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Abstract—In this paper, we propose a novel method to
register frames from multiple cameras into a consistent global
scale. Assuming a moving object is observed in multiple camera
setups, we use initial frames to create a global reference
structure where the pose variation of each new frame is
estimated using a RANSAC-based registration algorithm. We
further combine the registration method with other state-of-
the-art techniques to build a high quality 3D reconstruction
system with a smaller number of cameras than used by
more traditional methods. Experimental results show that our
method performs better and is more economical than the
registration of separate monocular structures from motion
methods. 3D reconstruction results on various challenging real-
world multi-camera video datasets also illustrate the feasibility
and robustness of our method.

Keywords-Frame Registration; Bundle Adjustment; Multiple
Camera Setups;

I. INTRODUCTION

Modern multi-camera vision systems have emerged as

a popular platform for recording real world dynamic

scenes [1], [2]. Contrasted with single camera or stereo

camera setups, multiple cameras can be fixed beforehand

to cover the measuring space. They are more suitable for

solving 3D vision problems from multiple images/videos,

such as 3D reconstruction, motion capturing, tele-operation

interaction, object tracking and so on. However, real-time ap-

plications are often inadequate as most multi-camera vision

systems only equip a few cameras due to cost; hence, poor

quality is common for reconstructed 3D models in practice.

It is a challenge to reconstruct accurate 3D models using

eight or less static camera setups. To improve the recon-

struction quality, algorithms usually need more viewpoints

to correctly recover the reconstructed points or regions.

Classical algorithms like visual hull [3], binocular stereo [4]

and voxel coloring (or space carving) [5], [6] used in multi-

camera vision systems are not designed for this purpose.

On the other hand, multi-view stereo (MVS) algorithms (see

Seitz et al. [7] for a survey) are capable of reconstructing

accurate 3D models when given a moderate number of

calibrated images as input. Multiple videos can be exploited

to provide sufficient eligible images for MVS reconstruction

in dynamic scenes; however, the position and orientation
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of each video frame should be first accurately estimated.

Therefore, frame registration is one of the key issues which

affect reconstruction accuracy.

Working with a virtual camera’s dynamic scenes can

be problematic when attempting to reproduce high-quality

motion. One direct frame registration solution is to perform

a traditional monocular structure from motion (SFM) [8] or

SLAM algorithm [9] for each camera, and then register all

new frames together. However, accumulative errors across

multiple cameras will be introduced. Also, it is hard to

unify the depth scales of all cameras when lacking reference

geometry.

To solve these problems, we propose a novel frame

registration method to register multi-video frames into a

consistent global scale. One can start with at least 5 of

static cameras to create a global reference structure, which

also contains much more accurate tracking features than

traditional methods. With the help of the reference structure,

we formulate the problem into a constrained optimization

problem and present a RANSAC-based registration algo-

rithm to estimate the pose variation of each new frame.

Then, we combine our registration algorithm with other

techniques, like key-frame selection, bundle adjustment re-

finement, multi-view stereo and surface reconstruction, to

build a 3D reconstruction system using a limited number of

cameras. Finally, a high quality 3D mesh models will be

generated for further applications.

The rest of the paper is organized as follows. In Section II,

we review the multi-camera vision systems and discuss

the frame registration methods. Section III gives a brief

system overview. Section IV introduces the global reference

structure in multiple camera setups. Based on the reference

structure, we present our frame registration method in sec-

tion V. We then combine the registration method with other

techniques to reconstruct high quality 3D models within a

limited number of cameras in section VI. Section VII shows

the experimental results. Finally, we discuss and conclude

future prospects.

II. RELATED WORK

A. Camera setups

Carnegie Mellon University’s Virtualized Reality project

was one of the earliest multi-camera vision systems used to
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reconstruct real-world events [10]. They constructed a stu-

dio, the 3D Dome, which consisted of 51 cameras mounted

on a geodesic dome 5 meters in diameter. Multi-baseline

stereoscopic reconstructions provided a sense of complete

immersion independent of the actual camera positions.

Recent similar multi-camera setups include ETHZ Blue-C

system [11], INRIA GrImage system [2] and Tsinghua Uni-

versity’s multi-camera Dome [12]. The application areas are

further extended to motion capture, markerless interaction,

light field modeling, and so on. According to the number

of cameras, we classify camera setups into four categories:

1) single camera setup [13], 2) stereo camera setup [14], 3)

setup with a small number of cameras [2], [11] and 4) setup

with a great number of cameras [10], [12]. A comparison of

these setups is given in Table I.

Table I
A COMPARISON OF DIFFERENT CAMERA SETUPS

Main purpose Advantage Disadvantage

Single camera
setup

(hand-held)

Urban or
interior scene

modeling
Cheapest

It needs user
interaction and can

only reconstruct
static scene

Stereo camera
setup

(2-3 cameras)

Stereoscopic
3D

production

Simple but
practical in

industry

It can only
reconstruct rough

depth image
Multi-camera

setup
(5-8 cameras)

Motion
capture

More common
in real scenes
and systems

It can only
reconstruct rough

3D models
Multi-camera

setup
(> 20 cameras)

Light field
modeling

High quality
3D

reconstruction

Expensive and
for research
purpose only

This paper focuses on the multi-camera setup, especially

the setup with a limited number of cameras. This kind

of camera setup is more common in real scenes and sys-

tems, like indoor/outdoor multi-camera monitoring systems,

motion capture systems for film production, tele-operation

training or immersion systems. However, due to the number

of limitations, these systems usually generate rough to poor

3D models, which can negatively affect the user experience.

Multi-camera video based reconstruction method aims to

accurately reconstruct 3D models using a limited number

of cameras. Tung and Matsuyama [15] achieved accurate

and complete reconstruction results by combining narrow

and wide baseline stereo and then fusing in a probabilistic

framework. Temporal cues are introduced to overcome the

limitations of MVS reconstruction using 14 cameras. How-

ever, instead of developing any video-based reconstruction

algorithm or mounting 20 or more cameras in setup, our

focus was on selecting eligible frames from multi-camera

videos and accurately registering them into one unified

coordinate system, which is a more affordable approach and

more appropriate when creating any MVS algorithms.

B. Frame registration algorithms

Given a set of images depicting a number of 3D points

from different viewpoints, bundle adjustment algorithms are

usually used to simultaneously refine the 3D coordinates de-

scribing the scene geometry as well as the parameters of the

relative motion and the optical characteristics of the cameras.

Intuitively, there are two ways to apply the straightforward

bundle adjustment to register frames in multiple camera

setups.

The first method is to select several key frames separately

from multiple cameras’ videos and then perform a global

bundle adjustment [16] for all images. However, matched

3D features are too sparse and noisy to estimate camera

parameters, especially when the object to be reconstructed is

textureless and small. Cheng et al. [17] manually initiated the

feature correspondences across adjacent views. In contrast,

our frame registration method will automatically register

multi-video frames and ensure registration accuracy as much

as possible.

The second method is to perform a traditional structure

from motion (SFM) [8] or mono-SLAM algorithm [9] for

each camera, and then register all selected frames togeth-

er [18]. However, this kind of method will introduce accu-

mulative errors by not considering the relationship across

multiple cameras. Moreover, it is hard to unify the depth

scales of multiple cameras when lacking reference geom-

etry. Unlike the traditional SFM/mono-SLAM algorithm

approach, our method creates a global reference structure

for multiple cameras. New frames from these cameras are

subsequently registered into one unified coordinate system,

which not only avoids accumulative errors but also registers

multi-video frames into a consistent global scale.

A similar idea of using a sparse 3D model as a reference

structure was also proposed by Imre et al. [19]. With the

help of the reference structure constructed by a set of static

cameras, they tried to estimate the pose of another moving

camera by using unscented Kalman filters. However, their

method cannot register all frames from multiple cameras

simultaneously. Our frame registration method creates a

more accurate and denser reference structure. This allows

the user to estimate the frame pose variation of all cameras

with a RANSAC-based registration algorithm. Most notably,

combining our frame registration method with other state-

of-the-art techniques allows users to build a high quality

3D reconstruction system with a limited number of static

cameras.

III. SYSTEM OVERVIEW

Our main goal is to provide a robust frame registration for

multiple camera setups in dynamic scenes. To demonstrate

the effect of our method, we built a multi-camera recon-

struction system, which can also achieve a high quality 3D

reconstruction result with only a limited number of cameras
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Figure 1. Framework of our multi-camera reconstruction system. Multi-camera videos are captured with five static cameras. During video tracking, frames
are registered into one unified coordinate system based on a global reference structure. A number of eligible key frames are then selected. New added
viewpoints are further refined using bundle adjustment. Accurate 3D point cloud model and mesh model are finally reconstructed from these key frames.

(e.g. 5 cameras in our setup). Figure 1 shows the whole

system pipeline.

Frame registration is the first step in our multi-camera

reconstruction system. Unlike the traditional structure from

motion method, we firstly construct a global reference struc-

ture from multiple cameras (Section IV). Then we project

the visible features to the initial frame and track the salient

ones using optical flow. Given the 3D features and their re-

liable track pairs, we present a RANSAC-based Levenberg-

Marquardt method to estimate frame poses (Section V).

Finally, we introduce a heuristic key-frame selection method

and combine other state-of-the-art techniques, including

bundle adjustment refinement, multi-view stereo and surface

reconstruction, to reconstruct high quality 3D models with

only a limited number of cameras (Section VI).

To sum up, the main contributions of this paper include:

(1) A robust frame registration method for multiple cam-

era setups, based on a global reference structure, which can

register all frames of all cameras into one unified coordinate

thereby preventing accumulative errors.

(2) A high-quality 3D reconstruction system which can

select a moderate number of calibrated key-frames from

multi-camera videos and combine both the narrow and wide

baseline stereo for more accurate reconstruction.

(3) A more economic approach to recording motion due to

a more efficient use of fewer cameras than what is commonly

used by practitioners in the video recording field.

IV. REFERENCE STRUCTURE

A reference structure is a consistent 3D geometry which

helps to implement a frame registration algorithm. In tra-

ditional structures built from motion (SFM) methods, 3D

feature points are first estimated through the initial two

frame reconstruction. These 3D points, together with corre-

sponding 2D features, are then used to compute the camera

motion parameters. Generally, with more 3D features and

less tracking errors, higher registration accuracy is achieved.

However, in multiple camera setups, the traditional SFM

methods are inappropriate. We find that the dynamic scenes

observed by multiple camera setups usually contain less

texture. In this situation the number of classical tracking

features, such as KLT, FAST and SURF etc., may be

insufficient for the camera parameter estimation. Moreover,

due to the unknown depth scales during the initial two frame

reconstructions, the depth scales estimated from different

camera video sequences will not match.

Therefore, to improve the frame registration accuracy

in multiple camera setups, we developed a global and

accurate reference structure, which can also provide the

maximum number of tracking points possible. To meet these

requirements, we used the state-of-the-art multi-view stereo

(MVS) algorithm to construct the reference structure from

multiple cameras. Although the generated 3D points are

usually sparse when using a small number of cameras, the

number of feature points is much higher than the number

found in classical tracking features.

We define the reference structure as a set of 3D patches.

The representative equation follows:

{α|α := (p, v, s)} (1)

where p is the position, v is the visibility set and s is

the feature salience measure set of all visible 2D features.

Here we use patch-based multi-view stereo (PMVS) [20]

with initial frames to generate the 3D patches as well as

their positions and visibility sets. Then we project them to

the corresponding images to obtain candidate 2D features.

However, not all features are good enough to track. So we

use the Shi-Tomasi score [21] to measure the salience of

candidate features and save these values to the reference

structure.

V. FRAME REGISTRATION

The goal of the frame registration algorithm is to calibrate

the external parameters of each frame. Unlike other frame

registration algorithms in most multiple camera setups, mul-

tiple static cameras can be accurately pre-calibrated using

a calibration object (e.g. chessboard). This means that the
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internal and initial external parameters of multiple cameras

can be determined before registering new frames.

As mentioned in Section IV, a global reference structure

can be explicitly constructed beforehand. Then we project

3D features to the corresponding visible images, and use the

robust Lucas-Kanade-Pyramid optical flow method [22] to

track these 2D salient features. The external parameters of

new frames can be updated during tracking. Figure 2 shows

an example of a reference structure and the corresponding

tracking features. The green points are the tracking features

which project onto five static cameras. The red lines indicate

the tracking trajectory.

Cam 1 Cam 2 Cam 3 Cam 4 Cam 5

(a) (b) (c) (d) (e) (f)

Figure 2. Video tracking. 3D features (reference structure, cf. Left) are
projected into visible image planes as 2D features (in green) to track. If the
2D features are not salient, they will be discarded in all subsequent frames
during optical flow tracking.

Note that although we adopted a Shi-Tomasi threshold

to determine the salient features, we cannot set this value

too high in order to retain a sufficient amount of features

(considering the outliers). Also the tracking errors must be

considered in the whole process. Once the Shi-Tomasi score

of a feature is below the threshold, we discard it in all

subsequent frames. Silhouette constraint is used to avoid

background noises as well.

According to the above conditions, we formulate the

frame registration process. Let us assume Φ = {αi | i ≥ 1}
is the set of 3D patches, and let mn

ij denote the point where

the 3D patch αi projects onto the camera j at the keyframe

n. (mn
ij ,m

n+1
ij ) is a track pair given by the video tracking

algorithm. At first, the projection matrix P 0
j of the 0th frame

is known and all camera intrinsic matrices {Kj | j ≥ 1}
are the same all the time. Then, the succeeding frame pose

variation can be estimated through the rotation matrix Rn+1
j

and translation vector Tn+1
j , as shown in Figure 3.

With the help of 3D patches and their track pairs, we

can derive the new frame pose by minimizing the following

function:

[Rn
j , T

n
j ]
∗
=

arg min
[Rn

j
,Tn

j
]∗

∑

α∈Φ
(f(αi,Kj [R

n
j , T

n
j ]),m

n
ij)

2

s.t. det(R) = 1, RT = R−1

(2)

where function f(αi, P
n
j ) denotes projecting 3D patches αi

to the nth frame of the camera j using projection matrix

Pn
j . The optimization constraint is to ensure that matrix R

αi

m
n
ij m

n+1
ij

H

P
n
j Kj[R

n+1
j,T

n+1
j]

Frame n Frame n+1

Figure 3. Notation. 3D patches αi projects to frame n at point mij by

known projection matrix Pj . (mn
ij ,m

n+1
ij ) is a track pair of 3D patch αi,

which will be used to recover the pose variation of subsequent frame n+1.

is a rotation matrix. Instead of using rotation matrix, we

use quaternion representation, which not only reduces the

parameter DOFs from 12 to 7, but also helps us to convert

this problem to unconstrained optimization. Moreover, the

quaternion vector and translation vector vary continuously

during tracking. We use the Levenberg-Marquardt method to

solve equation (2) and use the RANSAC method to improve

the robustness when considering tracking errors and small

non-rigid motion. The overview of our frame registration

algorithm for multiple camera setups is as shown in Figure 4.

PROCEDURE FrameRegistrationForMultipleCameraSetups()

recontructReferenceStructure()

FOR each camera j

captureFrame(j)

FOR each frame i

IF i=0 THEN

determineTrackingFeatrues(i)

ENDIF

pyramidOpticalFlowTracking(i)

estimateFramePoseRANSAC(i)

//* used in the reconstruction system

IF isKeyframe(i) = TRUE THEN

saveFrameAndPose(i)

ENDIF

ENDFOR

ENDFOR

//* used in the reconstruction system

bundleAdjustmentRefinement()

END

Figure 4. Pseudo-code of our frame registration algorithm.

VI. MULTI-CAMERA RECONSTRUCTION SYSTEM

After new frames are registered into one unified co-

ordinate system, multiple view geometry approaches can

then be used to interpret the dynamic scenes. One of the

important applications is to reconstruct 3D models using

multiple camera setups. It is essential for most multi-camera
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vision system, such as tele-immersion system, markerless

3D interaction system and others. However, the quality and

the appearance of the reconstructed 3D models are still

poor when only using a limited number of cameras. In

this section, we combine our frame registration algorithm

with other state-of-the-art techniques to obtain a high-quality

initial 3D models with only a limited number of cameras.
Figure 1 illustrates the framework of our multi-camera re-

construction system, which basically consists of five phases:

(1) frame registration, (2) key-frame selection, (3) bundle ad-

justment refinement, (4) multi-view stereo 3D reconstruction

and (5) surface reconstruction.
In Section IV and V, we have presented the frame reg-

istration algorithm for multiple camera setups. Additionally,

we select several eligible key frames for 3D reconstruction

during video tracking. In literature, numerous key-frame

selection methods are proposed for the structure from motion

recovery [23], [24]. However, these methods are not suitable

for multi-view stereo reconstruction, which usually requires

a proper baseline between adjacent key-frames for stereo

matching. To combine the narrow and the wide baseline

stereo reconstruction in multiple camera setups, we define a

simple but effective key-frame selection scheme illustrated

in Figure 5.

m

m’

p

p’
θ

C

z=1

Image 

plane

Normalized

camera plane

Δp

Figure 5. Basic idea of our key-frame selection scheme. Turn angular
offset θ is used to measure the motion.

Given track pairs, we use turn angle offset to measure

the camera motion. Assume that the camera C observes the

traced feature m moving to a new position, m′, in the image

plane. Since the camera intrinsic matrix is known, we project

these two pixels onto the normalized camera plane (depth

z = 1). We approximately use the tangent function to define

the turn angular offset θ:

θ ≈ arctan (
Δp

2z
) = arctan (

|p′ − p|
2

) (3)

Considering the tracking noise, we sort all the tracked

features, and take the median value to compute and compare

with the threshold. For stereo matching, the baseline between

two adjacent frames cannot be too narrow or too wide. We

set 2θ equals to 5 degrees as threshold. For each video

sequence, we selected four to six key frames, which is

enough to accurately reconstruct parts of the object from

one camera viewpoint.

Once all selected key frames are available, we used the

patch-based bundle adjustment method [25] to further refine

the calibration result. We iteratively performed this proce-

dure four times to achieve a better viewpoint calibration

results for multi-view stereo reconstruction. Then we again

used PMVS algorithm [20] to reconstruct the 3D point cloud

model. Users can optionally extract silhouette information

from the first frames to avoid background noise. Surface re-

construction algorithms like Poisson surface [26] or Touch-

expand algorithm [27] can generate the final watertight mesh

model. Our multi-camera reconstruction system can also use

other algorithms instead, like the detail feature preserving

surface reconstruction method [28] etc.

VII. EXPERIMENTAL RESULTS

A. System Implementation

A multi-camera acquiring platform shown in Figure 1(a)

was set up. Five Flea2 cameras provided by PointGrey, Inc.

are fixed on the platform at five different positions which

can basically cover the measuring space. The target object(s)

should be placed in the measuring space to make sure they

can be observed by all cameras. A synchronized multi-

camera acquiring system is developed and deployed on PCs.

Multiple cameras are firstly calibrated by Bouguet’s geo-

metric calibration toolbox [29]. And the color calibration of

multiple cameras is done by our radiance-based method [30].

We experiment the running time of our proposed system

in a PC with 3.0Hz Intel Core 2 Duo CPU. Except manually

calibrating static cameras and capturing dynamic scenes, all

other phases can be performed automatically. The PMVS

reconstruction, including initializing reference structure and

generating 3D point cloud model, needs about 3 to 10
minutes according to the number of input images. Our frame

registration and selection method can achieve nearly 7.5
fps. The bundle adjustment refinement and final surface

reconstruction phases cost about 10 minutes. Therefore, the

total computation time of our system is under thirty minutes.

Table II
SUMMARY OF PARAMETERS USED IN OUR SYSTEM.

Parameters Value

Initial PMVS (L/C/T/N/S) 1/2/0.7/2/11
Turn angular offset threshold 0.4

Shi-Tomasi threshold 10-200
Optical Flow (L/S/I) 5/5/20

PBA (L/E/S) 2/7-4/7
Final PMVS (L/C/T/N/S) 1/2/0.7/3/7

Touch-expand (V/R) 200/2

Parameters used in our system are summarized in Table II.

In practice, we set PMVS level L = 1, density csize c = 2,

photo consistent threshold T = 0.7, minimal visible image

number N = 2 and window size S = 11 to get as dense as

possible stable 3D features. In the final PMVS reconstruction

stage, we change minimal visible image number N = 3
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Table III
A COMPARISON WITH THE GROUND TRUTH

Position diff.(mm) Principal axis diff.(◦)
Mean Std. Dev. Mean Std. Dev.

Our method 1.3880 0.7698 0.0699 0.0380
SFM method 12.951 9.0739 0.6995 0.3764

and window size S = 7 for efficiency. We set optical

flow pyramid level L = 5, window size S = 5, and

the iterative number I = 20. Most parameters are fixed

except for the Shi-Tomasi threshold and PBA expected

reprojection error E. Shi-Tomasi threshold depends on the

number of initial reconstructed 3D patches, and the PBA

expected reprojection error E decreases from 7 to 4 in the

iterative bundle optimization phase. The meaning of other

PBA parameters is the same for PMVS parameters. In the

Touch-expand algorithm, a voxel resolution of V = 200
and Gaussian filter radius at R = 2 was set to generate final

watertight mesh models.

B. Frame Registration

To test the effectiveness of our frame registration method,

we use a chessboard dataset to build a ground truth with

Bouguet’s toolbox [29]. Figure 6 shows one example image

and reconstruction result of the chessboard dataset.

(a) (b)

Figure 6. Example image (a) and reconstruction result (b) of the
chessboard dataset, which are used as the ground truth to evaluate our
frame registration algorithm.

Then, we compute the position difference as well as the

principal axis difference between the estimations and the

ground truth, as shown in Table III. For SFM solution,

we use Boujou [31] to calibrate all frames of each camera

and then register them to the reference frame of the static

cameras.

Table III shows that the calibration of our method is

consistent with the ground truth, while the SFM method

deviates from the ground truth due to the accumulative

errors.

However, features on the chessboard are usually easy to

track. More generally, we take the Dog dataset to measure

the valid feature number and reprojection error of each

frame. As shown in Figure 7, the feature number is reducing

during tracking because of the track errors. But overall,

our method can find more salient features and result in

smaller reprojection errors. Thanks to the reference structure,

our method can achieve a better calibration result than the

registration of separate monocular SFM method.
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Figure 7. Comparison between our registration method and SFM method.
Our method can find more salient tracking features and achieve higher
accuracy in terms of reprojection error.

We further use epipolar geometry to check the consistency

between pairs of calibrated images. For a pair of images, we

draw pairs of epipolar lines which pass through the same

feature points in two images. Take keyframe 1 and 5 from

camera 2 in Dog dataset for example. Shown in Figure 8,

the initially recovered pose contains errors (approximately

2-4 pixels in some places). After bundle optimization, the

same color epipolar lines accurately pass through the same

features.

(b) After inital estimation (c) After refinement(a) A pair of images

Figure 8. Epipolar lines are used to evaluate our frame registration method.
Areas with red circle in the image pair (a) are zoomed in (b) to show that
pairs of epipolar lines pass through the same feature points as well as with
bundle adjustment refinement (c).

C. 3D Reconstruction

We also evaluate the proposed system on three real-world

multi-camera video datasets. These datasets are captured

synchronously at 15 fps on our multi-camera acquiring

platform. Our datasets are more challenging than other static

image datasets for two reasons. First, the image resolution

is quite low to ensure a guaranteed frame rate. Second, the

new selected key-frame may contain motion blurs which will
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affect the matching process in MVS reconstruction. Besides,

the target objects are well chosen to study the application

gamut of the proposed algorithm. In summary, the datasets

contain several dimensions of properties: objects with fine

details but complex surface, objects with weak texture, and

objects which can move freely in hand. Three datasets are

separately identified as Dog, Rabbit and Cup in Hand. Their

properties are listed in TableIV.

Table IV
REAL WORLD MULTI-CAMERA VIDEO DATASETS.

Dataset Dog Rabbit Cup in Hand

# Camera 5 5 5
# Image 30 30 40

Image size 640× 480 640× 480 640× 480
Object size 25 ∗ 25 ∗ 30 10 ∗ 10 ∗ 20 8 ∗ 8 ∗ 25
Dimension complex textureless moving free

(a) example images (c) 3d point cloud (d) mesh model

Dog dataset

Rabbit dataset

Cup in hand dataset

(b) reference structure

Figure 9. Example images (a), reference structure (b), 3D point cloud
(c) and mesh model (d) illustrate reconstruction results of the Dog dataset
(cf. Top), the Rabbit dataset (cf. Middle) and the Cup in Hand dataset (cf.
Bottom). Our proposed system can reconstruct high quality 3D models with
a limited number of static cameras.

The reconstruction results and example images of Dog,

Rabbit and Cup in Hand are shown in Figure 9. After

selected key frames are added to input images, the recon-

structed 3D point cloud models (Figure 9(c)) grow much

denser than the initial reference structure (Figure 9(b)). The

final reconstructed mesh models (Figure 9(d)) can recover

concave regions and ensure the reconstruction completeness

which other methods like visual hull or voxel coloring can-

not achieve. All the datasets are well reconstructed using the

proposed algorithms regardless of self-occlution (e.g. Dog

dataset), textureless region (e.g. Rabbit dataset) or motion

blurs (e.g. Cup in Hand dataset). One of the important

reasons is that our frame registration algorithm is effective

and robust. It ensures that our system is not seriously

affected by the structure of the object to be reconstructed.

Therefore, our proposed system can reconstruct high quality

3D models with only a small number of static cameras.

VIII. CONCLUSION

This paper presents a robust frame registration algorithm

for multiple camera setups in dynamic scenes. Benefit from

the global reference structure is realized through the frame

registration of all cameras combined into one unified coordi-

nate system. This new frame regiistration system efficiently

avoids accumulative errors which is a notable improvement

over the results obtained by the separate SFM/mono-SLAM

algorithm registration method. A high quality 3D reconstruc-

tion system which uses a limited number of static cameras,

and thereby demonstrates the effectiveness of our frame reg-

istration algorithm. One limitation of our system is that our

Levenberg-Marquadt method depends on the initialization of

the parameters to be estimated. Future research plans include

the study of dynamic reference structure based registration

algorithm to support large-scale non-rigid motion in dynamic

scenes.
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