
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

September 2012 Vol. 55 No. 9: 2090–2101

doi: 10.1007/s11432-011-4427-0

c© Science China Press and Springer-Verlag Berlin Heidelberg 2012 info.scichina.com www.springerlink.com

Displacement residual based DDM matching
algorithm

ZHANG Lin1,2, ZHOU Zhong1,2∗, LIU Lin1,2 & WU Wei1,2

1State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China;
2School of Computer Science and Engineering, Beihang University, Beijing 100191, China

Received December 7, 2010; accepted May 30, 2011; published online April 12, 2012

Abstract High level architecture (HLA) is the prevailing standard for modeling and simulation. The data

distribution management (DDM) service of HLA is defined for reducing the delivery of irrelevant data. The key

in DDM implementation is the region overlap computation, i.e. the matching between update and subscription

regions. Existing algorithms usually make a compromise between region fidelity and network payload. This

paper takes both the matching algorithm efficiency and bandwidth cost into account. The main contributions

are: 1) illustrating the relationship between region changes and overlap changes, as helps reduce the number

of region matching and then improves the total matching efficiency; 2) classifying region updates into two

types of data expression, snapshot and residual. The network traffic will be reduced by transmitting only

residual data instead of full region representations occasionally. Consequently, a region matching algorithm

called displacement residual-based DDM matching (DRBM) is proposed in the paper. Theoretical analysis,

algorithm implementation and experiment evaluation are presented. Experiment results show that DRBM

provides better matching performance and significant network payload reductions especially when there is a

large number of changing regions.

Keywords distributed simulation, high level architecture, data distribution management, region snapshot,

region residual

Citation Zhang L, Zhou Z, Liu L, et al. Displacement residual based DDM matching algorithm. Sci China Inf

Sci, 2012, 55: 2090–2101, doi: 10.1007/s11432-011-4427-0

1 Introduction

In a large-scale distributed simulation, thousands of objects keep moving and interacting in a virtual

environment. Because each object is producing messages nearly all the time, a data explosion results

that cripples the simulation performance and restricts its scalability when real-time interaction is required.

Interest management technologies are used to reduce message traffic over the network, mostly according to

the spatial relationship of sender/receiver objects. Researchers have been studying interest management

technologies since the 1990s. High level architecture (HLA) is the prevailing standard for modeling and

simulation. It regulates a region-based interest filtering service group called data distribution management

(DDM). Three main concepts, routing space, update region, and subscription region, are defined in DDM

services in the HLA 1.3 standard [1–4]. DDM services allow producers of data to assert properties of

∗Corresponding author (email: zz@vrlab.buaa.edu.cn)

Zhang L, et al. Sci China Inf Sci September 2012 Vol. 55 No. 9 2091

their data, and consumers of data to specify their data requirements in terms of user-defined regions.

The run-time infrastructure (RTI) then distributes data from producers to consumers based on matches

between these update and subscription regions. Hence, the region-matching algorithm becomes critical

in judging whether regions overlap. Indeed, DDM services constitutes a problem in regard to algorithm

efficiency optimization and in delivering region information. Both algorithm efficiency and region delivery

are very important in any practical implementation of DDM. There exist four main DDM matching

algorithms classified by approach: region-based [5], grid-based [6–8], hybrid [9–14], and sort-based [15–

17]. Each has its respective advantages and disadvantages, but none take network delivery into account.

This paper investigates the bound limit of sort-based matching, determins the relationship between

region-changes and overlap-changes, and then proposes the displacement residual-based DDM matching

(DRBM) algorithm, which further reduces the matching scope and improves efficiency. In regard to the

region exchange problem, the region update is attached to a type of snapshot or residual. Similar to

the idea of inter-frame image compression, an estimation region update can be deduced from a residual

after referring to the latest snapshot region update. Region delivery performed in this manner can be

established at a relatively lower bandwidth cost.

2 Overview

In this section, the four main DDM matching algorithms are described highlighting their respective

advantages and disadvantages.

The region-based approach is a brute-force approach that checks every pair of subscription region and

update region to obtain exact overlapping information [8]. The computational complexity of region-based

approach is O(N2).

To reduce this complexity, a grid-based approach was proposed that divides the routing space into

a grid of cells. Each region is then mapped to grid cells. An update region and a subscription region

are assumed to overlap with each other if and only if these regions share at least one common grid cell.

However, the grid-based approach cannot derive accurate overlapping information. Hence irrelevant data

may be received by each receiving federate [18,19].

Hybrid methods have been proposed because grid-based and region-based approaches have completely

contradicting features related to filtering efficiency [20,21]. They use the grid-based approach to reduce

the number of regions needing to be matched and the region-based approach to obtain further filtering

results [13]. In this way, the matching computational complexity is reduced compared with the pure

region-based approach and the derived overlapping information is exact. The major problem is that its

performance depends on the chosen size of grid cells.

The sort-based approach, proposed in [17], first inserts the bounds from all regions into a list L and sorts

L, next statistically processes all the regions in one round, and then derives all the overlapping information.

The performance of sort-based approaches is good due using bit operations, but major drawbacks remain.

In large scale environments it is not practical because of its quadratic storage increase. Furthermore, if

a certain region changes, the algorithm must process all regions once again at great computational cost

[16].

Pan proposed an improved sort-based approach in [16]. A search is restricted to a certain sub range

based on a given necessary and sufficient condition for region overlapping. In this approach, distinct from

the original sort-based approach, the upper and lower bounds of all subscription regions are separately

sorted per dimension, as well as update regions. Then for a specific region, to derive its overlapping

information, it separately scans in a sub range on the upper-bound list and lower-bound list per dimension.

Matching performance is good, especially in large spatial environments, but shortcomings are obvious

as well. Because, if there are large number of entities with relatively small interest regions and a small

number of entities with relatively big interest regions in the spatial environment scanning within the

maximum possible extent for each range usually consumes computing resources.

The DRBM algorithm proposed in this paper has some distinctive differences from existing sort-based

algorithms. First, region scanning is further shortened and proofs of the related theorems are given. The

2092 Zhang L, et al. Sci China Inf Sci September 2012 Vol. 55 No. 9

algorithm efficiency is decided mainly on the matching efficiency, so scanning of a smaller region will

help. Second, network delivery is taken into account whereas none of the previous work has done so.

3 Bounds in region matching

To understand the characteristics of region overlap, a simple scenario is examined. An example is shown

in Figure 1 to illustrate region overlapping among three regions in a two-dimensional coordinate space.

Region B overlaps both region A and C, while region A has no intersection with region C.

If regions are projected onto one common dimension, as depicted in Figure 1, all overlapping informa-

tion in that dimension can be computed. Two regions overlap if and only if they have common dimensions

and their ranges overlap on each common dimension. Hence, matching detection in a multi-dimensional

routing space can be carried out dimension-by-dimension [17]. Each routing space may have one or more

dimension, each representing a specific characteristic of the routing space. There is no restriction on the

number of dimensions in both HLA 1516 and earlier HLA 1.3 standards.

Thus, it is necessary to analyze overlapping cases among ranges of regions in one common dimension.

As shown in Figure 2, there are four possible overlaps between ranges ui[ui,l, ui,u) and sj [sj,l, sj,u) in

a common dimension. Thus, the necessary and sufficient condition for two ranges to overlap is the

satisfaction of both inequalities 1 and 2 [16].

ui,u > sj,l, (1)

sj,u > ui,l. (2)

Therefore, to derive exact overlapping information for a specific update range ui, all subscription

ranges which satisfy both 1 and 2 should be checked. Computational cost could be high if all subscription

ranges in this dimension are checked each time, especially in large routing spaces. In this paper, we first

investigate how to shorten the matching process.

For ease of explanation, overlap characteristics between an update range ui and all subscription ranges

in a common dimension are given next. In regard to the subscription range, all characteristics are the

same.

We first formalize the basic matching problem.

We denote the set of all subscription regions by Φ and the set of all update regions by Ψ . In dimension

d, let φd and ψd be the respective sets of all subscription and update ranges. Given an update region

Ui, we let φi denote the set of all subscription regions overlap Ui. Similarly, let ψi denote the set of all

update regions overlap the subscription region Si.

Let φdi be the set of subscription ranges overlap the update range ui in dimension d, then φdi =

{sj|sj overlaps ui, sj ∈ φd}. Likewise, let ψd
i be the set of update ranges overlap the subscription range

si in dimension d, then ψd
i = {uj|uj overlaps si, uj ∈ ψd}.

Definition 1 (maxSRS, maximum subscription range size). For a given dimension d, maxSRS refers

to one simplified form of the maximum range size in φd. maxSRS = max {sizes of all the subscription

ranges in φd}.
Definition 2 (maxURS, maximum update range size). For a given dimension d, maxURS refers to

one simplified form of the maximum range size in ψd. maxURS = max {sizes of all the update ranges in

ψd}.
Theorem 1. ∀sj ∈ φdi , we have ui,l −maxSRS < sj,l < ui,u and ui,l < sj,u < ui,u +maxSRS.

Proof. From formula 1, we have: sj,l < ui,u. From formula 2, we have: sj,u > ui,l, then sj,u − sj,l >

ui,l − sj,l, sj,l > ui,l − (sj,u − sj,l). With Defination 1, we thus have: sj,l > ui,l −maxSRS. We thus have:

ui,l −maxSRS < sj,l < ui,u. Similarly, we can prove: ui,l < si,u < ui,u +maxSRS.

Zhang L, et al. Sci China Inf Sci September 2012 Vol. 55 No. 9 2093

Figure 1 Example of region overlapping. Figure 2 Overlapping cases for two ranges.

Figure 3 Changes in overlap caused by modification of a range.

Theorem 2. ∀uj ∈ ψd
i , we have si,l −maxURS < uj,l < si,u and si,l < uj,u < si,u +maxURS.

The proof of Theorem 2 is similar to that of Theorem 1.

As mentioned before, frequent movements of objects bring about frequent modifications of their regions.

To investigate changes in overlap caused by these modifications, a simple scenario is examined. Figure

3 shows one update range u and five subscription ranges along dimension X . The u′ and u
′′
are two

examples of modifications of u.

A modification of a range can be viewed as a result of the movement of its two bounds. As shown in

Figure 3, when the lower bound of u (ul) moves across the upper bound of s1 (s1,u) to u′l, an overlap

between u and s1 emerges. Similarly, when uu moves across s3,l to u
′
u then, overlap between u and s3

disappears. When ul moves across s2,u and s3,u to u′′l , u no longer overlaps s2 and s3. When uu moves

across s4,l and s5,l to u
′′
u then, u overlaps s4 and s5.

From the above, we get four important corollaries. Given an update range ui and a subscription range

sj , we have:

Corollary 1. If sj,l moves across ui,u in negative direction with respect to the dimension, an overlap

between sj and ui emerges.

Corollary 2. If sj,l moves across ui,u in positive direction with respect to the dimension, overlap

between sj and ui disappears.

Corollary 3. If sj,u moves across ui,l in negative direction with respect to the dimension, overlap

between sj and ui disappears.

Corollary 4. If sj,u moves across ui,l in positive direction with respect to the dimension, an overlap

between sj and ui emerges.

In this paper, the new algorithm for region matching is proposed based on these corollaries and The-

orems given above.

4 Algorithm description

In this section, we show how our proposed DRBM algorithm derives the overlapping information rapidly

and how it delivers region update efficiently with low network traffic.

4.1 Data structure

The data structure of our algorithm is shown in Figure 4. The array PsiSnaps keeps snapshots of update

regions, and the array PhiSnaps keeps snapshots of subscription regions. The array PsiResiduals keeps

2094 Zhang L, et al. Sci China Inf Sci September 2012 Vol. 55 No. 9

regionSnapshot[] PhiSnaps

regionSnapshot[] PsiSnaps

regionResidual[] PhiResiduals

regionResidual[] PsiResiduals

regionSet[] phiVector

regionSet[] psiVector

for each dimension

boundList phiLowerBounds

boundList phiUpperBounds

boundList psiLowerBounds

boundList psiUpperBounds

int maxSRS

int maxURS

int DDT

Figure 4 Data structure.

residuals of update regions, and the array PhiResiduals keeps residuals of subscription regions (more

details of snapshot and residual are provided in Subsection 4.3). The phiVector and psiVector are arrays

which independently maintain the respective sets φi and ψj for each update and subscription region ui
and sj respectively. For each dimension, there are four sorted bounds lists and two integers. All lists

are sorted in ascending order. The phiLowerBounds keeps lower bounds of subscription ranges. The

phiUpperBounds keeps upper bounds of subscription ranges. The psiLowerBounds keeps lower bounds

of update ranges. The psiUpperBounds keeps upper bounds of update ranges. The integer maxURS and

maxSRS hold the maximum update and subscription range sizes, respectively. The integer DDT is the

dimension displacement threshold (more details in Subsection 4.3) in this dimension.

4.2 Overlap computation

For ease of explanation, we elaborate on our matching approach for an update region. An analogous

description obtains for each subscription region.

Changes in each region are divided into two kinds according to its effect on overlap: create a new

region and modify an existing region. A matching process is triggered by creating a new region to derive

new overlapping information. A rematching process is triggered by modifying of a region to update the

existing overlapping information.

A simple scenario with one update region ui and five subscription regions located in a two-dimensional

shared space is examined in Figure 5. The goal of our approach is to search overlapping information of

the update region ui with the least number of comparisons.

To simplify the searching process, lower bounds and upper bounds of all subscription regions are sepa-

rately sorted in ascending order per dimension. Thus, all lower bounds and upper bounds of subscription

ranges are first separately sorted in each common dimension [17]. For the scenario given in Figure 5(a),

four lists are constructed:

1) List of lower bounds in x-dimension: x-phiLowerBounds = {s1,l, s2,l, s4,l, s5,l, s3,l};
2) List of upper bounds in x-dimension: x-phiUpperBounds = {s1,u, s2,u, s5,u, s4,u, s3,u};
3) List of lower bounds in y-dimension: y-phiLowerBounds = {s4,l, s2,l, s3,l, s1,l, s5,l};
4) List of upper bounds in y-dimension: y-phiUpperBounds = {s4,u, s2,u, s3,u, s5,u, s1,u}.
After sorting bounds of regions in each dimension, the proposed DRBM approach handles dynamics

of regions in accordance with the following.

Create a new region. When a new region is created, matching is performed with the following steps.

Step 1. For each dimension d, scan through the sorted lower bounds phiLowerBounds to get a set

of regions with their lower bounds in the range (ui,l−maxSRS, ui,u) (According to Theorem 1).

Take the scenario shown in Figure 5(a) as an example, when an update region ui is created, two sets

are constructed: 1) tempSetx = {s2, s4, s5, s3} in dimension X , 2) tempSety = {s4, s2, s3} in dimension Y .

Zhang L, et al. Sci China Inf Sci September 2012 Vol. 55 No. 9 2095

Figure 5 Basic scenario for the DRBM algorithm. (a) Matching triggered by creating a new region; (b) rematching

triggered by region modification.

Step 2. For each result from Step 1, eliminate regions with upper bounds less than ui,l.

In the example considered in Figure 5(a), two sets are constructed: 1) set φxi = {s4, s2, s5, s3} which

consists of regions overlap ui in dimension X , and 2) set φyi = {s2, s3} which consists regions overlapping

ui in dimension Y . With Inequalities 1, 2 and Theorem 1, both φxi and φyi are exact sets of ranges that

overlap ui in their respective dimension.

Step 3. Find the intersections of all sets derived from Step 2, and this is precisely the set φi, as in

Eq. (3),

φi =
⋂

d

φdi . (3)

For the given scenario, we then have φi = φxi ∩ φyi = {s4, s2, s5, s3} ∩ {s2, s3} = {s2, s3}.
Modify a region. If an update region ui is modified, the rematching process is triggered to update

the overlapping information. Rematching is performed with the following steps.

Step 1. For each dimension d, scan through the sorted upper bounds list phiUpperBounds to get

a temporary set of regions with their upper bounds in the path of the moving lower bound, and scan

through the sorted lower bounds list phiLowerBounds to get a temporary set of regions with their lower

bounds in the path of the moving upper bound.

In the example considered in Figure 5(b), when ui is updated to u′i four temporary region sets

are constructed: tempSetx,l, tempSetx,u, tempSety,u, tempSety,l, and tempSety,u. Therein, we have

tempSetx,l = {s3} by scanning through the x-phiLowerBounds in the range (u′i,u, ui,u), tempSetx,u = {s1}
by scanning through the x-phiUpperBounds in (u′i,l, ui,l), tempSety,l = {s1, s5} by scanning through

y-phiLowerBounds in(ui,u, u
′
i,u), and tempSety,u = {s2} by scanning through y-phiUpperBounds in

(ui,l, u
′
i,l).

Step 2. For each dimension d, two sets are computed from the results of Step 1: 1) set φd+i consisting

of regions become overlap ui, and 2) set φd−i consisting of regions become separate from ui.

Both sets φd+i and φd−i are computed according to corollaries given in Section 3. In the example

considered in Figure 5(b), where ui,l moves in the negative direction of dimension X , we have with

Corollary 1: tempSetx,u ∈ φd+i . Similarly, with ui,u moving in the negative direction of dimension X ,

we can have with Corollary 3: tempSetx,l ∈ φd−i ; Also with ui,l moving in the positive direction of

dimension Y , we have with Corollary 2: tempSety,u ∈ φd−i ; And with ui,u moves in the positive direction

of dimension Y , we can have with Corollary 4: tempSety,l ∈ φd+i . Finally, we have

φx+i = ∅ ∪ tempSetx,u = ∅ ∪ {s1} = {s1};
φx−i = ∅ ∪ tempSetx,l = ∅ ∪ {s3} = {s3};
φy+i = ∅ ∪ tempSety,l = ∅ ∪ {s1} = {s1, s5};
φy−i = ∅ ∪ tempSety,u = ∅ ∪ {s2} = {s2}.

Step 3. Compute φ+i =
⋃

d φ
d+
i and φ−i =

⋃
d φ

d−
i . Then for each dimension, remove items in φ+i that

do not overlap ui by checking both inequalities 1 and 2.

For the given scenario, we have φ+i = {s1, s5} and φ−i = {s2, s3}.

2096 Zhang L, et al. Sci China Inf Sci September 2012 Vol. 55 No. 9

Table 1 The matching algorithm

01. if(create a new region) 19. if(modify an existing region)

02. if(an update region Ui is created) 20. if(an subscription region Si is modified)

03. for each dimension d 21. for each modified range si

04. insert ui,l into the psiLowerBounds 22. //si is in dimension d

05. insert ui,u into the psiUpperBounds 23. resort the phiLowerBounds of d

06. if (size of ui > maxURS) 24. resort the phiUpperBounds of d

07. maxURS = size of ui 25. if (size of si > maxSRS)

08. end 26. maxSRS = size of si

09. compute φdi 27. end

10. end 28. compute ψd+
i and ψd−

i

11. compute φi as in Eq. (3) 29. end//end of for

12. for each subscription region Sj ∈ φi 30. compute ψ+
i and ψ−

i

13. add Ui to ψj 31. update ψi as in Eq. (4)

14. end 32. for each update region Uj ∈ ψ+
i

15. else //a subscription region is created 33. add Si to φj

16. similar to above . . . 34. end

17. end 35. for each update region Uk ∈ ψ−
i

18. end 36. remove Si from φk

37. end

38. else //a update region is modified

39. similar to above . . .

40. end

41. end

It is noteworthy that if u′i,l is greater than ui,u + maxSRS or u′i,u is smaller than ui,l − maxSRS in

any dimension, all previous overlaps disappear according to both Theorems 1 and 2. Hence, φ−i = φi.We

compute φd+i by checking both inequalities 1 and 2 in (u′i,l −maxSRS, u′i,u) in this dimension, similar to

creating a new range, instead of Steps 1 and 2.

Step 4. Update φi as in Eq. (4).

φi = φi ∪ φ+i − φ−i . (4)

Hence, for the given scenario we have φi = φi ∪ φ+i − φ−i = {s2, s3} ∪ {s1, s5} − {s2, s3} = {s1, s5}.
The main DRBM matching process is outlined in Table 1 using the notation and descriptors introduced

before. A similar approach is applied to the subscription regions.

4.3 Region delivery

In DDM implementations, region delivery is an important aspect as bandwidth is wasted when all region

data are transmitted even if only one range is changed. To prevent such waste caused by such region

delivery, a region snapshot and a region residual are introduced in our DRBM strategy. A snapshot of a

region is a whole copy of its data. For each region, there is only a unique version of a snapshot at any

given simulation time. If a region snapshot is updated, its version should be increased accordingly. A

region residual refers to modifications of a certain version of a snapshot.

To illustrate the basic idea of our snapshot and residual schemes, we first present an example. Figure

6 shows changes of a region R and its range in dimension X changes as the simulation proceeds. For

simplicity, let region R only change in dimension X . As is shown in Figure 6(a), an initial version of region

R’s snapshot is first created in t0. When R is modified, a residual is created by computing displacement

of each range in all dimensions relative to the current snapshot. Take the scenario in Figure 6 as an

example, when R is modified in t1, only its range rx is modified, thus a residual rx(a− c, b−d) is created.
Then, only the t1 residual rx(a− c, b− d) needs to be transmitted along with the version of the snapshot,

then network load of region transmission is clearly lightened as a consequence. The receiver update the

Zhang L, et al. Sci China Inf Sci September 2012 Vol. 55 No. 9 2097

Figure 6 Snapshot and its residual of region R as the simulation time proceeds. (a) Region R changes as simulation time

goes on; (b) range changes accordingly in dimension X.

relevant bound lists (i.e. phiLowerBounds, phiUpperBounds, psiLowerBounds and psiUpperBounds) by

adding the residual to current snapshot of region R. In this way, the region update in DRBM could be

a type of snapshot update packet, and a series of relative update packets with residuals referring to the

current snapshot.

Furthermore, the network traffic can also be reduced by packaging, compressing, and then transmitting

all existing residuals of all modified region each time. It is worth noting that the smaller the residual

value, the higher compression ratio we can achieve, because of the zero value in the higher part. Hence,

to keep residual value small, a factor called the dimension displacement threshold (δ) is introduced. Each

dimension of the routing space has its own δ, and if displacement of a range node is greater than δ,

a higher version of snapshot would be created by adding residual onto the current snapshot. Take the

scenario in Figure 6 as an example, the displacement of upper node of rx is |b − f |. A new version of

snapshot should be created in tn because |b− f | is greater than δ.

5 Theoretical performance analysis

To obtain a better idea of the performance of the new algorithm, a theoretical performance is given here.

The major parameters used in the algorithm’s complexity analysis are given first:

• Number of update regions: N .

• Number of subscription regions: N (for simplicity, assumed to be the same as the number of update

regions).

• Number of dimensions: D.

• Each dimension extends over [0, L].

• Maximum range size of all regions: maxRS.

To analyze the storage complexity of our proposed algorithm, Figure 4 is reviewed. Both the PsiSnaps

and PhiSnaps require O(N) storage, as do PsiResiduals and PsiResiduals. According to [16], the average

number of overlapping regions for a given region is O((maxRS/L)D ∗ N). Hence, both phiVector and

psiVector require O((maxRS/L)D ∗ N2) storage. The total storage for bound lists is O(N). Both the

maxSRS and maxURS requireO(1) storage. Overall, the total storage complexity of our DRBM algorithm

is O((maxRS/L)D ∗ N2). Although it is quadratic storage complexity with respect to N, the actual

storage requirement depends on the ratio of O((maxRS/L)D) which should be very small in a large

spatial environment (e.g., 0.0012).

To analyze the computational complexity of our algorithm, the matching algorithm in Table 1 is

examined. The process of inserting bounds of a range into the respective bound list and calculating

the maximum range sizes (Steps 04–08) requires O(logN + 1) computation. The process of computing

φdi (Step 09) requires O(maxRS/L ∗N) computation. Step 11 requires O(maxRS/L ∗ N) computation.

The computational complexity of Steps 12–14 is proportional to the average number of overlapping

subscription regions for an update region, which is O((maxRS/L)D ∗N). If an existing region is modified,

the process of resorting the respective bound list and calculating the maximum range sizes (Steps 23–27)

requires O(logN +1) computation. Step 28 requires O(maxRS/L ∗N) computation. The computational

complexity of Steps 30–37 is proportional to the average size of φd+i and φd−i , which is O(maxRS/L ∗N).

In total, the computational complexity of our proposed algorithm in creating a new region or modifying

an existing region is O(maxRS/L ∗ N) which is linear. With a small maxRS/L ratio (e.g., 0.001) in a

2098 Zhang L, et al. Sci China Inf Sci September 2012 Vol. 55 No. 9

large spatial environment, the proposed DRBM algorithm could have high efficiency.

6 Experiment evaluation

In this section, the performance of the new algorithm is evaluated, including the computational per-

formance of matching, the bandwidth occupied by region transmission, and the DDM services response

delay.

To verify the correctness of theoretical conclusions made in Section 5, three C++ programs have been

written to independently execute the region-based, Pan’s improved sort-based, and DRBM algorithms.

Each program performs a dynamic matching of a region modification and calculates the average perfor-

mance for 50 iterations. All programs were run on a single PC with specifications Pentium D 3.40 GHz

CPU and 1GB RAM on Microsoft Windows XP.

To show the performance comparison more clearly in different scale, two experiments are implemented

on the basis of the number of regions. We set L=1000000 and maxRS=100. About 80% of the range

displacement distances are controlled under maxRS*2 and the others are within a range of [maxRS*2,

maxRS*10].

Figure 7 shows the total execution time of each algorithm for dynamic matching performance of one

region modification and the total number of regions is no more than 30000. As shown in Figure 7, with the

increase in the number of regions, the execution time of the region-based algorithm increases significantly

and the other two algorithms increases slowly. The results show that our proposed matching algorithm

has better computational performance as the number of regions increased.

Figure 8 shows the total execution time of each algorithm for dynamic matching performance of one re-

gion modification with a large number of regions. The results show that our proposed matching algorithm

has a higher computational performance compared with that of the improved sort-based algorithm.

The performance of the region-based algorithm depends on the number of ranges, therefore another

experiment was performed to establish the dependency of region size for the improved sort-based and our

DRBM algorithm. We let the maxRS extend from 500 to 5000 in incremental steps of 500. The results in

Figure 9 show that our proposed algorithm has better performance as the maxRS/L ∗N ratio increased.

The storage required is an important factor for each algorithm, especially for a large scale environment.

Hence, an experiment was devised with respect to a large number of ranges. The results in Figure 10

show that the improved sort-based and our proposed DRBM algorithms require more memory than that

of the region-based algorithm, because both set up sorted bounds. As shown in Figure 10, a scenario

with N=300000 DRBM algorithm takes less than 120 MB memory, which is acceptable.

We have implemented the proposed DRBM algorithm in BH RTI 2.3. To show that our proposed

region delivery mechanism takes less bandwidth, a simple HLA federate application is designed and

implemented the federate application on BH RTI 2.3, DMSO RTI 1.3NGv6 (non-bundle) and MÄK RTI

3.0. The experiment was performed with the number of federates extending from 2 to 8 in incremental

steps of 1. Because the bandwidth occupied by region transmission is examined, each federate create 500

regions and call DDM services only. All federates were run on a single PC in the same local area network.

Figure 11 shows the bandwidth measured by the performance counter PerfCounter. The results show

that BH RTI 2.3 takes much less bandwidth than DMSO RTI and MÄK RTI. It reduces the proportion

of bandwidth occupied by about 15 percent.

A DDM service response delay refers to the time delay between the call of a DDM service from a caller

and the instant an affected federate receives the result. To simplify the experiment, the DDM service

interface registerObjectInstanceWithRegion is examined here. Because the experiment is conducted over

a local area network, we make the assumption that the network delay is not taken into consideration. To

verify the DDM services response delay with respect to range size, an experiment was performed with

three federates. Each federate registered 10 subscription regions and 500 update regions and all regions

are the same size. Results in Figure 12 show that each RTI performs stably. DMSO RTI takes a little

more time because of the region-based matching algorithm.

Zhang L, et al. Sci China Inf Sci September 2012 Vol. 55 No. 9 2099

Figure 7 Performance with respect to number of ranges.

Figure 8 Performance with respect to a large number

of ranges.

Figure 9 Performance with respect to maximum

range size.

Figure 10 Memory taken. Figure 11 Bandwidth cost.

Figure 12 DDM services response delay with respect to

range size.

Figure 13 DDM services response delay with re-

spect to the number of rederates.

To verify the DDM services response delay with respect to the number of regions, another similar

experiment was performed with all range sizes set at 500. With the number of federates extending from

two to eight, the total number of regions increase, and as shown in Figure 13, BH RTI 2.3 has a quicker

2100 Zhang L, et al. Sci China Inf Sci September 2012 Vol. 55 No. 9

response time than DMSO RTI and MÄK RTI. Because both DMSO RTI and MÄK RTI are single-server

architecture, server load increases rapidly under this condition. BH RTI 2.3 is in contrast a multi-server

architecture; the server load could then be reduced.

7 Conclusions

In this paper, we propose a new DDM algorithm named DRBM which has good matching performance

and significantly reduces network traffic caused by region transmitting.

Different from former works, we took both matching performance and network load caused by region

transmission of DDM services into account. We first investigated the relationship between the region

changes and overlap changes that can help to reduce matching and consequently improve matching ef-

ficiency. We classified region updates into two types of data expression, snapshot and residual. The

network traffic could then be reduced by transmitting residual data instead of full region representations.

Accordingly, the DRBM algorithm was devised. Experimental results show that DRBM has good match-

ing performance and significantly reduces network traffic when the number of changing regions is large;

therefore, it will play an effective role in simulations that are constrained by the network traffic.

Acknowledgements

This work was supported by National Basic Research Program of China (Grant No. 2009CB320805), Natural

Science Foundation of China (Grant No. 61073070), 2008 China Next Generation Internet Application Demon-

stration sub-Project (Grant No. CNGI2008-123), and Fundamental Research Funds for the Central Universities

of China.

References

1 IEEE. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Framework and Rules.

New York: The Institute of Electrical and Electronics Engineer, 2000

2 IEEE. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Federate Interface Specifi-

cation. New York: The Institute of Electrical and Electronics Engineer, 2000

3 IEEE. IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-Object Model Template

(OMT) Specification. New York: The Institute of Electrical and Electronics Engineer, 2000

4 US Department of Defense. High Level Architecture (HLA) - Federate Interface Specification, Version 1.3. 1998

5 Van Hook D J, Calvin J O. Data distribution management in RTI 1.3. In: Proceedings of the 1998 Spring Simulation

Interoperability Workshop. 1998

6 Ayani R, Moradi F, Tan G. Optimizing cellsize in grid-based DDM. In: Proceedings of the 14th Workshop on Parallel

and Distributed Simulation. Washington: IEEE Computer Society, 2000. 93–100

7 Rak S J, Van Hook D J. Evaluation of grid-based relevance filtering for multicast group assignment. In: Proceedings

of the Distributed Interactive Simulation, Orlando, 1996. 739–747

8 Lo S H, Chiu C A, Pai F P, et al. MGRID: a modifiable-grid region matching approach for DDM in the HLA RTI. In:

Proceedings of the 2009 Spring Simulation Multiconference. San Diego: Society for Computer Simulation International,

2009

9 Abrams H, Watson K, Zyda M. Three-tiered interest management for large-scale virtual environments. In: Proceedings

of the ACM Symposium on Virtual Reality Software and Technology. New York: ACM, 1998. 125–129

10 Minson R, Theodoropoulos G. An adaptive interest management scheme for distributed virtual environments. In:

Proceedings of the 19th Workshop on Principles of Advanced and Distributed Simulation. Washington: IEEE Computer

Society, 2005. 273–281

11 Morse K, Steinman J. Data distribution management in the HLA: multidimensional regions and physically correct

filtering. In: Proceeding of the 1997 Spring Simulation Interoperability Workshop. Springer, 1997. 343–352

12 Shirmohammadi S, Kazem I, Ahmed D T, et al. A visibility-driven approach for zone management in simulations.

Simul, 2008, 84: 215–229

13 Tan G, Zhang Y, Ayani R. A hybrid approach to data distribution management. In: Proceedings of the 4th IEEE

International Workshop on Distributed Simulation and Real-Time Applications. Washington: IEEE Computer Society,

2000. 55–61

Zhang L, et al. Sci China Inf Sci September 2012 Vol. 55 No. 9 2101

14 Zhang G, Zhang X, Li D. A hybrid DDM algorithm based on weight function. In: The 5th International Conference

on Fuzzy Systems and Knowledge Discovery. Washington: IEEE Computer Society, 2008. 225–229

15 Pan K, Turner S, Cai W, et al. Implementation of data distribution management services in a service oriented HLA RTI.

In: Proceedings of the 2009 Winter Simulation Conference. Austin: Winter Simulation Conference, 2009. 1027–1038

16 Pan K, Turner S, Cai W, et al. An efficient sort-based DDM matching algorithm for HLA applications with a large

spatial environment. In: 21st International Workshop on Principles of Advanced and Distributed Simulation (PADS

07). Washington: IEEE Computer Society, 2007. 70–82

17 Raczy C, Tan G, Yu J. A sort-based DMM matching algorithm for HLA. ACM Trans Model Comput Simul, 2005, 15:

14–38

18 Capps M, Stotts D. Research issues in developing networked virtual realities. In: Proceedings of the 6th IEEE

Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). Washington: IEEE

Computer Society, 1997. 205–211

19 Macedonia M, Zyda M, Pratt D, et al. Exploiting reality with multicast groups: a network architecture for large-scale

virtual environments. IEEE Comput Graph, 1995, 15: 38–45

20 Sorroche J, Szulinski J. Bandwidth reduction techniques used in DIS exercises. In: Proceedings of the 2004 European

Simulation Interoperability Workshop. Orlando: SISO’s Digital Library, 2004

21 Torpey M, Wilbert D, Helfinstine B, et al. Experiences and lessons learned using RTI-NG in a large-scale, platform-level

federation. In: Simulation Interoperability Workshop. Orlando: SISO’s Digital Library, 2001

