required to be waited no matter
whether there is a callback. It’s efficient to use multi-threaded model, but developers
are required to treat with the threading safety.

976 Z. Zhou and Q. Zhao

8 Experiment Evaluation

Two experiment results are presented in this section, after introduction to the experi-
ment of pure TCP/UDP time cost. First, we investigate the time cost constitution of BH
RTI to analysis the factors. Second, the delay comparison of some commonly used
RTIs is performed. The experiments are conducted in network using Huawei Switch
Quidway S3050. The detailed setup is shown in Table 2.

Table 2. Host Setup for Experiment

Host Id CPU RAM OS NetworkCard
A1 P4 2.8G 512M winXP 10/100M
A2 P4 3.0G 512M winXP 10/100M
A3 P4 2.4G 768M winXP 10/100M

The setup for experiments is shown in Figure 7 for traditional DMSO RTI like RTI
experiments and Figure 8 for distributed RTI experiments.

Fig. 7. Setup for Central RTI Experiment Fig. 8. Setup for Distributed RTI Experiment

Before the two experiments, the variation of data delivery in pure TCP/UDP links is
measured for reference. We have measured the time cost of all the links including the
TCP of A1 to A3, TCP of A3 to A2, A1’s multicast, localhost TCP of A1, localhost
TCP of A2 used in Figure 12 and 13. Figure 9 is the results of time cost in pure
TCP/UDP links with different payload.

Pure TCP/UDP time cost

0

0.2

0.4

0.6

0.8

1

1.2

16 128 512 1024 2048 3072 4096
payload

ti
me

co
st

A1-A3-TCP
A3-A2-TCP
A1-A2-Multicast
A1-tcp(localhost)
A2-tcp(localhost)
A1-A3-A2
A1-A1-A2-A2

Fig. 9. Pure TCP/UDP time cost

 Reducing Time Cost of Distributed Run-Time Infrastructure 977

To better study the time cost constitution, we divide the time cost of BH RTI into 4
parts as Figure 10. T(BH RTI) = t1 + t2 + t3 + t4. We test the 4 factors carefully by
setting check points in code. Figure 11 presents the time cost constitution of BH RTI
2.2 using the setup in Figure10. We can see that time cost of A1’s localhost TCP sub-
tracted from t1 is below 0.05ms. And t2 or t3’s subtracting corresponding delivery time
cost is below 0.1ms. Factor t4 is nearly 0.03ms. This comparison denotes that each
factor in BH RTI’s time cost is rather small.

0

0.2

0.4

0.6

0.8

1

1.2

16 128 512 1024 2048 3073 4096

payload(byte)

t
im
e
co
st
(m
s)

t1
t1+t2
t1+t2+t3
overall(t1+t2+t3+t4)

Fig. 10. Time cost experiment of BH RTI Fig. 11. Time Cost Constitution of BH RTI 2.2

The RTI delay experiment results is as Figure 12, in which BH RTI 2.2(Central
mode), DMSO RTI 1.3NGv6, pRTI 1516v2.3 is using the setup of Figure 7 and BH
RTI 2.2 is using the setup of Figure 8. The central mode of BH RTI refers to that several
federates connect to a unique BH RTI for RTI services. From the experiments results,
we can see that BH RTI 2.2 has comparatively smaller time cost. The distributed mode
of BH RTI 2.2 is premier in the time cost in the experiments. The central model of BH
RTI 2.2 is relatively smaller in small payload, and there’s an increase when the payload
adds because of the increase of time cost in heavy payload.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

16 128 512 1024 2048 3072 4096
payload(byte)

de
la
y(
ms
)

BH RTI 2.2
BH RTI 2.2(Central Mode)
DMSO RTI 1.3NGv6(nonbundle)
pRTI 1516v2.3

Fig. 12. Delay Comparison of RTIs

978 Z. Zhou and Q. Zhao

The results of both experiments give us an idea that different factor of time cost may
have different weight. The time cost of different architecture cannot be compared by
simple adding up. The weight of factors should be taken into consideration. And the
architecture is not the only dominating factor in time cost. The concrete design and
techniques also contribute much to the time cost.

9 Conclusion

Distributed RTI architecture has good scalability and comparatively higher time cost in
theory. A distributed RTI architecture used in BH RTI is presented in this paper. Some
key techniques to overcome the problem of time cost are introduced, including data
delivery, data packet process and RTI process model. Experiment results illustrated that
the distributed BH RTI overcame the negative influence of architecture complexity and
had a relatively lower time cost. Techniques narrated in this paper have been evaluated
in practical applications, some of which may be useful to the development of other
distributed systems.

References

1. Defense Modeling and Simulation Office, High Level Architecture interface specification
version 1.3, April 1998.

2. IEEE standard for modeling and simulation (M&S) High Level Architecture (HLA) –
Framework and rules. (IEEE Std 1516-2000). New York:The Institute of Electrical and
Electronics Engineers Inc., 2000.

3. IEEE standard for modeling and simulation (M&S) High Level Architecture (HLA) –
Federate interface specification (IEEE Std 1516.1-2000). New York:The Institute of Elec-
trical and Electronics Engineers Inc., 2000.

4. IEEE standard for modeling and simulation (M&S) High Level Architecture (HLA) – Ob-
ject Model Template (OMT) Specification (IEEE Std 1516.2-2000). New York:The Insti-
tute of Electrical and Electronics Engineers Inc., 2000.

5. S.Bachinsky, J.Noseworthy, F.Hodum, Implementation of the Next Generation RTI, Spring
Simulation Interoperability Workshop, Orlando, FL., USA, 1999.

6. Defense Modeling and Simulation Office, Department of Defense. 2002. RTI 1.3 – Next
generation programmer’s guide version 6. http://www.dmso.mil/.

7. Mikael Karlsson, Lennart Olsson, pRTI 1516- Rationale and Design. Fall Simulation In-
teroperability Workshop, Orlando, FL., USA, 2001.

8. Douglas D Wood, Len Granowetter. Rationale and Design of the Mak Real-Time RTI.
Spring Simulation Interoperability Workshop, Orlando, FL., USA, 2001.

9. BH RTI 2.3 User Guide. http://www.hlarti.com/
10. Hao JG, Huang H. Implementation architecture of KD-RTI. System Modeling & Simula-

tion, 2002,1(1):48-52.
11. Liu Buquan, Wang Huaimin, Yao Yiping. Key techniques of a hierarchical simulation run-

time infrastructure—StarLink. Journal of Software(in Chinese), 2004, 15(01): 9-16
12. Michael D Myjak, Duncan Clark, Tom Lake, RTI interoperability study group final report.

Fall Simulation Interoperability Workshop, Orlando, FL., USA, 1999.
13. 1516 adapter for HLA 1.3 federates, http://www.pitch.se/1516adapter/default.asp
14. Mak high performance RTI, http://www.mak.com/products/rti.php

 Reducing Time Cost of Distributed Run-Time Infrastructure 979

15. Juergen Dingel, David Garlan, Craig Damon. Bridging the HLA: problems and solutions.
Sixth IEEE International Workshop on Distributed Simulation and Real Time Applications
Fort Worth, Texas, USA, 2002

16. Cai Nan, Zhou Zhong, Wu Wei. Research on the interconnection of heterogeneous RTIs and
multi-federations based on Bridge Federate. Journal of Computer Research and Develop-
ment. to be appeared in vol.43, 2006

17. Zhou Z, Zhao QP. Extend HLA with layered priority. In: Proceedings of the Spring Simu-
lation Interoperability Workshop. Orlando FL, 2003. Paper 03S-SIW-012.

18. Zhou Z, Zhao QP. Research on RTI congestion control based on the layer of interest. Journal
of Software, 2004,15(1):120~130.

19. Mikael Karlsson, Peter Karlsson, An in-depth look at RTI process model, Spring Simulation
Interoperability Workshop, Orlando, FL., USA, 2003.

	Introduction
	Problem Initiation
	Distributed RTI Architecture
	LoI-Based Data Delivery Algorithms
	PDU-Function Registry
	RTI Process Model
	Experiment Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

