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Abstract—In this paper we present an approach to au-
tomatically segmenting non-rigid pedestrians in still images.
Inspired by global shape matching as well as interactive figure-
ground separation methods, this approach fulfills the task
combining shape and appearance cues in a unified framework.
The main idea is to initially extract pedestrian silhouette and
skeleton via hierarchical shape matching, and then generate
an appearance trimap to refine segmentation. The major
contributions of this paper include: 1) a novel shape matching
scheme, which is proposed to replace the commonly used
Chamfer matching in the shape matching stage; 2) a head-torso
parsing method, which is developed for localizing pedestrian
to reduce the search space; 3) an automatic trimap generation
method used to refine segmentation. Experiments on public
datasets demonstrate that the approach improves pedestrian
segmentation efficiently and effectively.

Keywords-pedestrian segmentation; shape matching; skeleton
extraction; head-torso parsing; trimap generation

I. INTRODUCTION

Pedestrians, as the principal actors in daily life, have been
widely studied in computer vision. Pedestrian segmentation
is a fundamental task for many applications in artificial
intelligence field, such as action recognition, scene under-
standing and human-computer interaction, etc. However,
this has proven to be a challenging task due to inherent
pedestrian articulation, appearance variances and cluttered
backgrounds.

Shape and appearance are two commonly used cues for
pedestrian segmentation. Shape is characterized as one-
dimensional curve, thus is invariant to lighting conditions
and object colors. But a conventional shape matching al-
gorithm [1] is sensitive to cluttered backgrounds. Boundary
points on a shape template are often mistakenly matched
with edges apart from object contour in the image. Appear-
ance has the advantage of preserving the relative uniform
color/texture information for a single object. It is widely
used to distinguish the foreground objects from background
scene [2][3]. However, without constraint of shape prior,
those low-level segmentation methods tend to over or under
segment pedestrians. Obviously, neither shape nor appear-
ance alone can automatically extract satisfactory silhouettes.

In this paper, we present an approach for pedestrian
segmentation which incorporates shape and appearance cues.
We limit our attention to upright pedestrians. It is worth

noting that this approach is not limited to pedestrian but
can be applied to any non-rigid objects. The input to our
framework are pedestrian bounding boxes produced by a
person detector, e.g., HOG-LBP [4]. A shape matching
scheme is first employed to extracted pedestrian silhouette
and skeleton. For speeding up, we organize the set of shape
templates in a hierarchical tree, and present a part detector
to lock onto the head and torso. Based on the silhouette and
skeleton, we then obtain the foreground trimap and refine
pedestrian by solving a MRF energy function.

According to the processing stages mentioned above, this
paper is organized as follows. In Section II we summarize
the related previous work. Section III shows the head-
torso parsing process. The details of the hierarchical shape
matching are described in Section IV. Section V presents
trimap generation and pedestrian refinement. In Section VI
we list the experimental results. Some conclusions and
discussions are given in the last section.

II. RELATED WORK

Numerous approaches have been proposed for pedestrian
segmentation. These approaches can be roughly classified
into three categories: shape-based, appearance-based, shape-
and-appearance-combined approaches.

A. Shape based approaches

The first category uses shape information as the main
discriminative cue, including global shape templates and
local contour features. Methods based on global shape
templates segment pedestrians by matching shape templates
with the feature image (e.g., the edge map). Effective shape
registration plays a central role. For example, Gavrila [1]
match global templates using Distance Transformation(DT)
and Chamfer matching. Active contour models [5] try to at-
tach points of the template to object boundaries by iteratively
solving a global energy in level-set space. Although global
shape matching methods can efficiently localize the object,
the pixel-level segmentation is far from satisfactory under
cluttered backgrounds and occlusion due to shape variances.

In contrast, local contours are more flexible and tolerant to
occlusion, such as the contour features employed in Opelt et
al. [6], the edgelet in Wu et al. [7] and the part-template in
Lin et al. [8]. Methods based on local contours delineate
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pedestrian boundaries by selection of contour features in
supervised manner. The selected features lie on the object
boundaries, thus their responses on the query image help
to segment the object. Although these methods are more
effective for object detection, the segmentation results are
unsatisfactory either. For example, in Opelt et al. [6], many
similar fragments are selected around the pedestrian bound-
ary, causing ambiguous delineation of the boundary. In Wu et
al. [7] and Lin et al. [8], pedestrians are restricted to frontal
and rear views, and the arms’ segmentation is omitted.

B. Appearance based approaches

The second category uses appearance information to
separate class specific objects from background, involving
fragment clustering methods [9][10] and interactive figure-
ground separation methods [2][3]. Based on “bag of words”,
Leibe et al. [9] explore the idea of learning a codebook
of appearance parts for interleaved segmentation and clas-
sification. They arrange the fragments in star-style, detect
objects by voting in the Hough space, and backproject fore-
ground fragments to delineate pedestrian silhouette. Another
technique is to arrange the learned fragments in CRF and
segment the foreground object by solving a global energy
function through graph cut [3], such as Larlus et al. [10].
However, these methods fail to extract a clear boundary
without the constraint of shape contour.

More recently, interactive figure-ground separation meth-
ods draw lots of attention, e.g., GrabCut [2] and matting
techniques [11]. Under the indication of some scribbles
drawn to distinguish foreground from background, a MRF
energy function is built for optimizing the selected object.
Optionally, the boundaries can be further optimized using
matting methods [11]. However, the interactive property lim-
its its applications and segmenting an object with complex
structures is cumbersome.

C. Shape and appearance combined approaches

Drawing advantages of the above two categories, some
authors suggest combining shape (top-down segmentation)
and appearance (bottom-up segmentation) cues for class
specific object segmentation. One technique is implemented
by grouping the detected over-segmented fragments under
shape guide, such as Borenstein et al. [12] and Cour et
al. [13]. However, these methods are only suitable for
segmenting rigid objects or non-rigid objects with limited
shape variation under the limited shape templates. For highly
articulated pedestrians, the limited fragment templates can-
not fully capture all poses.

Comparably, methods based on part parsing are more
suitable for non-rigid object segmentation, such as OBJ-
CUT [14]. The OBJ-CUT method [14] is tolerant to pose
variances as it considers non-rigid object as a layered
pictorial structure with each layer encoding the similar
appearance cue. By iteratively parsing and refining the layers

in CRF, it obtains good results. Similarly, Eichner et al. [15]
present a part appearance model for pedestrian parsing and
part-specific soft-segmentation. The part appearance models
are built on some generic part detector and further used
to improve the part detection. However, the arm and leg
parsing in these part-parsing based methods are inaccurate
in some cases, resulting in inaccurate segmentation. Guan
et al. [16] present a method to segment pedestrian based
on pedestrian parsing too. Instead of automatically parsing
pedestrian, they manually extract pedestrian skeleton. By
incorporating a variety of image cues including silhouette
overlap, edge distance, and smooth shading, their method
obtains wonderful segmentation results for naked or mini-
mally clothed people. However, the interactive manipulation
limits its applications.

Our segmentation approach falls into the last category.
Here, motivated by global shape matching method [1]
and interactive figure-ground separation approaches [2],
we present an automatic pedestrian segmentation approach.
Compared to the traditional shape matching approach [1],
our approach facilities appearance cue to refine the seg-
mentation results, thus is more tolerant to local appearance
variances. Comparing with interactive figure-ground separa-
tion [2], our approach can automatically extract pedestrian
silhouette and skeleton for segmentation, thus avoids cum-
bersome manipulation and has more applications. In contrast
to previous combined approaches [12][13], this approach is
characterized by the utilization of the automatically gen-
erated trimap for human segmentation, which encodes the
constraint of shape as well as skeleton.

III. HEAD-TORSO PARSING

The input to our approach are pedestrian bounding boxes
output by a generic pedestrian detector [4]. Since the pedes-
trians are only roughly localized in the bounding boxes, we
propose a part parsing method to more precisely localize
pedestrian head and torso within the bounding boxes for
further shape matching. The part parsing consists of two
steps: first, a part detector(described in Section III-A and
Section III-B) is present to build the part confidence maps
for pedestrian head and torso; second, the head and torso
confidence maps are combined with their configuration pri-
ors to lock onto pedestrian head(described in Section III-C).

A. Part detector — learning phase

Our part detector is built on the Hough voting scheme[6].
In the learning phase, we obtain a set of scale normalized
parts with the corresponding edge and mask maps. To
construct a star-style constellation, we uniformly extract the
sample points along the mask contour. Then we extract the
96-dimensional Shape Context features (SC) [17] for each
sample points(as shown in Fig. 1(a)). In this way, a set of
features is obtained. We divide these features into several
groups with respect to their orientations. An additional
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Figure 1. Example of learning and detection with the head detector.
(a)Learning a head detector; (b)The head localization with the head detector
in Hough voting space, in which the enlarged box shows a sample point
voting to three centroids(in red).

group collecting negative samples is generated by randomly
taking some feature points in non-part regions. We utilize
random forest [18] to train the multi-classifier. Meanwhile,
for each group, we statistically obtain the mean and the
variance of the relative distances to the centroid, obtaining
{(𝜇𝑖, 𝜎𝑖)∣𝑖 = 1, ⋅ ⋅ ⋅ , 𝑀𝐿 + 1}. Here, 𝑀𝐿 + 1 is the group
number .

B. Part detector — detection phase

In the detection phase (as shown in Fig. 1(b)), the response
at a candidate point is calculated using probabilistic voting,
in which votes are accumulated in a circular search window
around the candidate point. More specially, we first uni-
formly take sample points in the bounding box and extract
their SC features, and then obtain their responses for each
group through the multi-classifier. Now, a sample point set
𝑄𝑅 = {𝑞𝑘, 𝑣𝑘, 𝑠𝑘,𝑖∣𝑘 = 1, ⋅ ⋅ ⋅ , 𝐾𝑅, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑀𝐿 + 1}
is generated, where 𝐾𝑅 is the number of sampled points,
𝑞𝑘 = (𝑞𝑘,𝑥, 𝑞𝑘,𝑦) is the position of the 𝑘-th sample point,
𝑣𝑘 is the 96-dimensional feature vector, 𝑠𝑘,𝑖 is the response
score for the group 𝑖. The confidence map 𝐶 is formulated
as the accumulation of responses from all sample points:

𝐶 =

𝐾𝑅∑
𝑘=1

𝑀𝐿∑
𝑖=1

𝐶𝑘,𝑖 (1)

where 𝐶𝑘,𝑖 is the individual response map with the same
size to the image, and calculated by the voting of the 𝑘-th
sample point in the 𝑖-th orientation. For the position 𝑧 in the
confidence map 𝐶𝑘,𝑖, its response is defined as:

𝐶𝑘,𝑖(𝑧) =

{
𝑤(𝑟𝑖)min(𝑠𝑘,𝑖, 𝜏𝑠), ∥𝑟𝑖∥2 < 𝜎𝑖&𝑠𝑘,𝑖 > 𝑇𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

Here, 𝜏𝑠 is the truncating value, 𝑇𝑠 is a threshold, 𝑟𝑖 is
the offset distance relative to the candidate centroid, i.e.,
𝑟𝑖 = 𝑧 − (𝑞𝑘 + 𝑐𝑖), in which 𝑐𝑖 = (𝑐𝑖,𝑥, 𝑐𝑖,𝑦) denotes the

      (a)                         (b)                           (c)                           (d)

Figure 2. Example of part detection for the head and torso. (a) Input
image; (b) The confidence map for the torso after part detection; (c) The
confidence map for the head after part detection; (d) The confidence map
for the head after part parsing.

relative candidate centroid and is formulated as:{
𝑐𝑖,𝑥 = 𝜇𝑖 ∗ 𝑐𝑜𝑠(𝜃𝑖)
𝑐𝑖,𝑦 = 𝜇𝑖 ∗ 𝑠𝑖𝑛(𝜃𝑖)

(3)

𝑤(𝑟𝑖) is the weighting value, 𝑤(𝑟𝑖) = 1−
√

𝑟2𝑖,𝑥 + 𝑟2𝑖,𝑦/𝜎𝑖,

(𝜇𝑖, 𝜎𝑖, 𝜃𝑖) are the learned distance mean, the distance vari-
ance and the orientation for the 𝑖-th group respectively, as
described in Section III-A.

This simple star-style constellation is flexible enough to
cope with large variation in shape and appearance. However,
as illustrated in Fig. 2(c), the confidence maps tend to
generate several candidates in some cases. For example, the
feet often give high responses in the head’s confidence map.
Thus, a further global parsing is necessary to sharply localize
pedestrian parts, as stated in the next subsection.

C. Part parsing

The head-torso parsing is performed by combining the
head and torso confidence maps with their configuration
priors. Based on the Bayesian perspective, given the image
evidence 𝐼 , the posterior of the part configuration 𝐿 is
modeled as 𝑝(𝐿∣𝐼) ∝ 𝑝(𝐼∣𝐿)𝑝(𝐿), where 𝑝(𝐼∣𝐿) is the
likelihood of the image evidence given a particular body
part configuration, 𝑝(𝐿) is the configuration prior.

Let the location of the torso and head be parameterize
as 𝐿 = {𝑙0, 𝑙1}. Assuming that the different part evidence
maps are conditionally independent given the configuration
𝐿, and that the part map 𝐼𝑖 for part 𝑖 only depends on its
own configuration 𝑙𝑖, the likelihood map can be simplified
as: 𝑝(𝐼∣𝐿) =

∏
𝑖∈{0,1} 𝑝(𝐼𝑖∣𝐿) =

∏
𝑖∈{0,1} 𝑝(𝐼𝑖∣𝑙𝑖). In

our framework, the likelihood map is represented by the
confidence map, i.e., 𝑝(𝐼𝑖∣𝑙𝑖) ∝ 𝐶𝑖(𝑙𝑖), 𝑖 ∈ {0, 1}.

The configuration prior is factorized as: 𝑝(𝐿) ∝ 𝑝(𝑙0 −
𝑙1)

∏
𝑖∈{0,1} 𝑝(𝑙𝑖), in which the priors 𝑝(𝑙𝑖) for the torso and

head are modeled using independent Gaussian distribution
in the image coordination, 𝑝(𝑙0 − 𝑙1) is the relative spatial
position prior, also modeled as a Gaussian distribution.
We statistically learn the mean and variance values for
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these three priors. Combining the likelihood and priors, the
posterior of the configuration can be rewritten as:

𝑝(𝐿∣𝐼) ∝
∏

𝑖∈{0,1}
𝐶𝑖(𝑙𝑖)

∏
𝑖∈{0,1}

𝑝(𝑙𝑖)𝑝(𝑙0 − 𝑙1) (4)

To quickly maximize the posterior, we utilize message
propagation [19] for optimization in several bounds. In our
framework, there are only two message maps, i.e, 𝑚(0, 1)
and 𝑚(1, 0), representing the torso-to-head and head-to-
torso message transferring. The initial message maps are
derived as: 𝑚0(𝑖, 𝑗) = log(𝐶𝑖(𝑙𝑖)) + log(𝑝(𝑙𝑖)), 𝑖, 𝑗 ∈
{0, 1}. Iteratively, the message maps are updated as fol-
lows: 𝑚𝑡(𝑖, 𝑗) = 𝑚𝑡−1(𝑗, 𝑖) + log(𝑝(𝑙𝑖∣𝑙𝑗)). Note that the
confidence map 𝐶𝑖(𝑙𝑖) and the message maps 𝑚𝑡(𝑖, 𝑗) are
all normalized before being applied to transfer messages.
As shown in Fig. 2(d), this global part parsing scheme can
significantly prune out the false locations.

IV. HIERARCHICAL SHAPE MATCHING

Shape matching is used to search the best matched tem-
plate and to extract pedestrian silhouette. In general case,
it is the edge map instead of the original image to be
aligned with the templates. In our approach, the edge map is
given by the Pb edge detector [20] which encodes the real-
valued magnitude and orientation information. To measure
the similarity between a template and the edge map, various
matching schemes are presented, of which Chamfer match-
ing is most commonly used [1][7][8]. However, Chamfer
matching is not tolerant to local deformation in cluttered
backgrounds. Here, we present a smoother shape measurer
to extend Chamfer matching.

A. Template alignment

Chamfer matching: In its complete form, Chamfer
matching takes two point sets: 𝐸 = {𝑒} for the edgels of
the edge map, 𝑇 = {𝑡} for the sample points of the shape
template, and evaluates the Chamfer distance as a function
of relative position 𝑝 :

𝐷(𝑇, 𝐸, 𝑝) =
1

∣𝑇 ∣
∑
𝑡∈𝑇

min
𝑒∈𝐸

(𝐷1(𝑡, 𝑒, 𝑝) + 𝛼𝐷2(𝑡, 𝑒, 𝑝)) (5)

where 𝐷1(𝑡, 𝑒, 𝑝) = 𝑚𝑖𝑛(∥(𝑡 + 𝑝) − 𝑒∥, 𝜏1), 𝐷2(𝑡, 𝑒, 𝑝) =
𝑚𝑖𝑛(∣𝑜(𝑡+𝑝)−𝑜(𝑒)∣, 𝜏2), 𝑜(⋅) denotes the orientation value.
Both 𝜏1 and 𝜏2 are truncating values, and 𝛼 is a weighting
value.

From the Chamfer matching definition and experiments,
we notice that: 1) the neighboring sample points along the
template 𝑇 tend to be inconsistently aligned with points
of the edge map in cluttered backgrounds, resulting in the
zigzags (see Fig. 3(d)); 2) it is time-consuming to search all
points in the fixed search window. The time complexity is
𝑂(𝑛2), 𝑛 is the radius of the search window.

Based on the above two observations, we present a novel
shape matching scheme. To reduce search space, we only

    (a)       (b)       (c)     (d)   (e)

Figure 3. Example of silhouette extraction by aligning the matched shape
template with the edge map. (a)Input image; (b)The edge map obtained by
the Pb edge detector; (c) The matched template with the overlaid normal
line segments on the sample points; (d) The silhouette extracted by the
Chamfer matching; (e) The silhouette extracted by the proposed shape
matching.

search along the one-dimensional normal line segments
of the template sample points(see Fig. 3(c)). For sample
point 𝑡, the normal line segment is defined as a point
set: 𝑆(𝑡) = {𝑠(𝑖, 𝑡)∣𝑖 = −𝑀𝑆 , ⋅ ⋅ ⋅ , 𝑀𝑆}, where 𝑠(𝑖, 𝑡) =
⟨𝑖 ∗ 𝑠𝑖𝑛(𝑜(𝑡)), 𝑖 ∗ 𝑐𝑜𝑠(𝑜(𝑡))⟩, 2𝑀𝑆 + 1 is the total length of
the line segment (in pixels), and 𝑜(⋅) indicates the orientation
value. Thus the shape matching can be considered as a label-
ing problem. It is to assign a unique label 𝑙(𝑡) ∈ [−𝑀𝑆 , 𝑀𝑆 ]
to sample point 𝑡 ∈ 𝑇 . Under the label 𝑙(𝑡), the matched
point to 𝑡 in the edge map is 𝑞(𝑙(𝑡)) = 𝑝 + 𝑡 + 𝑠(𝑙(𝑡)).

To provide smoother alignment, we add a smooth term
to the Chamfer distance. Hence, with the constraint of
neighboring labeling, a MRF function is formulated as:

𝐷(𝑇, �̂�, 𝑝) =
1

∣𝑇 ∣
∑
𝑡∈𝑇

(𝐷𝑑(𝑙(𝑡))+𝛼1𝐷𝑠(𝑙(𝑡), 𝑙(𝑡+1))) (6)

where �̂� is the label set, i.e., �̂� = {𝑙(𝑡)∣𝑡 ∈ 𝑇}, 𝐷𝑑(⋅) is the
data term and 𝐷𝑠(⋅, ⋅) is the smooth term. 𝐷𝑑(⋅) encodes
the cost when the sample point 𝑡 is labeled as 𝑙(𝑡), and
formulated as:

𝐷𝑑(𝑙(𝑡)) = min(𝑔(𝑞(𝑙(𝑡))), 𝜏1)+𝛼2 min(𝑜(𝑡)−𝑜(𝑞(𝑙(𝑡))), 𝜏2)
(7)

𝐷𝑠(⋅, ⋅) represents the cost when the adjacent sample
points 𝑡 and 𝑡 + 1 are labeled as 𝑙(𝑡) and 𝑙(𝑡 + 1). It is
defined by:

𝐷𝑠(𝑙(𝑡), 𝑙(𝑡 + 1)) = min(∣𝑙(𝑡)− 𝑙(𝑡 + 1)∣, 𝜏3) (8)

In the above formulations, 𝜏1, 𝜏2, 𝜏3 are truncating values,
𝛼1, 𝛼2 are weighting values, 𝑔(⋅) and 𝑜(⋅) denote the nor-
malized magnitude and orientation information respectively.

Obviously, the data term encourages assigning a point in
the edge map with strong magnitude and similar orientation
to the sample point 𝑡, and the smooth term penalize assigning
different labels for neighboring sample points. They can be
seen as an external energy and internal energy individu-
ally. The graph cut algorithm [3] is invoked to minimize
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Figure 4. The hierarchical shape tree.

𝐷(𝑇, �̂�, 𝑝) to obtain the global minimum energy(similarity
score) as well as the silhouette points in the image. As
shown in Fig. 3(e), this shape matching scheme gives a
smoother alignment to the edge map, thus is more tolerant
to local deformation, slight scale, and position than Chamfer
matching.

B. Construction of hierarchical shape tree

As pedestrian shapes are highly variant, a set of shape
templates is used to search the best matched template. For
efficiency, those templates are organized in a hierarchical
tree, in which similar templates are grouped together and
represented with a prototype, as shown in Fig. 4. Shape
matching is implemented as a process of traversing the
tree to find the best matched prototype. Once the similarity
score with a prototype is above a threshold 𝑇𝑡, its following
subtrees will not be visited, thus a significant speed-up can
be achieved.

Taking each shape template as a node of an Undirected
Complete Graph (UCG) 𝐺 =< 𝑉, 𝐸, 𝑊 >, the construction
of the tree can be considered as a problem of hierarchical
graph clustering. This is a well-studied NP-hard problem in
graph theory, involving some bottom-up clustering methods
and top-down partition methods. Here, following the theory
of spectral clustering [21], we construct the hierarchical tree
in top-down manner. For the UCG 𝐺 =< 𝑉, 𝐸, 𝑊 >, we
first calculate the edge weights matrix 𝑊 = {𝑤(𝑖, 𝑗)∣𝑖, 𝑗 ∈
𝑉, (𝑖, 𝑗) ∈ 𝐸}. The entity of the matrix 𝑊 is defined as :
𝑤(𝑖, 𝑗) = 𝐷(𝑖, 𝑗) + 𝐷(𝑗, 𝑖). 𝐷(𝑖, 𝑗) is the similarity score
between the template shape 𝑖 and the template mask 𝑗, as
described in (6). 𝐷(𝑗, 𝑖) is obtained similarly. Note that
all the templates and masks have been aligned and scale
normalized.

Spectral clustering partitions a graph into 𝐾 subsets based
on the normalize cut criterion:

𝑁𝑐𝑢𝑡𝐾 =

𝐾∑
𝑖=1

𝑐𝑢𝑡(𝐴𝑖, 𝑉 −𝐴𝑖)

𝑎𝑠𝑠𝑜𝑐(𝐴𝑖, 𝑉 )
(9)

where 𝑎𝑠𝑠𝑜𝑐(𝐴, 𝐵) = 𝑐𝑢𝑡(𝐴, 𝐵) =
∑

𝑢∈𝐴,𝑣∈𝐵 𝑤(𝑢, 𝑣).
We utilize this approximate solution to iteratively divide

the graph to construct a hierarchical tree. At first, nodes

in the Graph 𝐺 are divided into 𝐾1 subsets. Then, for
each subset, the spectral clustering is employed again to
partition it into 𝐾2 sub-subsets. The process is recursively
implemented until the number of clustering nodes is lower
than a constant value 𝐾𝑡. The prototype of a subtree is taken
as the template with the smallest mean similarity score to
the other templates in the subset. Taking each subset with its
prototype as a subtree, the hierarchical tree is constructed.

Shape matching is applied as a coarse-to-fine traversal
along the tree. In the traversal procedure, all visited tem-
plates with the similarity score as well as the labeling
results(as described in Section IV-A) are added to a visiting
list. At the leaf level, all template exemplars are to be
matched, whereas, at the non-leaf level, it is the prototypes
derived to be aligned with the edge map. If the similarity
score of a prototype is above a threshold, all of its subtrees
would not be visited, otherwise, the prototype is added to
the list and the subtrees are traversed recursively. At last, we
choose the template with the minimum similarity score in
the visiting list as the best matched shape, meanwhile obtain
the pedestrian silhouette it represents.

V. CONSTRAINT PEDESTRIAN REFINEMENT

Due to pose variances, pedestrian silhouettes produced
in the shape matching stage are inaccurate in some cases.
In this section, we refine pedestrian segmentation with ap-
pearance cue. Comparing with the interactive figure-ground
separation methods [16][2], this refinement is automatically
performed through the generated trimap which encodes
pedestrian shape and skeleton information. Pedestrian shape
is derived directly from shape matching, and the skeleton is
transferred from the template skeletons. In Section V-A, we
describe how to estimate the skeleton and the trimap. And in
Section V-B, we state the pedestrian refinement procedure.

A. Skeleton and trimap generation

Pedestrian skeleton is composed of a set of line segments
each being connected by two joints, indicating the head,
torso, upper or lower arm, upper or lower leg parts, as shown
in Fig. 5(b). In the learning phase, we manually click joints
in shape masks to yield the skeleton. For each point in the
skeleton, we calculate its normal line and obtain the left and
right crossing point between the normal line and the mask
contour, resulting in a set {𝑠𝑝𝑖, 𝑙𝑝𝑖, 𝑟𝑝𝑖∣𝑖 = 1, ⋅ ⋅ ⋅ , 𝐾𝑆}.
Here, 𝑠𝑝𝑖 is the skeleton point, 𝑙𝑝𝑖 and 𝑟𝑝𝑖 are the left and
right crossing point, 𝐾𝑆 is the skeleton length(in pixels).

In the testing phase, we have obtained pedestrian silhou-
ette in which each point is matched to a sample point of the
template contour(see Section IV-A), thus the skeleton can be
easily transferred from the template to still image under the
guide of silhouette. The skeleton in the image is denoted by:
{𝑠𝑝′𝑖, 𝑙𝑝

′
𝑖, 𝑟𝑝′𝑖∣𝑖 = 1, ⋅ ⋅ ⋅ , 𝐾𝑆}, where 𝑠𝑝′𝑖 = 𝑝+𝑙𝑝′𝑖+𝑟1∥𝑟𝑝′𝑖−

𝑙𝑝′𝑖∥, 𝑝 is the relative position, 𝑙𝑝′𝑖 is the matched point of
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        (a)                            (b)                            (c)                            (d)

Figure 5. The generation of trimap based on initial silhouette and skeleton.
(a) Input image; (b) The matched template overlaid with joints and skeleton;
(c) The aligned contours as well as the skeleton on the original image(the
green contour corresponds to the template shape, the yellow one indicates
the aligned silhouette, and the blue lines show the aligned skeleton); (d) The
generated trimap, in which the “Foreground” region is denoted in white,
the “Unknown” region is in gray and the “Background” region is in black.

𝑙𝑝𝑖, 𝑟𝑝′𝑖 is the matched point of 𝑟𝑝𝑖, 𝑟1 is a pre-computed
value and defined as: 𝑟1 = ∥𝑟𝑝𝑖 − 𝑠𝑝𝑖∥/∥𝑟𝑝𝑖 − 𝑙𝑝𝑖∥.

Based on the silhouette and skeleton point set
{𝑠𝑝′𝑖, 𝑙𝑝

′
𝑖, 𝑟𝑝′𝑖∣𝑖 = 1, ⋅ ⋅ ⋅ , 𝐾𝑆}, the trimap in the bounding

box is automatically generated in the following way: For
each pixel 𝑞, we first find a sample point in the skeleton
with the minimum distance to it, i.e., (𝐷𝑚𝑖𝑛, 𝑘𝑚𝑖𝑛) =
min𝑖(∣𝑞 − 𝑠𝑝′𝑖∣), where 𝐷𝑚𝑖𝑛 is the minimum distance
and 𝑘𝑚𝑖𝑛 is the index. Then we compute the ratio 𝑟2 =
min(∣𝑞− 𝑙𝑝′𝑘𝑚𝑖𝑛

∣, ∣𝑞−𝑟𝑝′𝑘𝑚𝑖𝑛
∣)/𝐷𝑚𝑖𝑛. Given two thresholds

𝑇1 and 𝑇2 satisfying 0 < 𝑇1 < 𝑇2, if 𝑟2 < 𝑇1, the pixel
is assigned as “Foreground”, else if 𝑟2 > 𝑇2, the pixel is
assigned as “Background”, otherwise, the pixel is assigned
as “Unknown”. So far a trimap is generated(see Fig. 5(d)).

B. Human refinement via graphcut

To refine the “Unknown” region in the trimap, we follow
the standard MAP-MRF approaches [2], and formulate a
global energy function as follows:

𝐷(�̂�) =
∑
𝑖∈𝑉

𝐷𝑑(𝑙(𝑖)) + 𝜆
∑

(𝑖,𝑗)∈𝐸
𝐷𝑠(𝑙(𝑖), 𝑙(𝑗)) (10)

Here, �̂� is the label set, i.e., �̂� = {𝑙(𝑖)∣𝑖 ∈ 𝑉 }, 𝑉
is the set of pixels in the “Unknown” region, 𝐸 is the
set of neighboring pixel, 𝑙(𝑖) ∈ {0, 1} is the labeling
assignment for pixel 𝑖 (𝑙(𝑖) = 0 means it is assigned to the
“Background”, and 𝑙(𝑖) = 1 means to the “Foreground”), 𝜆
is the weighting value, 𝐷𝑑 and 𝐷𝑠 are the data and smooth
term respectively.

Several color models have been suggested for the defini-
tion of the data term, including 𝐾-Means, Histogram and
Gaussian Mixture Model (GMM). We use the GMM in our
implementation. Based on the foreground and background
region of the trimap, two GMM models are estimated. Each
GMM model, one for the background and one for the
foreground, is taken to be a full-covariance Gaussian mixture

Figure 6. Two example results after refinement and matting. (a) Input
images; (b)The pedestrian masks obtained after refinement; (c) The alpha
images obtained after matting; (d) The final extracted pedestrians.

with 𝐾𝐺 components. The parameters of GMM models are
defined as: {(𝜇𝐽

𝑘 ,Σ𝐽
𝑘 )∣𝑘 = 1, ⋅ ⋅ ⋅ , 𝐾𝐺, 𝐽 ∈ {𝐵, 𝐹}}, where

(𝜇𝐹
𝑘 ,Σ𝐹

𝑘 ) is the mean and covariance for the foreground,
and (𝜇𝐵

𝑘 ,Σ𝐵
𝑘 ) for the background. For a pixel with the

foreground labeling in the trimap, the data term is defined
as: 𝐷𝑑(𝑙(𝑖) = 0) = 0 and 𝐷𝑑(𝑙(𝑖) = 1) = ∞. For a pixel
with the background labeling, the data term is defined as:
𝐷𝑑(𝑙(𝑖) = 0) =∞ and 𝐷𝑑(𝑙(𝑖) = 1) = 0. For the pixels on
the “Unknown” regions, the data term is:

{
𝐷𝑑(𝑙(𝑖) = 0) = 𝑑𝐹

𝑖 /(𝑑𝐹
𝑖 + 𝑑𝐵

𝑖 )
𝐷𝑑(𝑙(𝑖) = 1) = 𝑑𝐵

𝑖 /(𝑑𝐹
𝑖 + 𝑑𝐵

𝑖 )
(11)

where 𝑑𝐽
𝑖 = min𝑘 ∥(𝐼(𝑖)−𝜇𝐽

𝑘 )
′ Σ𝐽

𝑘 (𝐼(𝑖)−𝜇𝐽
𝑘 )∥ is the sim-

ilarity value between its color and the GMM components.
𝐷𝑠 is the smoothness term, which is defined as:

𝐷𝑠(𝑙(𝑖), 𝑙(𝑗)) = ∥𝐼(𝑖)− 𝐼(𝑗)∥2∣𝑙(𝑖)− 𝑙(𝑗)∣ (12)

This term encourage coherence in regions with similar
appearance.

An energy minimization solver - graph cut[3] is applied
to optimize 𝐷(�̂�) to obtain the refined pedestrian segmen-
tation(as shown in Fig. 6(b)). As an initialization of graph
cut, the pixels in the foreground region of the trimap are
labeled as 𝑙(𝑖) = 1; the background pixels are labeled as
𝑙(𝑖) = 0; the undefined pixels as 𝑙(𝑖) = 0 if 𝐷𝑑(𝑙(𝑖) = 0) >
𝐷𝑑(𝑙(𝑖) = 1), or 𝑙(𝑖) = 1 if 𝐷𝑑(𝑙(𝑖) = 0) ≤ 𝐷𝑑(𝑙(𝑖) = 1).

To further refine the foreground boundary, we invoke the
Bayesian matting [22] for soft-segmenting an eroded narrow
region along the boundary(as shown in Fig. 6(c)(d)).
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VI. EXPERIMENTS

Experimental detail
In the learning phase, we collect 423 pedestrian shape

templates from Fudan-Penn pedestrian set [23] for training.
All the templates are resized to 320 pixels in height and
manually labeled on the joints. We utilize these templates
for two purposes: constructing a hierarchical shape tree and
learning part detectors. To construct the hierarchical shape
tree, we set the parameters as: 𝐾1 = 𝐾2 = 4 and 𝐾3 = 10
(as described in Section IV-B), resulting in a 5-level tree.
To learn the part (head or torso) detector, we first extract
the part masks automatically based on clicked joints, then
independently train the head and torso detector(as described
in Section III-B). In all our experiments, the other parameters
are set as: 𝑀𝐿 = 24, 𝑀𝑆 = 10, 𝑇𝑠 = 1.0, 𝑇1=0.8, 𝑇2=2.0,
𝜏𝑠 = 8.0, 𝜏1 = 𝜏1 = 0.8, 𝜏3 = 16, 𝛼1 = 0.1, 𝛼2 = 1.0,
𝜆 = 0.5, 𝐾𝐺 = 5.

Experimental results
Our approach extends shape matching [1] by exploit-

ing the ability of the smoother Chamber matching and
appearance consistency. To evaluate our approach’s im-
provement, we quantitatively compare it with the original
shape matching methods [1] in form of 𝐹 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 [24].
𝐹 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙),
where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is defined as the ratio of the true positive
pixels (i.e., the pixels labeled as foreground actually belong
to foreground) to the all labeled foreground pixels, and
𝑟𝑒𝑐𝑎𝑙𝑙 is defined as the ratio of the true positive pixels to the
ground truth pixels. The test samples are the 212 pedestrian
images of Fudan-Penn pedestrian set. The original shape
matching method achieves the average accuracies of 82.1%.
Using our approach, the accuracies are improved to 86.7%.

Two state-of-the-art pedestrian segmentation algorithms,
Lin et al. [8] and Wu et al. [7], are also compared here. They
both extract pedestrian silhouette using the local shapelets.
Although the local shapelets are more flexible than global
shape template, their methods still have three limitations:
1) constraint to frontal/rear view pedestrians; 2) ignoring
the segmentation of arms; 3) the ambiguous delineation of
local contour. The second rows of Fig. 7 and Fig. 8 show
some examples of the segmentation results derived from
their algorithms. In the third rows of Fig. 7 and Fig. 8, we
demonstrate the inferred segmentation of our approach. As
we can see, our pedestrian extraction gives more accurate
delineation of pedestrian silhouette. The pedestrian arms are
also segmented. In addition, our algorithm can be applied to
segmenting side profile view pedestrians, as shown in Fig. 9.

Computational Cost
Our experiments are implemented on a 2.2GHz 32-bit

Pentium PC with some employed functions, including graph
cut [3], random forest [18], and Bayesian matting [22]. In the
training procedure, the construction of the hierarchical tree
needs about 6 hours, and the learning for two part detectors
(each with 150 masks) takes about 1 hour.

Figure 7. Example of segmentation results. The first row shows the input
images from CAVIAR and Zurich dataset. The second row displays the
segmentation results of Wu et al. [7], in which the extract silhouettes are
displayed in green. The third row shows our results.

Figure 8. Example of segmentation results. The first row shows the
input images from the INRIA dataset. The second row shows the cropped
segmentation results of Lin et al. [8], in which the extract silhouettes are
displayed in green. The third row shows our results.

  (a)      (b)         (c)    (d) (e)

Figure 9. Example of side view pedestrian segmentation. (a) Input image;
(b) The matched template with the joints and skeleton; (c) The aligned
contour as well as the skeleton on the original image; (d) The generated
trimap; (e) The final segmentation result.
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To lock onto a pedestrian head in a 260*320 image, the
head-torso parsing takes about 7s. Shape matching with a
template is performed in 0.15s. As the hierarchical tree
reduces the number of matching templates from 423 to 25,
the initial silhouette extraction in a fixed position is corre-
spondingly reduced from 63.4s to 3.7s. That is, in the first
two stages of pedestrian segmentation, the computational
time is 10.7s. The third stage for pedestrian refinement takes
about 10s. Thus, the total time is about 20.7s.

VII. CONCLUSIONS

In this paper we propose an approach combining shape
and appearance cues for automatic pedestrian segmentation
in single image. The major contribution of this approach is
the utilization of automatically generated trimap to encode
the skeleton and shape information for pedestrian segmen-
tation. The skeleton is extracted based on shape matching
with a set of shape templates. For speed-up, we organize
the template set in a hierarchical tree to reduce matching
exemplars and develop a quick head-torso parsing method
to lock onto pedestrian to reduce search space. To extract
smoother silhouettes, a novel shape matching method is
presented, which is more tolerant to local deformation than
Chamber matching under cluttered backgrounds.

Although our approach can handle the majority of stand-
ing pedestrian segmentation, some misaligned pixels still
exist due to the faint figure-ground differences. Future work
will consider improving it more robust to cluttered scene. To
further speed up implementation, more efficient optimization
solutions for pedestrian refinement should be adopted and
some processes could be re-designed for implementation in
parallel graphics hardware, including pedestrian localization
and template matching. Another direction is to extend it for
video pedestrian segmentation by incorporating the motion
cue into this framework.
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