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Abstract—This paper proposes an accurate metric for image-
based 3d reconstruction without ground truth. Specially, our
metric is insensitive to texture changing and shadows, which
are commonly occurred in real world scenes. Based on the inter-
reflected rendering model, we improve the accuracy of previous
irradiance-based metric. Additionally, we estimate the reflectance
of each vertex on the surface to support the case with varying
reflectance. We also consider the difference between estimated
and observed irradiance in our metric to further eliminate the
boundary effect of texture changing or self-shadow. Experiments
on both indoor and outdoor datasets illustrate the effectiveness
of our metric. Our evaluation results are not only more accurate
than the results of previous metrics, but also insensitive to the
texture and shadow.

I. INTRODUCTION

Automatic and accurate reconstruction of 3D objects and

environments from multiple images plays a significant role

in many applications. Multi-view stereo (MVS) is one of the

most attractive image-based reconstruction methods. Over the

last few years, a number of high-quality MVS algorithms have

been developed, and the state of the art is improving rapidly,

especially after the benchmark datasets were proposed [1], [2].

3D reconstructions can be evaluated by geometric comparison

with ground truth models acquired from the 3D laser scanner.

However, in practice, it is impractical for many indoor/outdoor

scene modeling applications to access such ground truth and

measure their recovered models.

On the other hand, for accurate 3D reconstruction, MVS

methods usually need a moderate number of images as input.

It is more and more convenient to obtain a sufficient number

of images, like from webcam, personal mobile device, video,

Internet and so on. However, it is hard to determine how

many images are needed and where they are located. As noted

by Hornung et al. [3], more input images do not definitely

lead to better recovered accuracy, sometimes even may reduce

the reconstruction quality. All above issues require a new

metric for image-based 3D reconstruction, which can not only

evaluate the reconstruction results without any ground truth

datasets, but also guide the reconstruction process to add

proper new images to improve the accuracy.

Our work is based on the previous work proposed by

Zhao et al. [4]. They presented an irradiance-based metric

to measure the image-based 3D reconstruction results. Their
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Fig. 1. 3D reconstruction evaluation by different metrics on synthetic data.
12 images (a) are inputted to reconstruct 3D proxy model (b). Combined with
shading, we estimate irradiance around the surface (d) to compute our texture
and shadow insensitive metric (e). Compared with the traditional photo-
consistency metric (g), our metric can indicate the wrongly reconstructed
regions. Compared with previous irradiance-based metric (f), our metric avoid
influence of texture changing. For illustration, red means high error ratio.

metric can automatically indicate the regions which are hard to

recover and it is independent of any reconstruction algorithm

as well. Their basic idea is based on the assumption that

the irradiance on the object’s surface change continuously.

Therefore they can use the irradiance gradient to recognize the

regions where irradiance changes greatly and treat them as re-

construction errors. Nevertheless, their assumption only works

well for convex objects with constant reflectance. Except for

reconstruction errors, other factors like texture changing or

self-shadow caused by self-occlusion could also result in the

discontinuous irradiance. These phenomenons are commonly

occurred in real world scenes but neglected by Zhao’s method,

which will badly affect their metric accuracy.

As illustrated in Fig. 1, both our and Zhao’s metric can

correctly indicate the poorly reconstructed region marked

by the yellow circle where NCC score cannot. However,

Zhao’s metric is seriously affected by texture changing. The

corresponding evaluation result (Fig. 1(f)) shows the unrea-

sonable stripe pattern at the boundary of different textures,

for example, boundary areas marked by the white circle.

To address the above problem, we come up with a more

accurate metric for image-based 3D reconstruction. The metric
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computation is similar to the previous irradiance gradient,

but we use the inter-reflected rendering model instead and

encapsulate the radiance self-transfer function to improve the

accuracy of irradiance estimation. It also enables us to indicate

the 3D reconstruction geometric errors from multiple images

under arbitrary unknown illumination. Considering the scene

with varying reflectance, we compute the reflectance of each

vertex to better estimate the surface irradiance in the Spherical

Harmonics domain. In addition, we consider the difference

between estimated and observed irradiance in our metric to

avoid the boundary effect of texture changing and self-shadow.

The contributions of our paper include:

(1) We take the self-casting shadows and inter-reflection

into consideration, thus our approximation of the lighting and

irradiance is more close to the reality and further leads to a

more accurate metric than previous ones.

(2) We estimate the reflectance of each vertex to gain an

irradiance field compatible with input images. By this way

our metric is not constrained to Lambertian objects only, but

also works well on diffuse objects with varying reflectance.

(3) We consider the difference between estimated and

observed irradiance during the metric calculation. Therefore,

our anisotropic irradiance gradient metric can provide robust

performance to the boundary of texture and shadow.

II. RELATED WORK

MVS intends to reconstruct a complete 3D object model

from a collection of images taken from known camera view-

points. On one hand, an accurate and refined reconstruction

model needs sufficient input images; on the other hand,

overmuch images which contains redundant details would take

too long time to handle; even worse, sometimes more input

images doesn’t lead to more accurate results. As a result, an

evalution of the recovered model is of significant importance

to balance the accuracy against efficiency.

Laser scan can output realistic 3D models with scarce

errors, thus its output can be regarded as the ground truth. To

compare MVS reconstruction result with the ground truth is a

intuitive idea to measure it. Seitz et al. [1] propose a evaluation

MVS methodology. They capture and calibrate multi-view

image datasets with high-accuray gound truth. While Seitz et

al. present indoor datasets acquired under controlled lighting

condition, Strecha et al. [2] propose a collection of high-

resolution images and LIDAR data of outdoor expansive scene.

They calculate the relative error occurance for the reference

view and the error distribution based on the ground truth.

Researchers can submit their reconstruction results online [5],

[6] in order to evaluate their recovered model.

Researches study factors that influence the recovered model

and present several empirical metrics. The effect properties on

image-based reconstruction process can be divided into three

categories. (1) Image quality. Hornung et al. [3] point out

that the number of input images increases to perform a robust

reconstruction in case of the projection error, illumination

variation and the blurred or noisy images. (2) Relationship
between images. Goesele et al. [7] compute a depth map and

merge the result to form the model. They choose neighbor

views between which angle is small enough to provide abun-

dant shared feature points, as well as enough parallax to keep

up the reconstruction accuracy. (3) Relationship between image
and model. Dunn et al. [8] pointed out that input images with

higher sampling rate will bring about more accurate recovered

model. They seek to find next best view that has small view

angle of the focused area.

In the field of view planning, researchers try to select the

view or image sets that have the greatest contribution to the

accuracy of the 3D model. Photo-consistency, the coherence of

pixel intensities in different views, is often used [3]. Besides,

in their key frame extraction algorithm, Ahmed et al. [9]

compute the root mean reprojection error for each frame then

compute the min, max, mean, and standard deviation statistics

over the entire sequence. And Dunn et al. [8] estimate the

structure estimation uncertainty and select views that best

reduce it. The key idea of metrics used in view planning

applications is to attempt a optimal solution to achieve the

optimization target, such as maximize photo-consistency or

minimizing reprojection error. Unfortunately, the target is set

on the basis of reconstruction process; thus these metrics are

coupled with some certain MVS methods and can’t be applied

to a wide range.

Zhao et al. [4] propose a metric to measure the image-based

3D reconstruction results without ground truth. Considering

the uncertainty of topology, texture and soft shadow, they

formulate a anisotropic irradiance gradient field to indicate

the regions where reconstruction error occurs. What’s more,

their method is decoupled of the MVS method. Experiments

on both synthetic data and real world images have validate the

effectness of their metric.

Our metric is an extension of irradiance gradient metric,

while our technique differs from it in two aspects: combination

of shape from shading (SfS) and estimation of irradiance.

SfS methods use shading cues to compute per-pixel surface

orientation instead of sparse depth to estimate shape from a

single image. SfS has the complementary nature compared

with MVS, and much work has been done on combining

these two techniques. Samaras et al. [10] iteratively estimate

both shape and illumination given multiple views taken under

fixed illumination. Yu et al. [11] propose two algorithms for

modeling non-Lambertian objects illuminated by distant light

sources. Both explicitly model the reflectance using either

a Phong or Torrence-Sparrow model, and then optimize the

estimated shape and reflectance. Different from the above, the

irradiance-based metric intends to measure the reconstruction

result rather than estimate the shape. In the work of Zhao

et al., they use the gradient of shading values, the estimated

irradiance, to point out the changes of topology of object.

However, we consider the fact shading tends to be more

accurate for higher frequency shape components, and use

gradient of the difference between estimated and observed

irradiance instead.

Basri et al. [12] and Ramamoorthi et al. [13] introduce a

theoretical result that reflection from a curved surface, lit by
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an environment map, could be seen as a spherical convolution

of the incident illumination and the reflective properties or

BRDF of the surface. The convolution theory also implies a

product formula in the frequency domain, in terms of spherical

harmonic basis coefficients. Sloan et al. [14] introduce the term

precomputed radiance transfer. In spherical harmonics domain,

they precompute the shadow and inter-reflection components

of the object to compute irradiance on vertices and reduce the

convolution to a dot product. Except for expressing lighting in

the spherical harmonics domain, wavelet [15] is also employed

to gain a representation in higher frequency environment.

Precomputation-based rendering method focused on a real-

time irradiance computation under given illumination; while

the irradiance-based metric method attempts to estimate the

irradiance under the guidance of images of the scene. Different

from rendering model Zhao et al. applied, we consider inter-

reflection and estimate corresponding outgoing irradiance.

III. THE IRRADIANCE-BASED METRIC

Image-based modeling can be seen as the inverse process

of rendering. As for a 3D Lambertian model, if given fixed

incident lighting, the reflected light intensity, the irradiance

r, is determined by normal of the surface and supposed to

be continuous. Under the assumption irradiance r changes

continuously on the object’s real surface, if error occurs,

gradient of irradiance becomes significant, as in Fig. 2.

(c)Self-
shadowing

Source 
Radiance

(b)Reconstruction 
Errors

(a)Texture

Fig. 2. The basic idea of our metric for measuring 3D reconstruction. Assume
the irradiance on the surface changes continuously, the reconstruction errors
(b) occur when irradiance changes greatly. However, continuity of irradiance
may also be broken by texture changing (a) and self-shadowing (c).

Nevertheless, the assumption above proposed by Zhao et al.

only works well for convex objects with constant reflectance.

Except for reconstruction errors, other factors could also

result in the discontinuous irradiance. Greger et al. [16] point

out that due to occlusions, irradiance on surfaces become

discontinuous in transition zones between transition zones

between umbra and penumbra, and between penumbra and

unshadowed regions. And on the boundary of changed texture,

discontinuity occurs too. What’s more, in the analytic methods,

Arvo [17] carefully consider inter-reflection because number

of bounces may be large due to occlusion and local geometric

complexity. But as Zhao et al. presented, inter-reflections and

self-shadows are neglected.

Our metric eliminates the influence of factors other than

the geometrical errors and provide a texture and shadow

insensitive metric following the inter-reflected rendering model

of concave objects. We estimate the reflectance of the surface

to gain a compatible estimation of irradiance. Also based on

the shading technique, we calculate the difference between the

estimated and observed irradiance and compute its gradient

instead of gradient of estimated irradiance.

IV. THE METRIC CALCULATION

Our metric is intended to indicate the regions of the recon-

struction results which challenge the establishment of MVS

correspondence; what is more, the metric should be insensitive

to the texture and shadow of the object, as to correctly point

out the areas and provide robust performance. The illumination

is assumed to be fixed and distant, but is otherwise general

and known. We represent the illumination using Spherical

Harmonics (SH). To keep the problem tractable, we henceforth

assume the objects to be diffuse. We take self-shadow and

inter-reflections into account so as to get an accurate metric.

Fig. 3. The outline of our metric calculation pipeline. Multiple images are
inputted to generate the initial 3D triangle mesh model by any multi-view
stereo reconstruction algorithms. Then we encapsulate the shadow and inter-
reflection by radiance self-transfer function, which enable us to accurately
estimate the incident illumination in the Spherical Harmonics domain. We
further calculate the irradiance of each vertex considering the cases of varying
texture and shadow and finally get our anisotropic irradiance gradient metric.

The workflow of our method is shown in Fig. 3. The

following subsections explain the computation of the gradient

field in detail. As we will describe, we handle the changes in

texture by attributing them into the variations of the albedos,

and estimating the albedos with the input images. And we get

rid of the shadows effect as we compare the gradient difference

in the observed irradiance and the estimated irradiance.

A. The Rendering Equation
Assuming all objects in the scene are non-emitters, the

image rendering equation [18], [14] can be defined as equation

below

B(x, ωo) = BDS(x, ωo) +BDI(x, ωo), (1)

where BDS is the outgoing irradiance due to the illumination

from the environment and BDI is the outgoing irradiance

because of inter-reflection of the object, namely

BDS =

∫
Ω

ρ(x, ωi, ωo)L(x, ωi)V (x, ωi)H(x, ωi)dωi,

BDI =

∫
Ω

ρ(x, ωi, ωo)
−
L(x, ωi)(1− V (x, ωi))H(x, ωi)dωi

(2)
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where B(x, ωo) is the irradiance at vertex x to the direction

wo and the symbol wi is the incident angle. The symbol

Ω represents the domain of all possible directions. ρ is the

bidirectional reflectance distribution function(BRDF) of the

surface. L(x, ωi)is the incident radiance at vertex x, and
−
L(x, ωi) is the radiance from the object itself in the direction

wi. V (x, ωi)is a visibility function. H(x, ωi) is the clamped

cosine kernel, which H(x, ωi) = max(ωi · n(x), 0), and n is

the surface normal.

We assume that lighting is distant, so incident radiance is the

same over the object surface and we have L(ωi) for short. And

the object is diffuse, so the same amount of light is reflected

into every outgoing direction, and the BRDF can be described

as the albedo ρ(x). Then for each outgoing direction we have

B(x) = (ρ(x)/π)

∫
Ω

L(ωi)V (x, ωi)H(x, ωi)dωi

+(ρ(x)/π)

∫
Ω

−
L(x, ωi)(1− V (x, ωi))H(x, ωi)dωi,

(3)

Different from the rendering equation Zhao et al. applied,

we add the term BDI to represent the outgoing irradiance

due to inter-reflection. Besides, the irradiance gradient method

treats albedo ρ(x) as a constant, and simply scales the incident

lighting L(ωi) by the albedo to form a scaled illumination.

Further, in their calculation process, the scaled illumination is

considered as the incident lighting.

B. Radiance Self-Transfer

An initial mesh model of the object is reconstructed with the

help of MVS. Based on this model, our method calculates the

radiance self-transfer. The object’s response to its environment

can be viewed as transfer function, mapping incoming to

outgoing radiance. By representing both incident radiance and

transfer functions in the SH domain, the light transport can be

reduced to a simple dot product between their coefficients

B(x) =
n2∑
k=1

Mk(x)Lk, (4)

where n−1 is the order of the SH, Mk(x) is the transfer vector,

of which each component represents the linear influence that

a lighting basis function Lk has on shading at vertex x. In

this case, the inter-reflected diffuse transfer process should be

divided into two pass. The first pass is to calculate the shadow

diffuse transfer, which M1(x) = V (x, ωi)H(x, ωi). The

second pass is to calculate the inter-reflection transfer based

on the first pass, which M2(x) = (1− V (x, ωi))H(x, ωi).

C. Irradiance Estimation

Given the radiance transfer coefficients, to estimate the

incident illumination coefficients, we first need to approximate

the albedos, ρ(x), of the surface. We ascribe changes in

texture to albedos, and estimate them from images. By taking

albedos into account, the estimated irradiance matches with

the observed, thus our metric wipes off the effect of texture.

Assume Q(xi) is the set of cameras that can see the i-
th vertex xi, Pc is the projection matrix for camera c, and

�

�
�

�
�

�
�

� � �
� � �

Fig. 4. The computation of reflectance of each vertex on the surface. Different
viewpoints are used to estimate the reflectance. The viewpoint which directly
faces the vertex will contribute more through a larger weight.

IC(PC(xi)) represents the image intensity corresponding to

xi and captured by camera c. Then as in Fig. 4. the estimated

albedo of xi is respectively

ρ(xi) =
∑

c∈Q(xi)

wcIc(Pc(xi))/
∑

c∈Q(xi)

wc (5)

in which

wc =
vec(xi, camc) · n(xi)

‖vec(xi, camc)‖ · ‖n(xi)‖ , (6)

where camc is the spatial position of the c-th camera,

vec(xi, camc) is the vector from the vertex to the camera,

and ‖‖ means the l2-norm of a vector. The weight term makes

sure that the image taken orthogonally with the surface normal

contributes little to the estimation of the albedo.

Based on the transfer coefficients and albedo of each vertex,

we estimate the lighting coefficients by minimizing

l̂ = argmin
l

∑
i

∑
c∈Q(i)

∣∣∣∣∣∣
n2∑
k=1

Mk(xi)lk − I(Pc(xi))

∣∣∣∣∣∣ (7)

After we’ve got the current estimated geometry and illumi-

nation, the next step is to relight the object, that is, to calculate

the outgoing irradiance according to Eq. 3.

Prior to the original metric, after the accurate calculation

of transfer function and estimation of albedos, our irradiance

field matches with the ground truth. This way, we can ascribe

the cause of significant difference of observed and estimated

irradiance can be think as the geometrical errors, but not the

insufficient precision of our estimation process.

D. Anisotropic Gradient Field Calculation

Shape from shading methods compute per-pixel surface

orientation instead of sparse depth, thus they can recover

fine details from shading variations. So the gradients of the

shading values, the estimated irradiance, accurately point out

the changes of topology of object. And because shading tends

to be more accurate for higher frequency shape components,

we compare the gradients of the observed and estimated

irradiance instead of directly comparing irradiance values.

What’s more, in this way, our metric is insensitive to self-cast

shadows.
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For each vertex, the gradient is defined as

G(xi) =
∑

xj∈N(xi)

∑
c∈Q(xi,xj)

w(xi, xj) ·(d (xi)− d(xj))
2 (8)

where i and j are the indices of the vertex, N (xi) is the

set of the neighbor of the vertex xi. The weight function

is negative correlation to the distance between xi and xj

and defined as w(xi, xj) = radius/dis(xi, xj). d(xi) is

the difference between the observed and estimated irradiance,

namely

d(xi) = B(xi)− I(Pc(xi)) (9)

V. EXPERIMENTS

We validate our algorithm using a synthetic model, shown in

Fig. 1, and two real world datasets: a plaster dinosaur (Fig. 5)

and a hall(Fig. 6). The synthetic model is a machine compo-

nent with gridded color. For the synthetic model, we use 4

simulated point light-sources. The images of plaster dinosaur,

one of the Middlebury datasets, are taken under controlled

studio environment. The plaster dinosaur has a slightly varying

albedo and casts shadows onto itself. The other real world

image sets, the hall, is captured outdoor, under general yet

uncontrolled illumination. We use Furukawa’s method [19] to

generate the initial patch models. Then to produce the mesh

model, we apply the Poisson surface [20] for the synthetic

object and the dinosaur, and touch expand method [21]for the

hall. We estimate the lighting and irradiance in SH domain

and set the SH order between 3 to 6 as a compromise of

efficiency against accuracy. We use Direct X to calculate the

transfer function of each vertex. For lighting estimation, we

use Lebvenberg-Marquardt method to solve the minimization

problem in Eq. 7.

A great number of MVS measures try to evaluate the visual

compatibility of a reconstruction with the input images. While

most of the measures work based on the pixel intensity or

the color of the image and establish correspondences between

different views. This kind of measures are often called photo-

consistency metric. In our experiment, we also compare the

performance of our metric with a basic photo-consistency mea-

sure method, the the Normalized Cross-Correlation (NCC).

Besides, we conduct experiments to prove the advantages

of our metric over the metric proposed by Zhao et al.. In the

experiment, we run comparison on 3D model with texture and

self-shadow and evaluate the performance of both metrics.

A. Effectiveness Validation

We evaluate the effectiveness of our metric both on synthetic

and indoor/outdoor real world scenes.

The synthetic dataset was generated by rendering 12 images

at pixel resolution 390 × 390. Fig. 1(a) displays an image as

an example. We set the order of SH to 3. By comparison, we

can see the hole area is poorly recovered. As in Fig. 1(d), the

irradiance model matches with the synthetic one, which reveals

that our lighting and irradiance estimation method gives con-

vincing and accurate result. Fig. 1(e) shows our anisotropic

gradient field correctly indicates that there is reconstruction

errors in the hole region.

(a)reconstrution result (b)our metric (c)NCC score

Fig. 5. Evaluation by our metric on real-world indoor dino dataset. The
hollow area on the back and the toe area with lots of details are accurately
indicated by our metric (red means high error ratio).

The Middlebury ”DinoSparseRing” dataset consists of 16

views sampled on a ring at pixel resolution 640 × 480.

In this experiment, we set the SH order to 4. Our metric

sheds light on reconstruction errors, hollow area on the back,

and topologically challenging areas, toe area with occlusion

around, as in Fig. 5(b).

Fig. 6. Evaluation by our metric on real-world outdoor hall dataset. Our
metric can successfully be applied into the outdoor image-based reconstruction
applications. The poorly reconstructed areas like floor and right window are
automatically pointed out by our metric.

The hall dataset contains 61 uncalibrated images at the pixel

resolution of 3008×2000 captured under uncontrolled outdoor

illumination, displayed in Fig. 6. As for the images captured

under uncontrolled illumination, we successfully perform irra-

diance estimation (Fig. 6(c)) and further anisotropic gradient

calculation (Fig. 6(d)). As shown in the reconstructed model,

the windows of the upper right is poorly recovered; our metric

point our the area automatically.
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B. Comparison with NCC Score

Our metric can achieve more accurate and robust perfor-

mance compared to the NCC as our metric combines the

photo-consistency with the shading method, and provides

details about the geometry directly. For example, the base of

the plaster dinosaur is purely a plane. But the NCC score of

this area raises, due to lacking of intensity variation and some

shadows casted on it. But our method achieved convincing

consequence as it point out that this area is of low gradient.

Besides, the back of the model is of repeated texture, so the

multi-view method outputs inaccurate matches and treats them

as consistent in color. As shown in the top left of Fig. 1(f),

NCC score of hole area is high, but with mistakes.

C. Comparison with Zhao’s Metric

Fig. 7. Comparison our metric with Zhao’s metric on the synthetic dataset
to show the texture and shadow insensitive characteristic.

Experiments were conducted to test and verify the im-

provement gained by our metric compared with the previous

irradiance gradient metric. The advantages of our metric lie in

the robustness against texture changing and self-shadow.

As shown in Fig. 7, boundaries of different colors on a

smooth surface was not indicated as a geometrically challenge

area with high gradient. And on the base of the plaster

dinosaur, a boarder of the umbra and penumbra is displayed

in Fig. 7(b) and our method shows insusceptible performance.

While, as shown in Fig. 7(c) the metric provided by Zhao et

al. [4] fails to give the right result.

VI. CONCLUSION

This paper presents a texture and shadow insensitive metric

for image-based 3D reconstruction. The metric is based on

the anisotropic irradiance gradient which can automatically

evaluate 3D reconstructions without ground truth. The experi-

mental results demonstrate that we further improve the metric

accuracy by encapsulating the inter-reflection rendering model

into the radiance transfer function. We also explicitly estimate

the reflectance of each vertex on the surface and consider the

difference between the estimated and observed irradiance to

make our metric insensitive to the texture and shadow.

Although our method is devoted to extend the application

range of previous irradiance-based metric, one limitation still

comes from the assumption of the diffuse material. In future,

we would like to further extend our method to be applied to

more general materials. Besides, the Spherical Harmonics act

as a low-pass filter on the incident illumination. We will try

to employ wavelet as a representation of lighting instead.
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