
Spherical Mapping based Motion Recovery for Panoramic Cameras  
 

Yanli Li            Zhong zhou         Wei Wu 
State Key Laboratory of Virtual Reality Technology and System, Beihang University 

School of Computer Science and Engineering, Beihang University 
Beijing, China 

e-mail: liyl@vrlab.buaa.edu.cn  
 
 

Abstract—Although motion recovery for limited field-of-view 
(FOV) cameras has been studied for decades under the pin-
hole projection, few attentions have been paid on omni-
directional cameras. Omni-directional cameras are usually 
constituted complicatedly, especially some are made of several 
limited FOV cameras, and thus motion recovery for omni-
directional cameras is more different. In this paper, an 
algorithm is presented to estimate motion of the omni-
directional camera under the spherical projection. Unlike 
motion recovery algorithms for traditional limited FOV 
cameras, in which the intrinsic matrix plays an important part, 
this algorithm only estimates extrinsic matrices without the 
influence of intrinsic matrix. So it is more efficient and robust. 
To reduce computation, a method is also presented to select 
key frames using the translation offset of neighboring frames 
and remove some mismatched feature points. The experiments 
verify the efficiency of the algorithm and the visual result is 
demonstrated through a simulation experiment.  

Keywords- Motion recovery; Epipolar geometry; Spherical 
projection; Bundle adjustment 

I.  INTRODUCTION  
Motion recovery, also called Structure and Motion 

recovery (SAM), is to estimate the postures and positions of 
cameras from sequence frames of the captured video. Based 
on the position and posture of each frame, 3-Dimension (3D) 
scene points can be obtained. It can be further applied to 
image reconstruction, object extraction, video compression, 
virtual navigation, augmented virtual and so on. Motion 
recovery and its applications for videos captured by limited 
FOV cameras have been studied for decades. Few attentions 
have been paid on panoramic videos. The panoramic video is 
composed of panoramas which cover the omni-directional 
scene. Therefore, the panoramic video has more advantages 
than the limited FOV video and its motion recovery can be 
used more widely. 

Motion recovery for traditional limited FOV cameras is 
based on the pin-hole projection. The parameters need to be 
estimated involve internal parameters and external 
parameters. If the images are captured by cameras of short 
focal length, the distorted parameters, as a part of internal 
parameters need to be estimated too. Traditionally, internal 
parameters are acquired through the calibration, but the 
preprocessing is complex. To remove the influence of 
internal parameters, we propose an algorithm to recover 
motions based on the spherical projection. Unlike the pin-

hole projection whose feature points are located on planar 
images, the spherical projection's feature points are located 
on the unit spherical surfaces. Because all features have been 
normalized under the unit spherical mapping, the influence 
of internal parameters is removed totally. With only 
estimation of the external parameter, the algorithm is more 
efficient and robust. 

Since motion recovery bases on tracking points, the 
length and matching accuracy of tracking points between 
neighboring frames have a significant effect. Generally, the 
longer the baselines are, the more robust the estimation will 
be. Therefore, it is necessary to select key frames with a 
longer baseline and only estimate motions of key frames. 
Motions for other frames are obtained through the linear 
interpolation. In this paper, we analyze the motion trending 
of panoramic video and key points horizontal offset, with 
which key frames from video can be extracted and some 
mismatched tracking points can be removed. 

II. RELATED WORK 
As one of the important parts of computer vision, the 

theory of motion recovery has been studied for decades [1, 
2].Traditional, it is started with features matching. The 
popular feature algorithms include Harris [3], KLT [4], SIFT 
[5] and SURF [6]. Then, inliers with consistent epipolar 
relationship are chosen through RANSAC [7] or other 
methods and external parameters are obtained through the 
epipolar relationship [8]. After adjustment for all motions in 
a unified frame, a bundle adjustment [9, 10] is adopted to 
refine all parameters finally. The whole process is totally 
automatic. Theory of motion recovery for limited FOV 
cameras is more mature, even in condition of cameras' 
zooming in or out constantly [11]. There is also some related 
commercial software [12]. While limited FOV cameras 
suffer from the problem that the field of view is limited. It’s 
impossible to capture large field of scene. Ideally, one would 
like to use a panoramic camera to capture omni-directional 
videos which can be used in some special fields [13]. Some 
of those omni-directional devices are composed of multiple 
cameras and the recovered motion should be the motion of 
the whole device. Motoko,O. [14] and Iwane [15] only 
estimated motions of one camera and used them as the whole 
device’s motions. Because the focal length of those cameras 
is usually short and the original images are distorted. It is 
necessary to calibrate the camera previously to acquire the 
distortion factors and the intrinsic matrix [16, 17]. This 
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processing leads to a lot of complex computation and might 
imports errors. What’s more, motions of one camera are not 
exactly motions of the whole device, especially when optical 
centers of cameras are not located at the same place. Kangni 
F., et al [18] presented a method to recover motions of such 
devices from cubic panoramas. They remapped each 
spherical panorama onto a cube to obtain the cubic 
panorama, extracted and matched features of each pair-wise 
cubic panoramas, used six sides of each cubic panorama to 
compute motions of the device. Their method does not need 
to calibrate camera and is easy to implement. But it needs to 
map each spherical panorama to the cubic panorama firstly. 
Concerning the panoramic videos we captured are under the 
spherical model and the spherical projection is more similar 
to real world scene rays’ projection, we present an algorithm 
to recover postures and positions for spherical cameras with 
the theory of epipolar geometry for spherical cameras [19]. 
The proposed algorithm bases on the spherical projection 
geometry. Unlike the algorithms whose key points are 
located in the image planar [11, 12, 18], this algorithm bases 
on points of spherical surface. As those key points have been 
normalized under spherical mapping, the influence of the 
intrinsic matrix has been removed totally.  

To select key frames from the video, Fitzgibbon [19] and 
Zhang [11] estimated the offset lengths of tracking points, 
with which they chose some suitable frames. As the moving 
trend of points on panoramic video is different with that on 
limited FOV video, their methods can not be applied to 
panoramic video directly. In this paper, we propose a method 
to select key frames from panoramic videos and remove 
some mismatched feature points meanwhile. 

The rest of the paper is organized as follows: Section III 
describes the theory of spherical projection and gives some 
notations of spherical geometry, including the remapping 
from a spherical panorama to a sphere, epipolar geometry for 
spherical cameras and the elimination of mismatched key 
points. In section IV, the SAM algorithm of panoramic 
cameras will be presented. Section V provides experimental 
data to verify this algorithm. We discussed this method in 
section VI. 

III. TWO-VIEW GEOMETRY FOR THE SPHERICAL 
PROJECTION 

The projection model adopted here is the spherical 
model, so each panorama should be mapped on a unit sphere 
and the estimation procession is established on the spherical 
epipolar geometry. Two-view epipolar geometry is the basis 
for SAM, we will describe some notations and the two-view 
spherical epipolar theory in this section. 

A. Mapping under the spherical  model 
The spherical coordinate is showed as Fig. 1. Suppose the 

width of panorama is w and the height is h. (x, y) is a pixel 
on the panorama and its corresponding angle under the 
spherical coordinate is (θ, δ). θ is the longitude angle and δ is 
the latitude angle. The spherical model is a unit sphere. The 
point m(X,Y,Z) on the spherical surface is the corresponding 
point of (x, y). 

Their conversion formulas are as follows: 

* /
*2 /

y h
x w

θ π
δ π

=⎧
⎨ =⎩

                                       (1) 

sin cos
sin sin
cos

X
Y
Z

θ δ
θ δ
θ

=⎧
⎪ =⎨
⎪ =⎩

                                    (2) 

 
Figure 1.  The spherical coordinate 

Epipolar geometry for spherical projection is based on 
the key point pairs on spherical surface, so each key point of 
panoramas should be mapped on the unit spherical through 
(1) (2) to calculate its corresponding point firstly. 

B. Epipolar geometry for spherical projection 
Epipolar geometry is to study the motion relationship of 

two spherical cameras. Support there are two spherical 
cameras as showed in Fig. 2. The first camera is located on 
the origin of the world coordinate. Its rotation matrix is 
identity matrix and its translation vector is zero vector. So 
the projection matrix of camera 1 is 1 [ | 0]P I= . R and t are 
the rotation matrix and the translation vector between camera 
1 and camera 2. So the projection matrix of camera 2 
is 2 [ | ]P R t= . If a 3D point M in world coordinate is mapped 
to m1 on the unit spherical camera 1 and mapped to m2 on the 
unit spherical camera 2, we have the equations: 

1 1

2 2'
m PM M
m P M RM t

λ
λ

= =⎧
⎨ = = +⎩

                   (3) 

λ  and 'λ  are the scale factors. 

 
Figure 2.  The epipolar geometry for two spherical cameras 

Just as the theory of epipolar geometry for the pinhole 
cameras, the vector m2，R* m1 and t are coplanar. So point 
m1 and point m2 satisfies:  

m2
TEm1=0                                          (4) 

E is the essential matrix, which can be recovered from all 
corresponding point pairs (m1, m2) using 8 point algorithm or 
7 point algorithm or 5 point algorithm [20]. 

According to the epipolar geometry:  
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E = [t]xR                                               (5) 
Introducing an anti-symmetric matrix S: 

0
[ ] 0

0

z y

z x

y x

t t
S t t t

t t
×

⎡ ⎤−
⎢ ⎥= = −⎢ ⎥
⎢ ⎥−⎣ ⎦                         (6) 

Then E=SR.  
Here, R is an orthogonal matrix which satisfies: RR’ = 

R’R = I，||R||=1. 
Another two formats of R which are often used in 

computer vision are: format of quaternion Q= (qw, qx, qy, qz) 
and format of Euler angle ( , , )U α β γ= . 

Quaternion Q= (qw, qx, qy, qz) can be transformed into R 
through equation: 

1 2 2 2 2 2 2
2 2 1 2 2 2 2
2 2 2 2 1 2 2

y y z z x y z w x z y w

x y z w x x z z y z x w

x z y w y z x w x x y y

q q q q q q q q q q q q
R q q q q q q q q q q q q

q q q q q q q q q q q q

⎡ ⎤− − − +
⎢ ⎥= + − − −⎢ ⎥
⎢ ⎥− + − −⎣ ⎦

    (7) 

Euler angle ( , , )U α β γ=  can be transformed into R 
through equation: 

cos cos cos cos sin sin cos cos sin cos sin sin
sin cos sin sin sin cos cos sin sin cos cos sin

sin cos sin cos cos
R

α β α β γ α γ α β γ α γ
α β α β γ α γ α β γ α γ

β β γ β γ

− +⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (8) 

The essential matrix E can be decomposed into a rotation 
matrix R and a translation vector t. Based on singular value 
decomposition (SVD), Hartlay [2] proposed a robust method 
to decompose E. E is decomposed by SVD: 

 E=UDVT                                          (9) 
The matrices R and t are acquired by: 

t=U (0, 0, 1)T or t=-U (0, 0, 1)T                                    (10) 
R=UWVT or R=UWTVT                              (11) 

where 
0 -1 0
1 0 0
0 0 1

W
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

C. Elimination of mismatched key point pairs 
The Essential Matrix E is essential to the whole 

algorithm. It only depends on the feature point pairs. If the 
number of mismatched key point pairs reaches to a certain 
extent, the Essential Matrix would be calculated incorrectly. 
Consequently, the accuracy of the rotation matrix R and the 
translation vector t would degrade. Therefore the selected 
key point pairs should be matched as precisely as possible. 

We proposed a method to remove some mismatched key 
point pairs. The automatic feature tracking algorithm is 
based upon the iterative KLT algorithm [4]. Since the videos 
are usually captured along a road, if we suppose the camera 
is static and the scene are moving in front of the camera, the 
same tracking points will be located on lines. Those lines 
will map into curves on the panoramas. Those curves 
indicate the moving trend of key points. As Fig. 3 shows, all 
key points are extracted and matched between two frames, 
and the small lines indicate the orientation and offset length 
of the key point pairs. 

 
Figure 3.  Orientation and offset length of key points in a frame 

Two aspects are obtained after analyzing the moving 
trend: 

• There are two moving trends for each panoramic 
video. One is that all key points will move towards 
center, while another is that all key points will move 
outsides. 

• The horizontal offset length for each key point pair 
on two neighboring frames is in a certain range.  

With the two aspects, some mismatch key points can be 
removed through the following algorithm: 

Step 1: Make a judgment of the moving trend of the 
panoramic video. Whether a key point (x, y) is moving 
forwards or backwards is judged through ˆ || / 2 ||x x w= − . x 
indicates the horizontal position of the key point and w is the 
width of the panorama frame. If most x̂  become larger in the 
next frame, we support that the video is moving forwards. 

Step 2: Calculate the maximum approximate horizontal 
offset length of key points. We only calculate from the key 
points whose corresponding angles on sphere satisfy: 

[ / 4 3 / 4] [5 / 4 7 / 4]θ π π π π∈  ∪  ， ， , so the key points selected 
are located on two sides. Here, we only consider the situation 
when the vehicle is driving forwards. The horizontal offset 
length of each feature pair (x1,y1,x2,y2)  on two neighboring 
frames is calculated through: 1 2 1 2( , )l x x x x= − . 

Establishing a histogram with l(i) (i=1…N) and we get 
the number of point pairs for each offset length. The number 
of pairs whose offset length is l is set as hist(l). The 
estimated maximum offset L is calculated through:  

0
( ) *

l L

l
hist l r N

=

=

>∑ , where N is the number of the total 

pairs, r is a ratio which is set as 0.9. 
Step 3: Select key frames and remove some mismatched 

key points. 
If L<Lmax, this neighboring frame pair is considered being 

captured too close, so the latter frame of the frame pair will 
be removed from the key frames set, it would not be selected 
as a key frame. Lmax is a constant which is set as Lmax =20. 

If this frame is selected as a key frame, it will be used to 
estimate its motion later. Otherwise we will consider the next 
frame. As for the neighboring key frame pairs, some 
mismatched key point are eliminated first. Key points will be 
removed if they do not satisfy: 

1 2 1

2 1 1

( ) (0 ] /2
( ) (0 ] /2
x x L x w
x x L x w

− ∈         <  ⎧
⎨ − ∈         >⎩  
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The elimination of the mismatched key point pairs is 
executed after key points are selected and tracked. As this 
process removes most of mismatched pairs, the essential 
matrix E will be calculated more accurately with RANSAC 
and the 8-point algorithm later. 

To verify the robustness of the method, we chose 4 pairs 
of neighboring frames randomly and compared the following 
parameters before and after applying the elimination method: 

• N: The number of all KLT feature points of two 
neighboring frames.  

• inlierN : The number of inliers, inliers point pairs (m1, 
m2) are those point pairs which satisfy m2

TEm1<T, 
while the outliners are those whose error are larger 
than T, T is a constant. 

• e : The average errors. 

 2 1
inlier

T
inlier

i N

e m Em N
=

= ∑  

The parameters obtained are listed in Table 1: 

TABLE I.  THE COMPARISON OF ERRORS BEFORE AND AFTER 
APPLYING THE ELIMINATION METHOD OF OUTLINERS. 

 Elimination + Ransac 
+ 8 point algorithm 

Ransac + 8 point 
algorithm 

N Ninlier e  N Ninlier e  
Test 1 115 103 10.6 115 69 0.41 
Test 2 109 106 2.94 109 79 0.53 
Test 3 108 102 4.51 108 86 0.66 
Test 4 112 96 1.34 112 83 0.09 

Comparison of the average errors

0

5

10

15

E
r
r
o
r
s

Ransac + 8 point
algorithm

10.65 2.94 4.51 1.34

Our method 0.41 0.53 0.66 0.99

Test1 Test2 Test3 Test4

 
In table 1, it shows that if the key point pairs are selected 

with the elimination method before computing the essential 
matrix, some outliners will be removed previously and the 
essential matrix will be computed more accurately. 

IV. SAM FOR A SEQUENCE SPHERICAL PANORAMA 
FRAMES 

Based on the epipolar geometry for two neighboring 
frames, poses for all cameras can be adjusted in a unified 
frame and 3D scene points corresponding to feature points 
on the spherical surface can be obtained through the 
triangulation. A bundle adjustment is applied at last to refine 
all parameters. The whole process is described in the 
flowchart Chart 1.  

A. Adjustment of the positions and postures for all 
cameras 
After the relative position and posture between two 

cameras have been recovered through the epipolar geometry, 

the absolute positions and postures for all cameras can be 
iteratively computed if the coordinate of the first camera is 
set as the world coordinate. Suppose the relative position and 
posture are Ri and Ti for camera i-th and camera i+1-th, the 
corresponding relative projection matrices for all adjacent 
cameras are: 

1 [ | 0]
[ | ] 2...i i i

P I
P R T i n

=⎧
⎨ =     =⎩

                               (12) 

After adjustment, the absolute projection matrices for all 
cameras are: 

1

1 j 1

' [ | 0]

' [ ' | * '] 2...i i i i i i

P I

P R R T s R T i n− −

=⎧
⎪
⎨ = +     =⎪
⎩

∏
i

j =1

 (13) 

where sj is the scale factor, it is the average ratio of the 
distances of 3D points between the two neighboring models. 

B. Triangulation for spherical camera 
3D scene points are computed through triangulation. As 

Fig. 2 shows, we have the projection matrix P1 of camera 1, 
the projection matrix P2 of camera 2 and the point pair (m1, 
m2) on the spherical coordination. As 1 1( ) 0m PM× = , 

2 2( ) 0m P M× =  and m1=(X1, Y1, Z1), m2=(X2, Y2, Z2), we 
have equations: 

3 1
1 1 1 1

3 2
1 1 1 1

3 1
2 2 2 2

3 2
2 2 2 2

0

T T

T T

T T

T T

X P Z P
Y P Z P

AM M
X P Z P
Y P Z P

⎡ ⎤−
⎢ ⎥−⎢ ⎥= =
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

                   (14) 

where 1
iP  is the i-th column of P1, 2

iP  is the i-th column 
of P2 . A is decomposed based on the SVD, A=UDVT and 
M=V (0, 0, 1) T 

C. Bundle adjustment 
Since errors are accumulated during the adjustment 

phase, the positions and postures of cameras and 3D points 
should be refined through a bundle adjustment. Bundle 
adjustment refines all parameters, including camera 
positions, postures and 3D points. After the bundle 
adjustment, the mean squared distances between the 
observed spherical surface points and the remapping points 
of 3D points on the spherical surface will be minimized. 

Suppose the projection matrix of camera i-th is Pi 
(i=1…k), ( )ij jm i ∈ Γ  is the map point of 3D points Mj 
(j=1…n) on camera i-th, where jΓ  is the set of image index 
indicating the remapping images of Mj. The cost function to 
be minimized is: 

2

, 1

ˆmin ( , )
i i

j

n

ij ijR t j i
f d m m

= ∈Γ
= ∑∑                        (15) 

where 2 ˆ( , )ij ijd m m  donates the distance of the detected 
point and the projective point. This function is minimized 
through LM algorithm [21]. 

7373



 
Chart 1 The flowchart of SAM for a panoramic video 

V. EXPERIMENTS 
The omni-directional device used is Pointgrey Corp.’s 

Ladybug 2 which captures images at a rate of approximate 
15FPS and the panorama size is 1280*720. The GPS of each 
panoramic frame was also captured and the rate of the GPS 
device is about 1 time/second. To reduce calculation, we first 
filtered frames with GPS, ensuring each filtered frame has a 
different GPS. Then we selected key frames from the filtered 
frames with the method mentioned in section 3.3. Fig. 4 
shows a sequence of panoramic frames of Beihang campus. 

 
Figure 4.  A sequence of panoramic frames 

We implemented the algorithm discussed above in C++. 
To verify the algorithm, we tested three sequences of 
panoramic frames and compared the result with that of 
Boujou4. Boujou4 is commercial motion estimation 
software. As the videos that Boujou4 handles are ordinary 
limited FOV videos, we first converted each spherical 
panorama into the cube panorama to extract a cubic side as 
the inputted frame for Boujou4. Fig. 5 shows a sequence of 
frames composed of the cubic sides. As Florian Kangni [17] 
stated, if the width of the cubic side is L, the focal length can 
be set as L/2 in boujou4. 

 
Figure 5.  A sequence of frames composed of the cubic sides 

Both our algorithm and boujou4 are totally automatic. 
After the frames are inputted, feature points are first tracked 
along the frames; motions are then solved to get the 
translation parameters, the rotation parameters and amount of 
3D points. The statistics are listed in Table 2. 

TABLE II.  STATISTICS OF OUR ALGORITHM AND BOUJOU 4 

 Scene 1 Scene 2 Scene 3 

 Our 
algorith

m 

Bouj
ou4 

Our 
algorith

m 

Bouj
ou4 

Our 
algorith

m 

Bouj
ou4 

Frames 20 20 50 50 100 100 
Key 
Frames 

17 20 29 50 42 100 

Average 
features. 

226 375 237 405 236 418 

3D points 1086 45 1693 155 2580 70 
Residual 
Errors(pix
els) 

0.53 0.32 0.58 0.36 0.64 0.37 

Tracking 
time (sec.) 

14 16 31 30 62 63 

Solving 
time (sec.) 

1 16 10 173 18 436 

As Table 2 shows, because our algorithm selected key 
frames from the inputted frames, the total frames handled in 
the solving process are reduced in our algorithm. Boujou4 
extracted more feature points per image, but most were 
removed and 3D scene points were less. Through analysis of 
the residual errors, we can conclude that Boujou4 is more 
accurate, while the residual errors less than one pixel is 
enough for most cases. As for the performance, the tracking 
time of both is appropriately equivalent, but our algorithm 
took less time than that of Boujou4 in the solving process. As 
the frames are increased, our algorithm will take much less 
time than that of Boujou4. 

We analyzed the translations of Scene 3 with our 
algorithm and Boujou4 as Fig. 6. 

Translation of each frame
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(a) Translation of each frame from our algorithm  
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Algorithm: SAM for panoramic cameras 
Input: n frames of a spherical panoramic video 
I. Track KLT features along n panoramic frames 
II. Select key frames and remove mismatched features 

through the method mentioned in section 3.3 
III. For each pair of key panoramic frames 
a) KLT features are remapped onto the united sphere to 

compute the corresponding points on the spherical 
surface. The KLT features are points whose spherical 
angle [ / 4 3 / 4] [5 / 4 7 / 4]θ π π π π∈  ∪， ， . 

b) The essential matrices E is computed with RANSAC 
and the 8-point algorithm, the rotation matrix R and the 
translation matrix t are decomposed through E 

IV. Set the first frame’s pose as R=I, t=0 and adjust 
rotation matrices and translation matrices for all key 
frames with the formula mentioned in section 4.1 

V. Compute 3D points with the triangulation. 
VI. Refine rotation matrices, translation matrices 

and 3D points through the bundle adjustment.  
VII. Obtain motions for other frames with motions 

of key frames through linear interpolation 
Output: Positions and postures for all frames, amount 

of 3D scene points. 

7474



 (b) Translation of each frame from Boujou4 
Figure 6.  Translation of each frame from our algorithm and Boujou4 

As Fig. 6(a) shows, the coordinate of the first frame is set 
as the world coordinate in our algorithm. The moving 
orientation of each frame pointed to X axis, so the X 
component of each frame was increased gradually. Because 
the vehicle moved evenly, the X component increased 
linearly. Fig. 6(b) shows the translations of boujou4. In the 
coordinate system of boujou4, it shows that the translations 
jittered greatly from the 15-th frame to the 30-th frame, 
which is due to short baseline between frames and we solved 
this problem through the process of key frame selection. 

We took a simulated experiment with those parameters. 
The panoramas were mapped on the spheres. Then each 
sphere was rotated and translated in the world coordinate 
with its external parameters. 3D points were located in the 
same scene with their poses. We drew a set of lines between 
a 3D point and all spherical centers and found that the 
remapping points on spherical surfaces indicated the same 
scene point. 

 
Figure 7.   Simulative demonstrations of the panoramic spheres and the 3D 

points 

VI. CONCLUSIONS  
This paper presents an algorithm to estimate poses for 

spherical cameras. With a series of spherical panoramas, the 
motion parameters are computed automatically. There are 
still some works need to do in the future. Since the algorithm 
bases on feature matching and its can not handle well for the 
texture less scene. In the further, we will study ways to 
handle videos of texture less scene. What’ more, some 
procedures can be executed synchronously in this algorithm, 
such as the computation of epipolar matrices for the pair-
wise cameras. In fact, they can be accelerated with GPU, so 
GPU can be used when the algorithm needs to be executed 
real time. And further work will direct on applications based 
on the motions of the panoramic videos. 
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