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Abstract

We propose a novel metric to measure the image-
based 3D reconstruction results without ground truth
datasets. In contrast to previous metrics, our shading-
based metric can not only accurately measure the re-
construction quality but also decouple from any re-
construction algorithm. Considering the uncertainty
of topology, texture and soft shadow, we compute an
anisotropic irradiance gradient field from multiple im-
ages to indicate the regions where reconstruction er-
ror occurs. We further apply the metric into the view
planning application. Experimental results on both syn-
thetic and real datasets illustrate the effectiveness of
evaluating 3D reconstruction by our metric. The recon-
struction accuracy and completeness overtop or are the
same as the results of manually adding new viewpoints.

1. Introduction
Automatic reconstruction of 3D objects and environ-

ments from photographic images is important for many
applications. Significant progress has been achieved
since evaluation work was proposed [9, 10], but the goal
is still far from the practical needs. One of the prob-
lems with image-based 3D reconstruction systems is the
management of uncertainties, which arise from a variety
of sources, such as the type and the position of sensors,
the number and the quality of images captured, illumi-
nation conditions, the structure and the appearance of
scenes to be reconstructed, and the inherent uncertainty
in reconstruction algorithms.

These uncertainties result in non-optimal solution to
the image-based 3D reconstruction problem, which will
bring much difficulty to applications. As for input, it is
hard to decide how many images are used and where are
located. Hornung et al. [5] argued that it is not true that
more input images would definitely lead to more accu-
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rate reconstructions. As for output, it is hard to quanti-
tatively evaluate reconstruction results if we do not have
the ground truth datasets (e.g. from 3D scanner). Obvi-
ously, it is impractical for indoor/outdoor scene model-
ing applications. Therefore, a measuring metric, which
can guide the planning process or measure the recon-
struction quality, is critical in practice.

In related work, view planning applications, in-
cluding next best view planning [11, 2], image selec-
tion [5, 4] and key-frame extraction [1], concern more
about metrics. After summarizing, we divide these met-
rics into four categories: (1) image quality, e.g., image
entropy and signal-to-noise ratio; (2) relationship be-
tween images, e.g., baseline and angle between neigh-
boring viewpoints; (3) relationship between image and
model, e.g., overlap ratio, sampling rate and view an-
gle; (4) model attributes, e.g., topology and texture. We
find that parameters about the first three categories are
always controllable and can be empirically determined.
The fourth category, model attributes, is more related to
the reconstruction process. Several metrics, like photo-
consistency [5], reprojection error [1] and structure es-
timation uncertainty [11, 2], have been proposed. How-
ever, they are strongly coupled with the reconstruction
algorithm being deployed.

Instead of using these traditional metrics, we present
a more accurate metric combined with shading to mea-
sure the image-based 3D reconstruction models, and
meanwhile decouple it from the reconstruction algo-
rithms. Based on the image formation model (i.e. the
rendering equation), we estimate the surface irradiance
in the spherical harmonics domain from multiple im-
ages. While considering the situation of topology, tex-
ture and soft shadow, we formulate the anisotropic ir-
radiance gradient metric to measure 3D reconstruction.
Furthermore, based on this metric, we apply it into the
view planning application.

The advantages of our metric include: (1) It can au-
tomatically indicate the reconstructed regions which are
difficult to recover from images for some reasons (e.g.

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-0-9 ©2012 ICPR 1030



complex topologies, occlusion or lack of images); (2)
It is independent of reconstruction algorithms and more
accurate than previous metrics, which can be further
used into applications such as camera planning, next
best view selection and interactive model editing, etc.

2. Measuring 3D Reconstruction
Image-based modeling can be seen as the inverse

process of image rendering. For a Lambertian sur-
face, the color of the surface is essentially the projec-
tion of reflected light intensity along the direction from
the point to the optical center, denoted as I(Pc(x)) in
Fig. 1.

Figure 1. Measure reconstructed surface

We define the irradiance r as the reflected light inten-
sity on 3D model surface, which depends on the surface
topology, reflectance property and the consistent visi-
ble color. Here we assume the irradiance r on the ob-
ject’s real surface (blue patches in Fig. 1) change con-
tinuously. However, if the irradiance r′ estimated on the
reconstructed surface (yellow patches in Fig. 1) differs
from the real irradiance, taking the r3 patches in Fig. 1
for example, the differences between the real and the
estimated irradiance become significant. Importantly,
it means the irradiance gradient can indicate regions
where image-based 3D reconstruction error occurs.

Note that, except the surface topology (like occlu-
sion, sharp features etc.), the texture or the soft shadow
on surface may also affect the continuity of irradiance
changes, but it only happens on the shadow boundary or
where texture significantly changes. This effect can be
weakened by subtracting the image intensities. We will
discuss the metric computation in details in the follow-
ing section. The notations used in this paper are sum-
marized in Table 1.

3. The Metric Computation
The pipeline of our computation is shown in Fig. 2.

It has four steps. (1) Based on any existing MVS (Multi
View Stereo) method, we create an initial 3D triangle
mesh model of the object. (2) We use this model to esti-
mate the spherical harmonic (SH) coefficients for inci-

Table 1. Notations

Notation Meaning
xi spatial location variable for the ith vertex

radius radius of the model’s bounding sphere
ωi incident angle of the incident radiance
ωo outgoing angle of the reflected irradiance
Ω domain of all incident lighting directions

B(x) irradiance at the vertex x
n(x) surface normal of the vertex x
Q(x) camera set that can see the vertex x

Q(xi, xj) common member of Q(xi) and Q(xj)
Pc(x) projection of vertex x on the cth image
I(Pc(x)) image intensity of Pc(x)
G(x) anisotropic gradient of the vertex x
N(x) neighbor set of the vertex x
d(pi, pj) distance between location pi and pj

Figure 2. Metric computation overview

dent radiance [8]. (3) We calculate the estimated irradi-
ance of each vertex in accordance with the incident ra-
diance coefficients. (4) We propose an anisotropic gra-
dient field, the metric of the 3D reconstruction model,
which indicates the reconstruction errors. Firstly, we re-
view the image formation model in spherical harmonic
domain.

The Rendering Equation
Assuming all objects in the scene are non-emitters

and the light sources are infinitely distant, the rendering
equation [6] can be defined as:

B(x, ωo) =∫
Ω

L(ωi)V (x, ωi)ρ(ωi, ωo)max(ωi · n(x), 0)dωi

(1)
where B(x, ωo) is the irradiance at vertex x to the di-
rection ωo and L(ωi) represents the incident lighting.
V (x, ωi) is a binary visibility function, and ρ(ωi, ωo)
is the BRDF (Bidirectional Reflectance Distribution
Function) of the surface. For convenience, we sim-
ply scale the incident radiance by the albedo, letting
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La(ωi) = ρL(ωi).
Lighting Estimation
Based on the MVS result, we estimate the SH coef-

ficients for the incident radiance. We define T (x, ωi) =
V ((x, ωi)max(ωi · n(x), 0). Then we project T (x, ωi)
and La(ωi) into SH domain, and get the SH coefficients
lk, tk. According to the orthogonality of SH basis func-
tions, the rendering equation becomes

B(x, ωo) =

∫
Ω

La(ω)T (x, ωi)dωi =

n2∑
k=1

lktk (2)

Then, we calculate the coefficients of incident radi-
ance lk by minimizing

l̂ = arg min
l

∑
l

∑
c∈Qi

|
n2∑
k=1

lktk − I(Pc(xi))| (3)

Irradiance Estimation
Given the estimated geometry and incident radiance,

this step is to calculate irradiance based on the rendering
equation. If we define Lv(ω) = La(ωi)V (x, ωi), the
rendering equation can be represented as:

B(x, ωo) =

∫
Ω

Lv(ω)max(ωi · n(x), 0)dωi (4)

Based on the Funk-Hecke-Theorem, the circular
symmetric function max(ωi · n(x), 0), can be param-
eterized into a set of scalars {ak}. Then we get

B(x) =

n−1∑
k=0

k∑
m=−k

√
4π

2k + 1
akgkmYkm (5)

where gkm is the SH coefficients of the function Lv(ω),
and Ykm is the SH basis function.

Anisotropic Gradient Field Calculation
Shape-from-shading methods can recover fine de-

tails from shading variations, for they compute per-pixel
surface orientation instead of sparse depth. Here we
choose the irradiance information to accurately measure
3D reconstruction quality. Considering the uncertainty
of texture and soft shadow, we use the differences be-
tween the measured irradiance (i.e. the image inten-
sity) and the estimated irradiance to formulate the met-
ric. Additionally, to preserve fine details, we use an
anisotropic gradient of irradiance as a substitute.

For each vertex, the gradient is defined as:
G(xi) =∑
xj∈N(xi)

∑
c∈Q(xi,xj)

w(xi, xj) · (dI(xi, xj)− dc(xi, xj))2

(6)
where dI(xi, xj) and dc(xi, xj) are the estimated irra-
diance difference and measured image intensity differ-
ence of xi,xj , respectively. Namely,

dI(xi, xj) = B(xi)−B(xj)
dc(xi, xj) = I(Pc(xi))− I(Pc(xj))

(7)

The weight function is negative correlation to the
distance between xi and xj and defined as:

w(xi, xj) = radius/d(xi, xj) (8)

Note that if there is no camera can see the vertex xi
and its neighbor xj at the same time, it means that the
mesh model region of xi, xj is estimated by the sur-
face reconstruction method, and there are not sufficient
views for this region. Thus, we set the gradient to infin-
ity, which indicates the incomplete reconstruction areas.

4. Application: View Planning for MVS
One of the fields that our metric could be applied

into is the view planning for Multi-view Stereo recon-
struction. Based on our metric, we propose a new view
planning algorithm, as shown in Fig. 3.

Figure 3. Our metric based view planning

To formulate the planning objective function (Eq. 9),
we refer to some empirical criteria, including baseline
b, sampling rate r, view angle angle. We divide the
vertices into two groups: (1) the vertices whose gradi-
ent is set to infinity; (2) other vertices. And we per-
form different planning strategies on them. The view
planning function is minimized with the Active-Set al-
gorithm. Then we add a set of views for each cluster of
group (1), and a next best view for group (2).

min
pos,ori

∑
i

G(xi) ·
|b(pos, posc)− b0|

angle(ori, v(pos, xi))
· r(xi, pos)

(9)
For implementation, we use Furukawa’s PMVS

(Patch-based Multi-View Stereo) method [3] and Pois-
son surface [7] to generate the initial MVS models, cal-
culate the metric and guide the view planning. We set
the band of spherical harmonics to 3 as a compromise
of accuracy against efficiency. The angle between the
neighbor views is set to 20◦.
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Figure 4. 3D reconstruction evaluation on both synthetic data (upper) and real images (lower)

In the synthetic experiment, due to insufficient im-
age input, some poorly reconstructed regions (e.g. parts
marked in yellow circle, the top of model, and the hole
parts) are revealed by high gradient (Fig. 4(d)). After
view planning, three views from top and one extra view
for the body are added. It is obvious that in the updated
model these regions gain a much better appearance.

Experiments on real images are performed using the
Middlebury dino dataset. The metric sheds light on
the reconstruction errors and topologically important
surface regions (Fig. 4(d)), including the neck parts
with obvious reconstruction error and the leg parts
which need to be refined. The updated model shows
more details and an accurate reconstruction of the neck
(Fig. 4(f)). According to the Middlebury Evaluation
system, the updated model is better in completeness
(91.8% against 85.2%) and accuracy (0.76mm against
0.8mm). Furthermore, we compare the results updated
by our view planning algorithm with the method of
manually adding new viewpoints (according to the ex-
perts’ experience). Our algorithm shows better perfor-
mance in completeness (91.8% against 90.8%), while as
good capability in accuracy (0.76mm against 0.70mm).

5. Conclusion
This paper presents a new metric based on the

anisotropic irradiance gradient to measure 3D recon-
struction. The metric can automatically indicate the re-
gions where any image-based 3D reconstruction algo-
rithms cannot recover well. Besides, we successfully
apply it to the view planning application. The main
limitation is the current metric computation is seriously
constrained by the initial reconstructed surface meshes.
We would like to study the irradiance-consistent based
surface reconstruction method to relax this dependency.
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