
Clustering Based Search Algorithm For Motion Estimation

Ke Chen, Zhong Zhou, Wei Wu
State Key Laboratory of Virtual Reality Technology and Systems

School of Computer Science and Engineering, Beihang University
Beijing, China

e-mail: {chenke, zz, wuwei}@vrlab.buaa.edu.cn

Abstract—Motion estimation is the key part of video
compression since it removes the temporal redundancy within
frames and significantly affects the encoding quality and
efficiency. In this paper, a novel fast motion estimation
algorithm named Clustering Based Search algorithm is
proposed, which is the first to define the clustering feature of
motion vectors in a sequence. The proposed algorithm
periodically counts the motion vectors of past blocks to make
progressive clustering statistics, and then utilizes the clusters
as motion vector predictors for the following blocks. It is found
to be much more efficient for one block to find the best-
matched candidate with the predictors. Compared with the
mainstream search algorithms, this algorithm is almost the
most efficient one, 35 times faster in average than the full
search algorithm, while its mean-square error is even
competitively close to that of the full search algorithm.

Keywords-motion estimation; clustering; search algorithm;
video compression

I. INTRODUCTION
In most existing international video standards, such as the

ISO MPEG series and the ITU-T H.26X series, motion
estimation (ME) has been adopted to remove temporal
redundancy within frames and thus to provide coding
systems with high compression ratio. The popular ME
fashion is trying to find the alike area in the reference frame
corresponding to the one in the current frame based on
blocks and is usually called block matching motion
estimation (BMME) in video codecs.

Among numerous BMME algorithms, full search (FS),
which compares all the candidates in the search window and
finds the best-matched block, is the one with the minimum
error but usually with the highest computation due to the
thorough candidate matching. In order to reduce the
computation, varieties of fast motion estimation algorithms
have been proposed, such as three step search (TSS) [1], new
three step search (NTSS) [2], four step search (FSS) [3],
diamond search (DS) [4], hexagon search (HS) [5] and some
other algorithms. These fast algorithms apply different
search patterns and search strategies to reduce the search
candidates, but their accuracy inevitably degrades, especially
in video sequences with high motion.

Besides search patterns, fast motion estimation
algorithms always utilize motion vector predictors to narrow
the search range and thus to reduce the computation.
According to the spatial correlation of block motion, the
motion vector of one block is usually correlated to those of

its neighboring blocks. Inspired by this, some predictive
motion estimation algorithms have been put forward, such as
predictive line search (PLS) [6], hybrid unsymmetrical cross
multi-hexagon grid search (UMHexagonS) [7], predictive
intensive direction searching (PIDS) [8], simulated annealing
adaptive search (SAAS) [9] and other predictive algorithms.
Predictive motion estimation algorithms use the motion
vectors of the spatial/temporal neighboring blocks to build an
initial predictor for the motion vector of the current block.
These algorithms can narrow the search scope as well as the
computation, but the search accuracy and the speed always
ask for a tradeoff.

Even more than the facts above that have been found, in
fact, those blocks that are not neighbors may also have a
similar motion due to the similar depth or object segments of
the scene. Consequently, a frame of a normal video sequence
usually only has several clusters of motion vectors since
normally the adjacent frames do not involve many arbitrary
big movements in the scene. The main contribution of this
paper is to periodically make clustering statistics on past
motion vectors and to provide efficient predictors with most
possibilities for the motion estimation of the following
blocks. It’s usually probable for one block to find the best-
matched candidate quickly with the predictors. To the best of
our knowledge, few works have been done before on the
clustering statistics of motion vectors for predictive motion
estimation.

The rest of this paper is organized as follows. In Section
2, our motivation and the clustering feature of motion vectors
are described. Section 3 gives the clustering definition of
motion vectors. Section 4 introduces the proposed Clustering
Based Search algorithm. The experiment results are
illustrated in Section 5. Finally, Section 6 draws a
conclusion.

II. MOTIVATION
Traditional motion estimation algorithms usually exploit

the motion vector similarity in neighboring blocks. However,
those blocks that are not neighbors may also have a similar
motion due to the depth or object segments of the scene.
Generally speaking, the motion vectors of blocks in the same
segment will be correlated and the motion vectors of blocks
at the same depth will also be correlated. The motion vectors
of a frame in a normal video sequence will have several
clusters, since adjacent frames will not involve many big
arbitrary movements in the scene.

2012 IEEE International Conference on Multimedia and Expo

978-0-7695-4711-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICME.2012.88

622

We count the motion vectors between two adjacent
frames in the video sequence Aspen [10]. Fig. 1 illustrates
the histogram of motion vectors computed by FS algorithm
with search range (-8, 7) and block size 16×16. Each point in
plane xoy denotes a motion vector (x, y) and the count axis
shows the number of the blocks whose motion vector is (x, y).
From Fig. 1, we can observe that the motion vectors follow a
two-dimensional discrete distribution, and there exist several
peaks i.e. the counts of some vectors and their close
neighboring vectors are much higher than others.

- 8 - 6 - 4 - 2 0 2 4 6
- 8

- 5

- 2

1

4

7

0
100
200
300
400
500

600

700

800

900

x-component
of motion vector

y-component
of motion vector

count

Figure 1. The histogram of motion vectors of adjacent frames in Aspen

sequence [10].

To investigate the distance between those motion vectors
with high counts, we choose the Manhattan distance as the
metric. We select motion vectors (-6, -5), (0, 3) and (4, -4) at
the three peaks in Fig. 1, and regard them as the
representative vectors of G1, G2 and G3 respectively. Then,
the k-means algorithm is performed to classify the other
motion vectors with count more than 150 (the average value
of the motion vectors’ counts) into the three groups G1, G2
and G3. Consequently, the three groups are G1={(-6, -4), (-6,
-5), (-6, -6)}, G2={(0, 2), (0, 3), (0, 4)} and G3={(4, -3), (4, -
4), (4, -5)}. We calculate the average distance within a group
and the average distance between groups in Table I. The
average distance within a group is generally very low, while
the average distance between groups is relatively high, and
as a result, motion vectors reveal a structure of clustering.

TABLE I. AVERAGE DISTANCE WITHIN A GROUP AND BETWEEN
GROUPS

Group
Average Distance

G1 G2 G3
G1 0.45 13.94 19.13
G2 - 0.56 5.19
G3 - - 0.59

The motion vectors of a frame in a normal video

sequence usually have only several count peaks. Therefore,
the motion vectors only have several clusters with high
counts. The clustering statistics could be computed from the
motion vectors of the past blocks. Based on these clustering
statistics, several efficient predictors with most possibilities

are provided for the motion estimation of the following
blocks. It’s usually much possible for one block to quickly
find the best-matched candidate with the predictors.

III. PROGRESSIVE MOTION VECTOR CLUSTERING
Let D be a dataset of motion vectors and let p and q be

two vectors in D. The Manhattan distance [11] between p(xp,
yp) and q(xq, yq) is defined as d(p, q)=|xp-xq|+|yp-yq|. Based on
the Manhattan distance, we define the reachable relationship
between two motion vectors as well as the motion vector
clusters. The reachable definition refers to those vectors p, q
satisfying d(p, q) 2.

Definition 1: (directly reachable) If d(p, q)=1, q is
directly reachable from p, denoted by p q→ .

Definition 2: (indirectly reachable) If d(p, q)=2 and
 there exists a vector r in D subject to p r→ and r q→ i.e.

d(p, r)=1 and d(r, q)=1, q is indirectly reachable from p,
denoted by p q .

Definition 3: (cluster) A cluster Ci is a non-empty subset
of D satisfying the following conditions:

q D∀ ∈ :if ()iq rep C→ , then iq C∈

q D∀ ∈ :if ()iq rep C and ()jq rep C j i→ ≠/ then iq C∈
where rep() denotes the representative vector of a cluster.

According to the definition of cluster, a motion vector m
is assigned to cluster C when the following rule of clustering
is satisfied.

The Rule of Clustering: Let C1, C2 ... Cn be the existing
clusters. A new motion vector m is assigned to a certain
cluster Ci if m satisfies one of the following conditions:

 ()im rep C→

()im rep C and for ()jrep C∀ , j i≠ , ()jm rep C→/
where rep() denotes the representative vector of a cluster.

The Rule of Clustering is illustrated in Fig. 2. A motion
vector is denoted by an integral point in the coordinates (x, y),
a motion vector cluster is denoted by a dashed circle, and the
representative vector of a cluster is denoted by a shaded
point. Suppose p, q, r, s, u and t are motion vectors and C1 is
the existing vector cluster. Initially, C1 has only one member
i.e. C1={p} and rep(C1)=p. Since p q→ , q r→ and q s→ ,
vectors r and s are indirectly reachable from p. Vector q
satisfies condition of the rule and therefore q is assigned
to cluster C1. Vectors r and s satisfy condition of the rule
and thus r and s are also assigned to cluster C1. Vectors u and
t can not be assigned to cluster C1, so new clusters C2={u}
and C3={t} are created.

p q

t

r

u

s
C1

C2

C3

x

y

o
Figure 2. The clustering of motion vectors.

623

For a motion vector n which can not be assigned to any
existing clusters, a new cluster Cnew={n} with rep(Cnew)=n is
created. After the creation of Cnew, some members of existing
clusters C1, C2 ... Cn are assigned to Cnew when the following
rule is satisfied.

The Rule of Membership Change: Let motion vector m
be a member of cluster Ci. When Cnew is created, if m
satisfies ()im rep C and ()newm rep C→ , assign m to Cnew,
where rep() denotes the representative vector of a cluster.

The change of the membership of the existing clusters is
illustrated in Fig. 3. Suppose v is a motion vector and v can
not be assigned to C1, C2 or C3. Therefore, a new cluster
C4={v} is created and rep(C4)=v. According to the Rule of
Membership Change, vector s becomes a member of C4.

p q

t

r

u

s

C1

C2

C3
v

C4

x

y

o
Figure 3. The change of membership of clusters.

The representative vector of a cluster will be re-selected
because of the change of its members and the change of the
counts of its members. The selection of the representative
vector of a cluster should follow the rule as:

The Rule of Representative Vector Selection: Let C be
a cluster and initially rep(C)=p. Vector p’ is selected as the
representative vector of cluster C if p’ satisfies the following
conditions:

{ } { }p' p q | q C, p q∈ ∪ ∈ →

() () { } { }{ }cost C, p' min cost C,i | i p q | q C, p q= ∈ ∪ ∈ → ,
in which cost(C, i) is defined as:

() ()
()

() ()
()j C ,d i , j 2

j C ,d i , j 2

1
cost C,i n j d i, j

n j ∈ ≤
∈ ≤

= ⋅ (1)

In (1), n(j) denotes the count of vector j and d(i, j)
denotes the Manhattan distance between vector i and vector j.
The cost(C, i) indicates the average distance within cluster C
when i is selected as the representative vector.

The Rule of Representative Vector Selection is illustrated
in Fig. 4. Let the count of s be 1 and the count of v be 2 at
first. Suppose the count of s increases to 8 and the count of v
remains 2. According to (1), cost(C4, s)=0.2 and cost(C4,
v)=0.8. From the Rule of Representative Vector Selection, s
will become the representative vector because cost(C4, s) <
cost(C4, v).

p q

t

r

u

s

C1

C2

C3
v

C4

x

y

o
Figure 4. The selection of representative vectors.

The Progressive Clustering algorithm periodically
assigns newly generated motion vectors to the existing
clusters. Let M={m1, m2 ... mw} be the set of newly generated
motion vectors and n’(mj) denotes the count of mj in M. Let
E={C1, C2 ... Cn} be the set of existing clusters. The
procedures of the Progressive Clustering algorithm are
described as follows:

1. Adding new motion vectors to existing clusters.
(1) For each motion vector mj in M, if mj is already a

member of cluster Ck (mj Ck), increase the count of mj in Ck
by n(mj)=n(mj)+n’(mj), in which n(mj) denotes the count of
mj in Ck, and remove mj from M.

(2) For each motion vector mj in M, if mj meets condition
 in the Rule of Clustering, assign mj to the corresponding

cluster and remove mj from M.
(3) For each motion vector mj in M, if mj meets condition

 in the Rule of Clustering, assign mj to the corresponding
cluster and remove mj from M.

After the adding above, generate U={u1, u2 ... ur} as the
set of remaining unassigned motion vectors of M, and set the
number of algorithm iteration num as 0.

2. Clustering the remaining motion vectors.
For each unassigned motion vector uj in U, create a new

cluster C’j={uj}, add C’j to E by E=E C’j, and then check
all the reachable vectors of uj by the following (1) and (2).

(1) For each directly reachable vector p of uj, if p is in U
and p is an unassigned vector, assign p to C’j according to
the Rule of Clustering, otherwise, if p is a member of Ci
and ()ip rep C , assign p to C’j according to the Rule of
Membership Change.

(2) For each indirectly reachable vector q of uj, if q is in
U and q is an unassigned vector, assign q to C’j according to
the Rule of Clustering.

3. If num is larger than a certain number (usually 10), the
clustering algorithm terminates, otherwise, for each cluster
Ci in E, reselect the representative vector of Ci according to
the Rule of Representative Vector Selection.

4. Let N={n1, n2 ... ns} be the set of members of those
clusters whose representative vectors changed and set U as
an empty set.

(1) For each motion vector nk in N, if nk meets condition
 in the Rule of Clustering, assign nk to the corresponding

cluster and remove nk from N.
(2) For each motion vector nk in N, if nk meets condition

 in the Rule of Clustering, assign nk to the corresponding
cluster and remove nk from N.

624

After (1) and (2), add the remaining motion vectors in N
to U.

5. If U is an empty set, the clustering algorithm
terminates, otherwise, increase num by 1 and go to step 2.

IV. CLUSTERING BASED SEARCH ALGORITHM
According to the spatial correlation within frames, the

motion of a block has a big possibility to be close to that of
some of its neighbors. We can infer that the motion vector of
a block will belong to one of the clusters that hold the
neighbor blocks’ motion vectors. Therefore, the
representative vectors of these clusters will be used as the
predictors for the motion estimation of the block. With these
predictors, the search range is narrowed into several small
search areas and consequently the number of candidates to
be searched is also reduced. Searching in the small search
areas is probable to find the best-matched candidate, but
under the circumstance that it is failed, searching in the
entire search range should be performed.

The search process for the current block is illustrated in
Fig. 5. Vector mcL denotes the representative vector of the
cluster to which the motion vector of the left neighboring
block belongs, vector mcU indicates the representative vector
of the cluster to which the motion vector of the upper
neighboring block belongs, and vector mcmax is the
representative vector of the cluster with the highest count.
Vectors mcL, mcU and mcmax are generated by the Progressive
Clustering algorithm. The proposed search algorithm utilizes
them as the motion vector predictors for the current block.
The search process consists of two phases: (1) with these
predictors, only the candidates in the three size 3×3 areas are
searched by FS algorithm to find a local minimum block
distortion (MBD) point, (2) if the distortion of the local
MBD point is lower than a certain threshold, the
displacement of the local MBD point is regarded as the
motion vector of the current block, otherwise, candidates in
the entire search range are searched without predictors by
Line Search algorithm to obtain the motion vector of the
current block.

The entire
search range32

3

3

3
mcU

mcmax

mcL

O

Figure 5. The search process of the current block.

For a video frame consisting of W×H blocks, blocks are
grouped and motion estimation will be made group by group.
When one group has been completed, the Progressive

Clustering algorithm will be processed. Specific steps of the
proposed motion estimation algorithm are described below:

1. Separate the blocks of a frame into W+H-1 groups by
the diagonals. Blocks with the same number in Fig. 6 belong
to one group.

1 2

2 3

3 4 ...

4

3

4 ... i-1

...

i-1

...

4

...

...

...

i-1

i-1

i

i

...

...

i

i

i

...

...

...

...

...

...

...

...

W

H

W+H-1

W+H-2

W+H-2

W+H-3

W+H-3

W+H-3

Figure 6. The blocks grouped by diagonals.

2. Choose the ith group of blocks and estimate the motion
vector for each block in the ith group. For each block in the
ith group, search the candidates in the three size 3×3 areas by
FS algorithm to find the local MBD point with mcL, mcU and
mcmax as the predictors, if the block distortion of the local
MBD point is lower than the threshold, regard the
displacement of the local MBD point as the motion vector,
otherwise, search the candidates in the entire search range by
Line Search algorithm to obtain the motion vector.

3. Assign the motion vectors of the ith block group to the
existing vector clusters. Let M={m1, m2 ... mp} be a set of the
motion vectors of the ith block group and E={C1, C2 ... Cn}
be a set of the existing clusters. M is assigned to E by the
Progressive Clustering algorithm.

4. Check all the block groups. If there remain unsearched
groups, i=i+1 and go to step 2, otherwise, report the motion
vectors of the blocks in the frame.

In this way, the Clustering Based Search algorithm
periodically invokes the Progressive Clustering algorithm to
assign the motion vectors of a group of blocks to the existing
clusters and then make clustering statistics. These clustering
statistics are utilized as the vector predictors for the next
group of blocks.

V. EXPERIMENT EVALUATION
To evaluate the performance of our algorithm, we apply

it to five high resolution video sequences: Aspen (1080p),
Blue sky (1080p), Park joy (720p), Ducks take off (720p)
and In to tree (720p) [10]. In our experiment, the size of a
block is 16×16 and the search range is (-16, 15). As 1080 is
not completely divisible by 16, our experiment only takes the
1920×1072 pixels of the 1080p videos into account and the
rest 8 rows of pixels are omitted. We use the sum of absolute
difference (SAD) as the metric for block distortion. The
block distortion threshold for our algorithm is 2048 and the
size of small search areas in our algorithm is 3×3. We use 50
frames of each video sequences and test our algorithm on a

625

personal computer of Intel Core2 CPU E6750 at 2.66 GHz
and 2G RAM.

We choose the mean-square error (MSE) as the criterion
for measuring the performance of motion estimation
algorithms. The MSE compares the motion compensated
image frame with the original image frame. The lower the
MSE, the smaller the energy of the prediction error and
therefore the more effective the motion estimation algorithm
is. We compare our algorithm with the FS, UMHexagonS,
DS and PLS algorithms. Table II shows the MSE
performance for each algorithm on the five test sequence.
For sequences where only small motions are involved, such
as Aspen, the MSE performance of these algorithms is very
close. However, for the sequences with large motions, such
as Blue sky and Park joy, our algorithm outperforms
UMHexagonS, DS and PLS. The average MSE value of our
algorithm is slightly higher than the value of FS and is lower
than those of UMHexagonS, DS and PLS.

TABLE II. MSE PERFORMANCE COMPARISON

Video
Sequence

MSE

Our
algorithm FS UMHexagonS DS PLS

Aspen 21.1 18.24 21.18 23.15 19.15

Blue sky 32.16 26.46 51.27 77.22 33.36

Park joy 283.58 269.8 336.31 562.57 344.39
Ducks take

off 102.83 102 102.31 134.33 103.56

In to tree 35.64 31.39 32.79 84.14 32.13

Average 95.062 89.58 108.77 176.28 106.52

We also do the frame-by-frame comparison of our

algorithm with the FS, UMHexagonS, DS and PLS
algorithms. Fig. 7 and Fig. 8 show the MSE measure versus
frame number for Blue sky and Park joy sequences. As
shown in these figures, the MSE values of our algorithm stay
very close to those of FS only with small deviations when
the sequences involves large motions. However, the MSE
values of UMHexagonS and DS rise obviously for the
sequences with high motions. These figures also show that
the MSE curve of our algorithm is more approximate to the
curve of FS than that of PLS.

Figure 7. The frame-by-frame comparison of Blue sky sequence.

Figure 8. The frame-by-frame comparison of Park joy sequence.

For complexity comparison, we select the time cost per
frame as the metric. Our algorithm is compared to the FS,
UMHexagonS, DS and PLS algorithms in Table . The
speed of our algorithm is as fast as the DS algorithm while
the MSE of our algorithm is much lower. Our algorithm
performs 4 times faster than the UMHexagonS and PLS
algorithms. Compared to FS, the speedup ratio of our
algorithm is nearly 35 times in average.

TABLE III. COMPARISON ON THE TIME COST OF MOTION ESTIMATION

Video
Sequence

Time Cost (ms/frame)

Our
algorithm FS UMHexagonS DS PLS

Aspen 77.78 3283 368.67 75.86 399.76

Blue sky 77.87 3255 355.45 116.55 381.35

Park joy 89.96 1460 171.67 54.12 183.34
Ducks take

off 47.49 1440 127.78 25.86 139.39

In to tree 29.89 1445 145.65 28.39 152.86

Average 64.59 2176.6 233.84 60.16 251.34

From these experiment results, it is obviously that our

algorithm has the capability to reduce the large
computational burden of FS algorithm with negligible
increase in the MSE performance. Our algorithm has an
effective and efficient motion estimation performance due to
the clustering statistics of motion vectors. The overhead of
motion vector clustering is measured by the time cost of
clustering. As shown in Table , the cost of clustering only
occupies 4.5% of the total cost of motion estimation in
average. As a result, the overhead of vector clustering is very
low.

626

TABLE IV. TIME COST OF CLUSTERING

Video
Sequence

Time Cost (ms/ frame)
Total motion

estimation Clustering Percentage

Aspen 77.78 5.4 6.94%

Blue sky 77.87 4.9 6.29%

Park joy 89.96 2.1 2.33%

Ducks take off 47.49 0.9 1.90%

In to tree 29.89 1.4 4.68%

Average 64.59 2.94 4.55%

Our algorithm groups blocks by diagonals, and the
motion estimation of one block is independent to the others’
in the same group. Hence the blocks in a group could be
processed in parallel without additional efforts. We also
implement our algorithm on a NVIDIA 8800GTX graphics
card with CUDA. CPU makes progressive clustering
statistics, while GPU executes motion estimation for blocks.
As shown in Table , the preliminary results on the GPU-
based implementation get around 4 times faster.

TABLE V. COMPARISON ON THE TIME COST OF CPU AND GPU
ACCELERATION

Video
Sequence

Time Cost (ms/ frame)

CPU only CPU with GPU
acceleration Speedup ratio

Aspen 77.78 20.1 3.9

Blue sky 77.87 18.9 4.1

Park joy 89.96 29.2 3.1

Ducks take off 47.49 11.3 4.2

In to tree 29.89 7.6 3.9

Average 64.59 17.4 3.8

VI. CONCLUSION AND FUTURE WORK
A novel fast motion estimation algorithm, Clustering

Based Search, is described in this paper. The main features
of our algorithm are counting the motion vectors of past
blocks to make clustering statistics and then utilizing the
clusters to provide efficient predictors with most possibilities
for the following blocks. It is usually probable for one block
to rapidly find the best-matched candidate with the predictors.
From the experiment results, the MSE performance of our
Clustering Based Search algorithm is very close to that of the
FS algorithm while its speed is nearly 35 times faster. It is
also shown that our algorithm outperforms the
UMHexagonS, DS and PLS algorithms, especially for video
sequences with large motions.

Our algorithm is preliminarily implemented on GPU with
CUDA. The speedup of the GPU-based implementation is
around 4 times. To develop the algorithm for variable block
size motion estimation and fractional pixel refinement may
be promising. We would also implement our algorithm on a
video codec system with H.264/AVC.

ACKNOWLEDGMENT
This work is supported by the National 863 Program of

China under Grant No.2012AA011801, the Natural Science
Foundation of China under Grant No.61170188, the National
973 Program of China under Grant No. 2009CB320805, and
Fundamental Research Funds for the Central Universities of
China.

REFERENCES

[1] T. Koga, K. Linuma, A. Hirano, Y. Iijima, T.Ishiguro, “Motion-
compensated interframe coding for video conferencing,” Proc. Nat.
Telecommunication Conference, New Orleans, Dec. 1981, pp.
G5.3.1-G5.3.5.

[2] R. Li, B. Zeng, ML Liou, “A new three-step search algorithm for
block motion estimation,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 4, no. 4, Aug. 1994, pp. 438-442,
doi:10.1109/76.313138.

[3] L.M. Po, W.C. Ma, “A novel four-step search algorithm for fast block
motion estimation,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 6, no. 3, Jun. 1996, pp. 313-317,
doi:10.1109/76.499840.

[4] S. Zhu, K.K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Transactions on Image
Processing, vol. 9, no. 2, Feb. 2000, pp. 287-290,
doi:10.1109/83.821744.

[5] C. Zhu,X. Lin, L.P. Chau, KP Lim, HA Ang, CY Ong, “A novel
hexagon-based search algorithm for fast block motion estimation,”
Proc. 2001 IEEE International Conference on Acoustics, Speech and
Signal Processing, Salt Lake City, May 2001, pp. 1593-1596,
doi:10.1109/ICASSP.2001.941239.

[6] Y.W. Huang, S.Y. Ma, C.F. Shen, L.G. Chen, “Predictive Line
Search: an efficient motion estimation algorithm for MPEG-4
encoding systems on multimedia Processors,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, no. 1, Jan. 2003,
pp. 111-117, doi:10.1109/TCSVT.2002.808093.

[7] C. Zhibo, P. Zhou, H. Yun, and Y. Chen, “Fast integer pel and
fractional pel motion estimation for JVT,” presented at the 6th
Meeting of JVT-F017, Awaji, JP, 2002.

[8] Z.R. Shi, W.A.C. Fernando, and D.V.S.X. De Silva, “A motion
estimation algorithm based on Predictive Intensive Direction Search
for H.264/AVC,” Proc. 2010 IEEE International Conference on
Multimedia and Expo (ICME), Suntec City, July 2010, pp. 667-672,
doi:10.1109/ICME.2010.5582997.

[9] Z.R. Shi, W.A.C. Fernando, “Adaptive Direction Search Algorithms
based on Motion Correlation for Block Motion Estimation,” IEEE
Transactions on Consumer Electronics, Vol. 57, No. 3, Aug. 2011,
pp. 1354-1361, doi:10.1109/TCE.2011.6018894.

[10] http://media.xiph.org/video/derf/.
[11] E.F. Krause, “Taxicab Geometry: An adventure in non-Euclidean

geometry,” NY:Dover Publications, 1987.

627

